
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 12

29

Advancements in the V-Model

Sonali Mathur Shaily Malik

 Asst. Professor, CSE Dept. Lecturer, CSE Dept.
 ABES Institute of Technology Maharaja Surajmal Institute of Tech.
 Ghaziabad, U.P-201009 Janakpuri, New Delhi-110054

ABSTRACT
Software Testing is the most important phase of the Software

Development Life Cycle. On most software projects testing

activities consume at least 30 percent of the project effort. On

safety critical applications, software testing can consume between

50 to 80 percent of project effort. Software testing is essential to

ensure software quality. Schedule is always running tight during

the software system development, thereafter reducing efforts of

performing software testing management. In such a situation,

improving software quality becomes an impossible mission It is

our belief that software industry needs new approaches to promote

software testing management. The article discussed the model that

already existed, further excavates the parallelism between test

stages and maintenance test stages and tries to propose a improved

V model. This model make the software testing pass through the

each stage of software development cycle. That can discover

software mistakes as early as possible.

Categories and Subject Descriptors

 D.2.4 [Software Engineering]: Software/ Program

Verification—Model Checking

General Terms

Performance, Reliability, Security

Keywords

V-model, Software Testing, Software Engineering, Software

architecture, Software Development Life cycle

1. INTRODUCTION

Today the IT Solutions & Products involve large investments and

critical data of the organisation concerned. During development

and maintenance of such long lived software, requirements are

analysed, designed and code modules are developed, testing is

planned and code is tested many times. Thus software

development and maintenance services should ensure customer

satisfaction. This calls for software developer to ensure the quality

of development, implementation, testing and as well as

maintenance. Since the schedule of software development is

running tight, resulting in less effort for testing and maintenance.

As testing directly links to quality of product, this demands that

solution provider creates strong Testing and Maintenance Base for

the technology solutions.

What should be done to enhance the software testing management?

We should have well techniques for testing supported by simple

and clear model to be followed to avoid unnecessary ambiguity.

This articles present two-dimensional approach for managing

testing. Firstly we need a testing that incorporates testing into the

entire software development life cycle. Secondly software testing

management has to introduce the concept of software architecture

to gradually enhance its software testing management. This paper

discusses the traditional V-model in detail and the advanced V-

model that has basically emphasizes on the software maintenance.

2. SOFTWARE TESTING MANAGEMENT
The software architecture is the key towards an efficient software

testing management. We here briefly describe the architecture of

the software in this section.

2.1. What is Software Architecture?
The term software architecture as defined by Jacobson is the set of

models to be built, each having its characteristic or set of

modeling notations and they presents conceptual view of the

process adopted for software development. Software community

is well familiar with requirement models such as Use case

diagram, Object model which represent conceptual view of

requirements and system to be built without implementation

details.

The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

components, the externally visible properties of those components

and the relationships between them. The term also refers to

documentation of a system's software architecture. Documenting

software architecture facilitates communication between

stakeholders, documents early decisions about high-level design,

and allows reuse of design components and patterns between
projects [1].

The software system component consists of various elements of

the system like Programs, System Utilities, System Services, User

Interface, Logical Level and Hardware Level etc.

2.2. Categories of Software Tests and

Maintenance tests
Software Testing as defined by Pressman is the process of

executing a program or system with the intent of finding errors.

[Myers79] [2] Or, it involves any activity aimed at evaluating an

attribute or capability of a program or system and determining that

it meets its required results. [Hetzel88] [3] The results are

observed or recorded, and an evaluation is made of some aspect of

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 12

30

the system or program. A good test case is a one that has a high

probability of finding an as-yet undiscovered error and a

successful test is the one that uncovers an as-yet undiscovered

error.

On the other hand the maintenance of the software can account for

over 60 percent of all effort expended by a development

organisation and the percentage continues to rise as more software

is produced[Han93][12]. Software maintenance is the

modification of a software product after delivery to correct faults,

to improve performance or other attributes or to adapt the product

to a modified environment [10]. Thus as described by Pressman

only 20 percent of all maintenance work is fixing errors and

remaining 80 percent is spent adapting existing systems to

changes in their external environment, making enhancements

requested by the users and reengineering an application for future

use.

For carrying out the software maintenance, certain software tests

needs to be performed in order to enhance the maintainability and

performance of the software. Thus software testing and software

maintenance tests work together in achieving a good quality,

highly reliable and an efficient software. These strategies

contribute towards the software testing management. Thus this

paper defines different categories of software tests based on IEEE

standard glossary of Software Engineering Terminology [4,5,6,7,8]

and various categories of software maintenance tests. Their

definitions are summarized as shown in Table 1 and Table 2

respectively

Table 1. Category of Software tests and their definitions

S.No. Category Definitions

1. Unit Testing It focuses on each component

individually, ensuring that if

functions properly as a unit. It

heavily uses white box testing

techniques, exercising specific

paths in a module’s control

structure to ensure complete

coverage and maximum error

detection.

