Abstract

VANET uses the concept of vehicle to vehicle connection to communicate between each other. Here each vehicle behaves like a wireless router and performs the function of data and information transfer between them. Routing is one of the key research issues in VANETs as it plays an important role in public safety, data transfer and commercial applications. In VANET, routing of data is a challenging task due to high speed of nodes (i.e., vehicles) movement and rapidly changing topology. Recent research showed that existing routing algorithm solutions for Mobile Ad Hoc Networks (MANETs) such as DSR and AODV are not able to meet the unique requirements of vehicular networks. We identify three very different conditions that a vehicular
A Routing Protocol called AATRoP- to Counter the Problem caused by High Mobility in VANET

broadcast protocol needs to work in: i) dense traffic regime; ii) sparse traffic regime; and iii) regular traffic regime. In this paper, we study the existing protocols namely GSR, GPSR (GPCR) and A-STAR and propose the design of a new protocol which incorporates and integrates the use of these existing routing protocols.

References

- Charles E. Perkins and Pravin Bhagwat, "Highly dynamic destination-sequenced distance-vector routing (DSDV)," in Proceedings of

Index Terms

Computer Science
Electronic Design And Signal Processing

Keywords
Vanet Routing Protocol A-star High Mobility