
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

82

A Cache Oblivious based GA Solution for Clustering

Problem in IDS

Vignesh, R

School of Computing,
SASTRA UNIVERSITY,
Thirumalaisamudram,

Thanjavur
Tamil Nadu, India.

Ganesh, B

School of Computing,
SASTRA UNIVERSITY,
Thirumalaisamudram,

Thanjavur
Tamil Nadu, India.

Aarthi, G

School of Computing,
SASTRA UNIVERSITY,
Thirumalaisamudram,

Thanjavur
Tamil Nadu, India.

Iyswarya, N

School of Computing,
SASTRA UNIVERSITY,
Thirumalaisamudram,

Thanjavur
Tamil Nadu, India.

ABSTRACT
In this we present an efficient solution for eliminating false

positives in intrusion detection systems using a parallelized

version of Genetic Algorithm. Genetic algorithm uses selection,

mutation and crossover operations eliminating most of the false

positives in a reasonable time. Almost all existing versions are

sequential without exploiting the capabilities of newer

multiprocessors or distributed systems. By parallelizing genetic

operations in the context of intrusion detection systems we

reduce the total complexities. This parallelized approach gives

better solution than sequential one by taking advantage of the

parallel architecture. We propose the use of cache oblivious

technique in our algorithm to provide efficient memory

transfers. The complexity of this algorithm is O((N/B) logM/B

N1/3/3 + N1/ 3) which is very much lesser when compared to

other sorting algorithms.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures-

Distributed Architectures.

D.1.3 [Programming Techniques]: Concurrent Programming-

Parallel programming.

G.1.0 [Numerical Analysis]: General-Parallel algorithms.

General Terms

Algorithms, Security, Theory

Keywords

Cache Oblivious, Clustering, Genetic algorithm, False Positive,

Funnel Sort.

1. INTRODUCTION
Intrusion detection system is a hardware or software, monitoring

the anomalous events that can be a potential threat to computer

systems. It may be implemented in firewalls. There are two main

types of IDS being used today, Network Based and Host

Based. An intrusion detection system raises an alarm when an

anomalous behavior is detected. These alarms are presented to a

human operator who evaluates them and initiates an adequate

response. Examples of possible responses include law suits,

firewall reconfigurations and fixing of discovered vulnerabilities

[8]. Practitioners [5][10] as well as researchers [1][4][6][7] have

observed that IDS can easily trigger thousands of alarms per day

up to 99% of which are false positives. This flood of mostly

false positives makes it very difficult to identify the hidden true

positives.

Genetic algorithms can be used to evolve simple rules for

network traffic [12]. Network events are assessed with these

rules giving an indication of whether the particular event is an

intrusion or not. The final goal of applying GA is to generate

rules that match only the anomalous connections. These rules

are tested on historical connections and are used to filter new

connections to find suspicious network traffic [9]. GA

operations selection, mutation and crossover influence in

efficient elimination of false positives with a noticeable time

complexity.

Cache oblivious approach exploits the CPU cache without

having the size of cache as an explicit parameter. It is designed

to perform well without modifications on multiple machines

with different cache sizes. Cache oblivious sorting is a parallel

sorting algorithm requiring at least N1/3 processors where N is

the number of elements. To perform cache oblivious we require

a memory size of M which is at least B2 where B is the size of a

single block in the cache. To implement cache oblivious sorting

we use a K-funnel merger. A K-funnel merger consists of K

sorted list each of size greater than or equal to K3.

2. IDS ALARMS
Every alarm event that happens in the network is a vital clue to

understand its true operational status. By maintaining a history

of alarm events, one can track trends and locate problem areas in

the network. This information can help to revise maintenance

schedules, determine equipment replacement plans, and

anticipate and prevent future problems.

A high-quality alarm management system can record each alarm

event in a history log. History logs can include alarms, control

operations, alarm acknowledgements, internal alarms, power

failures and user activity.