2. Integration

Testing

It addresses assembling and

integration of components to form

a complete software package. It

uses black box testing techniques

to address issues related to dual

problems of verification and

program construction.

3. System Testing Testing conducted on a complete,

integrated system to evaluate the

system's compliance with its

specified requirements. It requires

no knowledge of the inner design

of the code or logic.

4. Acceptance

Testing

Testing to verify a product meets

customer specified requirements.

A customer usually does this type

of testing on a product that is

developed externally.

Table 2. Category of Software maintenance tests and their

definitions

S.No. Category Definitions

1. Test cases A test case is a set of

conditions or variables under

which a tester will determine

whether an application or

software system meets its

specifications at the unit level.

2. Regression Testing It is a technique that detects

spurious errors caused by

software modifications or

corrections.

3. Security Testing Evaluates the presence and

appropriate functioning of the

security of the application to

ensure the integrity and

confidentiality of the data.

4. Deployment Testing The testing and/or simulation

of system assets in the physical

and operational environment in

which they are expected to

perform.

2.3 Traditional V Model

The V-model is a software development process which can be

presumed to be the extension of the waterfall model. It was the

first proposed by Paul Rook [11] in the late 1980s and is still in

use today. The V-Model demonstrates the relationships between

each phase of the development life cycle and its associated phase

of testing. Instead of moving down in a linear way, the process

steps are bent upwards after the coding phase, to form the typical

V shape.

The V-model deploys a well-structured method in which each

phase can be implemented by the detailed documentation of the

previous phase. Testing activities like test designing start at the

beginning of the project well before coding and therefore saves a

huge amount of the project time. The purpose of V model is to

improve efficiency and effectiveness of software development and

reflect the relationship between test activities and development

activities as shown in Figure 1. V-model is perhaps the most

traditional model followed for management of software tests.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 12

31

Figure 1. V Model

The basic V Model development process is divided into

understanding of user’s requirements, performing requirements

analysis, designing the initial outline, designing advanced detailed

and describing required tests in the basic development process as

shown in figure 1 from left to right on each other counterparts.

Software testing is too important to leave to the end of the project,

and the V-Model of testing incorporates testing into the entire

software development life cycle. In a diagram as in Figure 1 of the

V-Model, the V proceeds down and then up, from left to right

depicting the basic sequence of development and testing activities.

The model highlights the existence of different levels of testing

and depicts the way each relates to a different development phase.

Like any model, the V-Model has detractors and arguably has

deficiencies and alternatives but it clearly illustrates that testing

can and should start at the very beginning of the project. In the

requirements gathering stage the requirements are gathered, verify

and validated in order to justify the project. The business

requirements are also used to guide the user acceptance testing.

The model illustrates how each subsequent phase should verify

and validate work done in the previous phase, and how work done

during development is used to guide the individual testing phases.

This interconnectedness lets us identify important errors,

omissions, and other problems before they can do serious harm.

3. THE NEW MODEL

V model is the most representative model for traditional software

testing management. The purpose of the V model is to improve

efficiency and effectiveness of software development and reflect

the relationship between test activities, development activities and

maintenance activities. Once the system has been made functional

and all activities have been performed, if it is not maintained

properly, all the development and testing efforts shall go in vain.

Thus in this section of the paper we propose a new improved V

model called as the Advanced V model that reflects the

relationship between the development activities, test activities and

maintenance activities in order to achieve a highly efficient and

reliable system.

3.1 Advanced V model

Software testing is described as a continuous improvement

process that must be integrated in into an application maintenance

methodology. The term software maintenance usually refers to

changes that must be made to software after they have been

delivered to the customer or user. The definition of software

maintenance by IEEE [1993] [9] is “The modification of a

software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a

modified environment.”

Software testing and software maintenance are the most important

phases of software development life cycle that go hand in hand to

obtain a reliable software. The Advanced V model of testing

incorporates testing and maintenance activities into the entire

software development life cycle.

In the diagram as in Figure 2 of the Advanced V-Model, it

proceeds down and then up, from left to right depicting the basic

sequence of development, testing and maintenance activities. The

model highlights the existence of different levels of testing with

respect to their maintenance activities tests and depicts the way

each relates to different development phase activities. The testing

commences together with the initial phase of development of the

project. In the requirements gathering stage the requirements are

gathered, analysed, verified and validated in order to justify the

project. The business requirements at the same time also guide to

the acceptance testing. Once the acceptance testing is done the

error free product needs to be deployed as per the satisfaction of

the customer.

