Energy Efficient Directed Region Based Cooperative Communication for Prolonging the Lifetime of Clustered Wireless Sensor Networks

IJCA Special Issue on International Conference on Computing, Communication and Sensor Network

© 2013 by IJCA Journal

CCSN2012 - Number 2

Year of Publication: 2013

Authors:
Bappaditya Das
Tanushree
Koustava Goswami
Soubarna Biswas
Utpal Biswas

{bibtex}ccsn1013.bib{/bibtex}

Abstract
Wireless Sensor Networks (WSN) are self-organizing systems consisting of tiny, battery-powered sensor nodes with limited processing, storage, and communication capabilities that are often deployed in very harsh and inaccessible environments to gather data about some phenomenon from the outside world. The cluster-based architecture is an efficient way for extending the lifetime of a WSN. The message transfer between two cluster heads consumes more power than between a cluster head and an intermediate node, as the distance of communication is greater in the former. The power consumption of nodes can be lowered by passing messages through the intermediate nodes, i.e., cooperative communication, and hence prolonging the network lifetime. The network lifetime can further be enhanced by restricting the area of flooding by a node to find the next hop. Our proposed method defines the region of flooding depending on the location of the source node and the destination node, in a cluster grid-defined network. Flooding in a small area is observed to be far more power economic than flooding in the entire cluster for prolonging the network's lifetime. Partitioning the destination cluster grid into different size of sub-clusters depending on the location of destination nodes is more power economic as well as useful for faster communication as compared with existing algorithms that has been further confirmed by the simulation result and by analysis.

References

- Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (LAR) in mobile ad hoc

Index Terms

Computer Science Computing, Communication

And Sensor Network

Keywords

Cluster Grid Cooperative Communication Flooding Network Lifetime