Several metrics are used to evaluate and compare the

performance of IDSs. The most basic metrics are the detection

and false alarm rates. The detection rate is equal to the number

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

83

of intrusions detected divided by the total number of intrusions

in a data set, while the false alarm rate is equal to the number of

normal instances detected as intrusions divided by the number

of normal instances in a data set. These false alarms are also

referred to as false positives.

2.1. Alarm Clustering
The alarm clustering problem deals with clustering alarms based

on the root cause. An exact solution for the clustering problem

will eliminate the redundancy of finding the source every time

as they are grouped according to the cause for the problem. But

unfortunately, there is no exact solution. This is because; the

computer programs are not aware of the root causes and

therefore do not enforce the requirement that all the alarms of

the alarm cluster must share the same root cause.

The alarm clustering problem can also be defined as the one,

where large alarm clusters that are adequately modeled by

generalized alarms when the alarm log is given.

Figure 1: Taxonomy of clustering

3. CACHE OBLIVIOUS METHOD
An algorithm is cache oblivious if no program variables

dependent on hardware configuration parameters, such as cache

size and cache-line length, need to be tuned to minimize the

number of cache misses. The cache-oblivious sorting algorithm

presented here is a version of funnel sort, which is similar to

merge sort. In cache-oblivious data structures, the quotient M/B

must be at least 1 so that useful amount of data can be stored in

the cache. This assumption is rather weak and in funnel sort it is

replaced with a stronger assumption, called the tall-cache

assumption. This generally states that the cache is taller than it is

wide. A funnel merges several sorted lists into one sorted list in

an output buffer.

3.1. Cache Oblivious Sorting
Cache oblivious sorting is a parallel sorting algorithm requiring

at least N1/3 processors where N is the number of elements. The

base case occurs if N < O(B2), where, by the tall-cache

assumption, we can move the entire list into the cache and sort

in O (B) time.

To implement cache oblivious sorting we use a K-funnel

merger. A K-funnel merger consists of K sorted list each of size

greater than or equal to K3. Clearly,

i. Conceptually split the elements into N1/3 segments of

length N2/3 each.

ii. Call Funnel Sort recursively on each segment.

iii. Merge the sorted segments into the output stream using

an N1/3 -funnel.

The K-funnel sorts these K lists using O((N/B)log(M/B)(N/B))

memory transfers.

4. GENETIC-ALGORITHM BASED

SOLUTION
The problem is converted to GA domain by encoding the alarm

into chromosomes. The chromosome is made of n pieces, one

from each tuple, where the length of the piece varies from tree to

tree. This chromosome can be decoded back to an alarm.

Crossover and mutation operations are performed on this

chromosome. This produces a new generation of alarm. This

helps in clustering related events which can be identified as a

false positive. The algorithm first selects the individual

chromosomes and creates a new generation of alarms and selects

best X alarms. Then local optimization will be performed on

each of the alarms by considering its best nearest neighbor.

Nearest neighbor is one in which an element in the tuple is

replaced with either its parent or its offspring. This neighbor is

considered from the taxonomy given [Figure 1]. This prevents

the premature result.

4.1. Modified Cache Oblivious Method

This algorithm is a modified version of GA algorithm presented

by[14]. Here we select N individuals and perform crossover and

mutation. They calculate the fitness of each individual in the

new generation, which is based on the occurrence of that alarm.

This global optimization may settle down on a local minimum,

so we perform Local optimization

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

84

Figure 2: Encoding and Decoding

Here (A2, B3, C4) is taken as binary of (2,3,4)

.

Algorithm:

Input: Security events, Threshold value

Output: A solution (rule)

Global Variables:

N Number of individuals

K N1/3

i Processor index

X No of individuals for local optimizations.

Best Solution (rule)

Y Any input alarm

Begin

 Create N random individuals

 Spawn (Processors P0 to Pk) where k= N(1/3).

 For all Pi where 0≤i<k

 do

While (Error is large)

 do

 Crossover () // with probability 100%

 Mutation () //with probability 5%

 Fitness ()

 CacheObliviousSort ()

 Retain the N best individuals

 EndWhile

 EndFor

 # Local optimization.

 Choose X best individuals

 For each Yi in X

 do

Best[i] = Local_Optimize(Yi)

 EndFor

 CacheObliviousSort (Best)

 return Best

End

This algorithm takes a finite number of events, say N, as input

from the log. A threshold value is also considered for evaluation

purpose in the fitness function.