The Advanced V Model development process is divided into

understanding of the user’s requirements, performing

requirements analysis, specification, designing the initial and

detailed outline and laying out the program specifications. Then

the required tests are described in the basic development process

as shown in figure 2 from left to right on each other counterparts

along with the maintenance tests being carried out for each of the

test activity as shown in the figure. Once the activities of the

development phase starts simultaneously the activities of the

testing phase and maintenance phase commence. Ever imagined a

software being deployed without carrying out these testing

activities? No would be the prompt reply. So with the unit testing,

the modules programmed are tested and test cases are designed.

Then moving on to the next level is integration testing where

individual modules are integrated and tested for functionality. But

this is incomplete without regression testing as the updated

changes are then reflected. System testing describes the testing of

the system as a whole. Along with it we need to do the security

testing in order to check the systems compliance to various

security threats. In the modern era where technology is moving

with the speed of light, the need to deploy security measures have

increased. Thus security threats like unauthorized access, user

permission grant needs to be checked at each phase of

development activity and testing activity. Then once the user is

satisfied after conducting the alpha and beta tests of acceptance

test activity the software or the product is deployed at the

customers place. Thus a continuous interaction of the

Requirements

Analysis

Specifications

Architectural

Design

Detail Design

Coding

Unit Testing

Integration

Testing

System Testing

Acceptance

Testing

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 12

32

development activities, testing activities and maintenance test

activities completes the software development life cycle of the

product thereby efficiently carrying out the software test

management activities.

Requirements Acceptance Deployment

 Analysis Testing Testing

 Requirements System Security

 Specification Testing Testing

 Design Integration Regression

 Specification Testing Testing

 Program Unit Test

 Specification Testing Cases

Figure 2. The Advanced V Model

4. ARCHITECTURE OF THE ADVANCED

V MODEL

Architecture gives the structural description of the components

and thereby helping us to understand the components in a

modified and better way. This section of the paper will describe

the architecture of the component for software test management.

4.1 Component structure diagram

In this section we construct a software test management structure

of component from a structural point of view. The structure of the

components of software testing management and software

maintenance tests are the basic elements, and they compose of

software testing management structure.

The necessary and beneficial structural components are analyzed

from software development, testing and maintenance point of

view. That is, we need to identify all the builders and destroyers

of the software testing management such as customers and the

role of the users are as follows:

1. Project Manager: A project manager is a facilitator. The

project manager is the one who is responsible for making

decisions in such a way that risk is controlled and uncertainty

minimized. Every decision made by him should ideally be directly

benefit the project. He must possess a combination of skills

including the ability to ask penetrating questions, identify unstated

assumptions, and resolve personnel conflicts along with more

systematic management skills.

2. Software Development Manager: Leads a team of

programmers. Development Manager is responsible for leading

the software development team in support of the software

development life cycle process, change management,

development environments and production releases. He will

provide overall supervision and technical guidance to the

development team in understanding requirements, preparing high

level and low-level designs, coding and building the software.

3. Software Architect: An architect acts as a technically savvy

business owner. He deals with the interactions of systems,

whether between components written in different languages at

different times and at different locations, or between components

of the same software system that use the same coding language.

Architects deal with the interactions of systems, whether between

components written in different languages at different times and at

different locations, or between components of the same software

system that use the same coding language.

4. Software Developer: A software developer is a person

concerned with facets of the software development process wider

than design and coding, a somewhat broader scope of computer

programming or a specialty of project managing including some

aspects of software product management.

5. Test Manager: Test managers really serve two different

customers, their testers and corporate management. For the

testers, he helps develop product test strategies, and provides test

expertise to the testing group. For management, he gathers

product information so that corporate management can decide
when the product is ready for implementation.

6. Test Leader: Technical leader acts as in interface between the

test manager and the testing team. He is responsible for the

completion of the testing as per the designed time frame.

7. Test Designer: Test designer is responsible for developing test

strategies and test plans. He provides an assessment on the overall

status of the testing program. He stays well informed and

connected with the industry and the current trends in the

technologies available.

8. Software Tester: Software tester is responsible for carrying out

software testing using various strategies of testing. He builds up

the test cases and test plans for the project.

9. Quality Manager: Quality Manager works towards customizing

software development processes. He is responsible for creating

and implementing a quality management program plan for the

entire organization and works towards process improvement.

10. Quality Assurance Engineer: Software quality assurance

engineer deals with the location of the defect and mechanisms to

prevent defects.

