Abstract

Due to cloud computing, many of the traditional issues such as scale have been eliminated to some extent, but the stability, availability and reliability of cloud computing has received relatively limited attention. As cloud computing envisages "computing as a service" it presumes 99.99% reliability as Electricity Grid has achieved. Reliability of a cloud computing system depends on the probability of the failure occurring in different layers of the architecture. Virtualization technique is common in cloud computing, i.e., many virtual machines even with different operating systems may be running in a single physical machine. In order to achieve optimum fault tolerance to these virtual machines, in this paper, a middle layer is proposed and
it can be placed between application layer and virtualization layer in cloud system architecture.
Purpose of this middle layer is to tolerate node failure. This layer can be seen as an
assemblage of various components, each with a specific functionality and it makes use of
combinations of various fault tolerant strategies to achieve optimum result. Performance of this
middle layer is automatic and it is user transparent too, i.e., considering economic factors,
dependability factors and user’s interest, it makes use of different permutations.

References

- Webbing Zhao et. al. “Fault Tolerance Middleware for cloud computing.”
- Tchana Alain et. al. “Fault Tolerant Approaches in Cloud Computing
 Infrastructures.” The Eight International Conference on Autonomic and Autonomous
- Slawinska, Magdalena, Jaroslaw Slawinski, and Vaidy Sunderam. “Unibus:
 Aspects of heterogeneity and fault tolerance in cloud computing.” 2010 IEEE International
 Symposium on Parallel Distributed Processing Workshops and Phd Forum IPDPSW 2 (2010):
 1-10.
 services by principal subspace mapping.” IEEE Trans. on Knowledge and Data
(ICAC), (2004).
 the datacenter: Automated classification of performance crises. Proc. of the 5th European
- I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons. Correlating instrumentation data to
 system states: A building block for automated diagnosis and control. in 6th Symposium on
- Zhao, Laiping et al. “Fault-Tolerant Scheduling with Dynamic Number of Replicas
 in Heterogeneous Systems.” JACM 12th International Conference on High

Index Terms

Computer Science
Cloud Application

Keywords