A number of processes, say K=N1/3, are spawned to execute in

parallel where each processor performs crossover and mutation

on individual chromosome. Once the operations are performed,

the fitness of the chromosome is evaluated and sorted based on

the result of the fitness function using funnel sort (cache

oblivious). After sorting, N best individuals are retained and the

procedure continues till the error reduces to acceptable value.

When the procedure ends, local optimization is carried out on

these individuals to obtain the best event. Local optimization is

performed by identifying a neighbour which is better than the

current alarm, selected by the fitness function. These can be

done in parallel provided we span the necessary number of

processes. Here cache oblivious sorting is used to identify the

best neighbour.

Algorithm Local_Optimize(Y)

Input: An Alarm Y, Threshold T, Set of trees

Output: An Alarm

Global Variables:

Y An input Alarm

NO_OF_CHILDREN m in an m-ary tree

K Processor Index

Tuple An Alarm

|Tuple| Cardinality of a tuple

Local Variable:

Best_neigh Best Neighbor of a given alarm

Begin

 Spawn (Processors P0 to Pk)

where k = (NO_OF_CHILDREN+1)*|Y|

 While(Y can be optimized further)

 do

 For all Pi where 0≤i<k

 do

 Assign_neighbours(Y)

 Fitness ()

 End For

 Best_neigh = CacheObliviousSort ()

 If (Best_neigh is better than Y)

 then

 Y Best_neigh

 Else

 return Y

 EndIf

 EndWhile

End

This algorithm uses adjacency lists to represent the neighbors of

a particular node in a forest. The size of the adjacency list

depends on the tree adapted. For instance, a node in an m-ary

tree has at the maximum m+1 node in its adjacency list.

The procedure Assign_neighbours(Y) assigns a processor i to

generate new chromosomes (neighbor alarms) by substituting

the neighbors of element (i/m)+1 in the tuple. For instance,

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

85

processors 0, 1 and 2 change the first element of Y in case of a

binary tree.

K processors, where k= (m+1)*cardinality of tuple, uses these

adjacency lists to create new chromosomes, in O (1) asymptotic

time, which are applied to fitness function in parallel. Based on

the fitness value the best chromosome is chosen using cache

oblivious sort.

4.2. Complexity Analysis
In the worst case the recursive substitution procedure will be

bound by the height of the tree. Since we have n trees, where n

is the cardinality of the tuple, the local optimization procedure

will also be bound by O (H*n), where H is the height of the

largest tree.

Time complexity of the cache oblivious sort is

O((K/B)(logM/BK1/3/3)).where M is the Memory size and B is

Block size. Hence the total complexity of Local_Optimize () is

O(n*K/B)H(logM/B K
1/3/3).

Table 1: Complexity Measures

Function Time Complexity

Spawn O(log N)/3

CrossOver O(N2/3)

Mutation O(N2/3)

Fitness O(N2/3)

CacheObliviousSort O((N/B) logM/B N
1/3/3 + N1/ 3)

Locally_Optimize (|Y|*K/B)H(logM/B K
1/3/3)

Where,

N is the Number of elements

H is the Height of the m-ary tree

M is the Memory size

B is the Cache Block size

|Y| is the Cardinality of alarm Y.

K is equal to (NO_OF_CHILDREN+1)*|Y|

Figure 3: Data Map Hit percentage using cache oblivious sort, where x axis is time and y axis is % Data Map Hit

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

86

Figure 4: Data Map Hit percentage using inbuilt sort, where x axis is time and y axis is % Data Map Hit

No. of

chromosomes

1 processor

(Execution time) s

2 processor(Execution

time) s

50 0.094089001773682 0.087680475066008

5

100 0.198661883980094 0.109687482887239

150 0.345966098844656 0.145876838971162

200 0.538873995952599 0.235071212373441

Table 2: 1 vs 2 processor comparison

5. RESULTS

In cache oblivious sort, the data map hit percentage is high and

thus, a high consistency of cache hits is maintained. Whereas in

Array.Sort(), the cache hits are not consistent. Thus, Cache

Oblivious sort can be preferred for better cache exploitation.

