Abstract

Cognitive radio (CR) offer solution by utilizing the spectrum holes in space without introducing an unacceptable fear of harmful interference for the primary user. And also solve the spectrum inefficiency and spectrum scarcity problem. That are represented the potential opportunities for non-interfering use of spectrum which requires three main tasks Spectrum Sensing, Spectrum Analysis and Spectrum Allocation. In this paper, A spectrum selection framework for mobility handoff in cognitive radio cellular network, First introduced the Spectrum decision making is to determine a set of spectrum bands by considering the application requirement as well as the dynamic nature of spectrum band and user handoff process each spectrum is characterized by
A Spectrum Selection Framework for Mobility Handoff in Cognitive Radio Cellular Network

A Spectrum Selection Framework for Mobility Handoff in Cognitive Radio Cellular Network jointly considering primary user activity and spectrum sensing operations. Based on this, dynamic resource management scheme is developed to coordinate the spectrum decision adaptively dependent on the time-varying cognitive radio network capacity. Load balancing base open access spectral selection method was proposed for CR spectral selection, And it provide the opportunities to improve the user experience & also increase the network capacity.

References

- stanislav filin, hiroshi harada, “Qos guaranteed load balancing dynamic spectrum access algorithm”, National Institute of Information and Communications Technology, Tokyo University of Science, Tokyo, Japan 2008.

Index Terms

Computer Science Mobile Networks

Keywords

Cognitive Implementation Resource Management Spectrum Decision Making Handoff Technique

Load Balancing Base Open Access Spectral Selection Method