Abstract

It is proposed to present a novel approach to recover design patterns which can achieve better performance and greater accuracy by representing the characteristics, basically structural, behavioural etc. of design pattern by using weight and matrix concept so that to reduce the anomalies like false positives rate and false negative rate. Also follow the pattern taxonomy for reverse engineering and applying sparse matrix algorithms for efficient storage and computation. Apply the sub matrix algorithm to design pattern binary matrix and binary matrix generated from source code. Comparison with other standard pattern detection tools for effectiveness and performance.
References

- Linda Mary Wills, Using Attributed Flow Graph Parsing to Recognize Clichés in Programs In Proceedings of the International Workshop on Graph Grammars and Their Application to Computer Science, 1996.
- Shinpei Hayashi, Junya Katada, Ryota Sakamoto, Takashi Kobayashi and Motoshi Saeki, design pattern detection by using meta patterns, special section on knowledge-based software engineering, IEICE Trans. Inf. & Syst., Vol. E91–D, No. 4 April 2008
- Jing Dong, Yongtao Sun and Yajing Zhao, Design pattern detection by template matching, Proceedings of the 2008 ACM symposium on Applied computing, Pages 765-769, 2008
- F. Shull, W. L. Melo, and V. R. Basili. An inductive method for discovering design patterns from objectoriented software systems. Technical report, University of Maryland,
Automatic Detection of Software Design Patterns from Reverse Engineering

Computer Science Department, College Park, MD, 20742 USA, Oct 1996.
- Sven Wenzel, Udo Kelter, Model-Driven Design Pattern Detection Using Difference Calculation.
- http://pi.informatik.uni-siegen.de/Mitarbeiter/wenzel/publications/dpd4re06.pdf

Index Terms

Computer Science

Software Design

Keywords

Xmi File Matrix Matching Sd Metrics