11. Quality Control Engineer: Software quality control engineer

looks after the set of activities designed to evaluate the quality of

developed software.

 Coding

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 12

33

12. Quality Guarantee Engineer: Software quality guarantee

engineer is responsible for maintaining software quality. He is

responsible for tackling and solving all software problems.

Summarizing the above listed points we draw a software testing

management component diagram which consists the twelve

components as shown in Figure 3.

Figure 3. Component Structure diagram

4.2 Component structure service Diagram

By collecting the data and sorting out we have listed and

identified twelve components step by step. The services of these

twelve components obtained for the software testing management

and maintenance are as follows:

Project Management Plan

1. Project Manager manages the project and provides the project

management plan.

2. Software Development Manager is responsible for all issues

regarding system development.

3. Software Designer provides the system designing services.

4. Software Developer provides the program design and

development service.

Test Management Plan

5. Test Manager provides the acceptance testing service and test

management plan.

6. Test Leader provides the system testing service.

7. Test Designer provides the Integration testing service.

8. Software tester provides the unit testing service.

Quality Management Plan

9. Quality Manager provides the deployment testing service and

quality management plan.

10. Quality Assurance Engineer provides the security testing

service.

11. Quality Control Engineer provides the Regression testing

service.

12. Quality Guarantee Engineer provides the test case service.

The services listed above are shown in the component structure

service diagram in which the services are dependent on various

components required for software testing management as shown

in Figure 4.

Figure 4. Component Structure service diagram

5. CONCLUSION
The major contribution of this research is in applying software

architecture based on component structure diagram for efficient

software testing management. We propose an Advanced V model

describing that for efficient software testing management along

with the development and testing process, the maintenance

process is also equally important. Thus we have integrated these

processes for efficient software testing management.

We have achieved what should be done, why should be done and

how it should be done in software testing management at all the

phases of the software development. Maintaining the software

before and after testing helps improving the quality of the

software to a large extent. Our approach provided important

guidelines to the developing software industry where technology

keeps on changing everyday.

6. REFERENCES
[1] Bass, Len; Paul Clements, Rick Kazman (2003). Software

Architecture In Practice, Second Edition. Boston: Addison-

Wesley. pp. 21–24. ISBN 0-321-15495-9.

[2] [Myers79] Myers, Glenford J., The art of software testing,

Publication info: New York: Wiley, c1979. ISBN:

0471043281 Physical description: xi, 177 p. .

[3] [Hetzel88] Hetzel, William C., The Complete Guide to

 Software Testing, 2nd ed. Publication info: Wellesley, Mass. :

QED Information Sciences, 1988. ISBN:

0894352423.Physical description: ix, 280 p..

Software

Architect

Software

Developer
Project

Manager

Software

Development

Manager

Software

Tester
Test

Designer

Test

Manager

Test

Leader

Quality

control

Engineer

Quality

Guarantee

Engineer

Quality

Assurance

Engineer

Quality

Manager

 Project Management Plan

 Project System System Program
 Management Development Design Development

Test Management Plan

 Acceptance System Integration Unit
 Testing Testing Testing Testing

Quality Management Plan

 Deployment Security Regression Test

 Testing Testing Testing Cases

Project

Manager

Software

Development

Manager

Software

Architect

Software

Developer

Test

Manager

Quality

Manager

Test

Leader

Test

Designer

Software

Tester

Quality

Assurance

Engineer

Quality

control

Engineer

Quality

Guarantee

Engineer

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 12

34

[4] Sommerville, Ian, Software Engineering, 6th ed., Addison

Wesley, 2000

[5] IEEE Standard for Software Verification and Validation

 Plans (Reaff.1992). IEEE Std 1012-1986.

[6] IEEE Standard for Software Unit Testing. IEEE Std 1008-

1987.

[7] IEEE Standard Glossary of Software Engineering

Terminology. IEEE Std 610.12-1990.

[8] IEEE Standard for Software Test Documentation. IEEE Std

 829-1998.

[9] IEEE. 1993. IEEE Standard for Software Maintenance. IEEE

Std 1219-1993. Institute of Electrical and Electronics

Engineers, inc., New York, NY.

[10] Gopalswamy Ramesh; Ramesh Bhattiprolu (2006). Software

maintenance : effective practices for geographically

distributed environments. New Delhi: Tata McGraw-Hill.

ISBN 9780070483453.

[11] Rook, Paul, E. Rook, “Controlling software projects”, IEEE

Software Engineering Journal, 1(1), 1986, pp. 7-16.

[12] [Han93] Hannus, Jouko, Prosessijohtaminen. Gummerus

 Kirjapaino, Jyväskylä, 1993.