In the tree apriori approach, the usage of hierarchy in

classification of tuples is not possible. So, dissimilarity based

clustering cannot be formed. Thus, it is only a count based

clustering approach. But in GA approach hierarchical

decomposition is also possible. Thus, GA is a better approach

than tree apriori in analysis of network data and also for better

performance and results.

6. LIMITATIONS
This cache oblivious method requires a large data set, requiring

large CPU work for any page fault. The alarm tuple should

neither be very wide nor be very narrow, so its appropriate

selection is a key factor in determining performance. And the

solution given by GA is an approximate solution, so future work

can be done on tree based apriori, which gives most appropriate

result.

7. CONCLUSION
From the above analysis, we conclude that many of the

algorithms are aimed at utilizing the improvements in CPU

processing, not the memory though. Cache oblivious algorithm

tries to fill the gap, which is also portable among various

architectures as they are oblivious towards cache parameters.

8. REFERENCES
[1] Axelsson, S. 2000. The Base-Rate Fallacy and the

Difficulty of Intrusion Detection. ACM Transactions

on Information and System Security (TISSEC) 3(3),

186-205.

[2] Bankovic, Z., Moya, José M., Araujo, A., Bojanic, S.,

and Nieto-Taladriz, O. September, 2007. Improving

Network Security Using Genetic Algorithm Approach.

Computers & Electrical Engineering, Vol.33, Issue 5-

6. 438-451.

[3] Bankovic, Z., Moya, José M., Araujo, A., Bojanic, S.,

and Nieto-Taladriz, O. 2009. A Genetic Algorithm-

based Solution for Intrusion Detection, Journal of

Information Assurance and Security 4. 192-199.

[4] Bloedorn, E., Hill, B., Christiansen, A., Skorupka, C.,

Talbot, L., and Tivel, J. 2000. Data mining for

improving intrusion detection Technical report,

MITRE Corporation.

[5] Broderick, J. (ed.). 1998. IBM outsourced solution.

http://www.infoworld.com/cgi-

bin/displayTC.pl?/980504sb3-ibm.htm.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

87

[6] Clifton, C., Gengo, G. 2000. Developing custom

intrusion detection filters using data mining. In 2000

Military Communications International Symposium.

USA. 22-25.

[7] Julisch, K. 2001. Mining Alarm Clusters to Improve

Alarm Handling Efficiency. In 17th Annual Computer

Security Applications Conference (ACSAC). 12-21.

[8] Julisch, K. 2003. Clustering Intrusion Detection

Alarms to Support Root Cause Analysis. 8-16.

[9] Li, W. 2004. Using Genetic Algorithm for Network

Intrusion Detection.

[10] Manganaris, S., Christensen, M., Zerkle, D., and

Hermiz, K. 2000. A Data Mining Analysis of RTID

Alarms. Computer Networks 34(4), 571-577.

[11] Olsen, Jesper H., Skov, S. December, 2002. Cache-

Oblivious Algorithms in Parctice, Master's Thesis.

University of Copenhagen

[12] Perdisci, R., Giacinto, G., Roli, F. Alarm clustering

for intrusion detection systems in computer networks.

2006. Engineering Applications of Artificial

Intelligence, Science Direct.429–438.

[13] Sinclair, C., Lyn P., and Matzner, S. 1999. “An

Application of Machine Learning to Network

Intrusion Detection.” In Proceedings of 1999 Annual

Computer Security Applications Conf. (ACSAC).

371-377. Phoenix, Arizona. URL:

http://www.acsac.org/1999/papers/fri-b-1030-

sinclair.pdf (30 Oct. 2003).

[14] Wang, J., Wang, H., Zhao, G. 2006. A GA-based

Solution to an NP-hard Problem of Clustering

Security Events. IEEE 2093- 2097.

