Abstract
Wireless Sensor Networks (WSN) are self-organizing system consists with tiny, battery powered sensor nodes with limited processing, storage and communication capabilities that are often deployed in very harsh and inaccessible environment in order to gather data about some phenomenon from the outside world. The cluster based architecture is an efficient way for extending the lifetime of a WSN. The message transfer between two cluster head consumes more power than, between a cluster head and an intermediate node, as the distance of communication is greater in former. The power consumption of node can be lowered by passing message through the intermediate nodes i.e. cooperative communication and hence prolonging the network lifetime. The network lifetime can further be enhanced by restricting the area of flooding by a node, to find the next hop. Our proposed method defines the region of flooding depending on the location of the source node and the destination node, in a cluster grid defined network. Flooding in a small area is observed to be far more power economic than flooding in the entire cluster for prolonging the network's life time. Partitioning the destination cluster grid into different size of sub clusters depending on the location of destination node is more power economic as well as useful for faster communication as compared with existing algorithm that has been further confirmed by the simulation result and by analysis.

References

- Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile ad hoc...

- N. Sadagopan, B. Krishnamachari and A. Helmy, "The acquire mechanism for efficient querying in sensor networks"; Proc. of the SNPA'03, pp. 149-155, 2003

- J. Braginsky and D. Estrin, "Rumor Routing Algorithm for Sensor Networks"; in the Proceedings of the First Workshop on Sensor Networks and Applications

Index Terms

Computer Science
Computing, Communication
And Sensor Network

Keywords

Cluster Grid Cooperative Communication Flooding Network Lifetime