Abstract
At the leading edge of Artificial Intelligence, machine learning game applications use a combination of various algorithms and different types of information. Searching the large space of solutions in depth leads to better solution. In checker board game next move of disc is important to defeat the opponent. Different selection strategy can be employed to select best next move. In this paper, we present comparative performance of roulette wheel selection and tournament selection method. The focus of this paper is to incorporate systematic game playing approach by analyzing game of checkers. Expert game players reveal three major playing
strategies to make game winning moves. The game moves are divided into three stages
opening game, middle stage and endgame. An evolutionary program plays game of checkers
with an intention to build resilient middle stage and a set of predefined rules are incorporated to
make calculated moves in an endgame. The paper is organized into the sections of
Introduction, Introduction to Checkers, Game Complexity and Genetic Algorithm. The last three
sections are Implementation, Result Analysis, Conclusion and references.

Reference

1. V. Broucek and P. Turner, “Forensic computing: Developing a conceptual approach for
4. Z. Liu and D. Feng, “Incremental Fuzzy Decision Tree-Based Network Forensic System,”
Proc. Int'l Conf. Computational Intelligence and Security (CIS 2005), LNAI 3802, Springer,
2005, pp. 995-1002.
5. W. Ren and H. Jin, “Distributed Agent-based Real Time Network Intrusion Forensics
Applications (AINA 2005), pp. 177–182.
8. S. Garfinkel, “Network Forensics: Tapping the Internet”
9. V. Broucek and P. Turner, “Forensic computing: Developing a conceptual approach for
10. Emmanuel S. Pilli “Network forensic frameworks: Survey and research challenges”

Index Terms

Computer Science
Communications

Key words

Network forensics
Intrusion Detection System
Honeypot
Honeynet

Greynet