
 

 

 

 

©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 26 

 

70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
Forecasting plays an important role in business, technology, 

climate and many others. As an example, effective forecasting can 

enable an organization to reduce lost sales, increase profits and 

more efficient production planning. In this paper, we present a 

parallel algorithm for short term forecasting based on a time series 

model called weighted moving average. Our algorithm is mapped 

on OTIS-mesh, a popular model of optoelectronic parallel 

computers. Given m data values and n window size, it 

requires )1(5 −n  electronic moves + 4 OTIS moves using n2 

processors. Scalability of the algorithm is also discussed. 

Keywords 
Parallel algorithm, OTIS-mesh, time series forecasting, weighted 

moving average 

INTRODUCTION 
OTIS-mesh is a popular model of Optical Transpose   

Interconnection Systems (OTIS) [1]. In an OTIS-mesh, n2 

processors are organized into n groups      in a two  dimensional  

layout (as  shown in Figure 1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where each group is a nn ×  2D-mesh. The processors within 

each group are connected by electronic links following mesh 

topology where as the processors in two different groups are 

connected via optical links following transpose rule discussed 

afterwards. Let Gxy denote the group placed in the x
th row and yth 

column, then we address the processor placed in the uth row and vth 

column within Gxy by (Gxy,Puv). Using transpose rule, (Gxy,Puv) is 

directly connected to (Puv, Gxy). In the complexity analysis of a 

parallel algorithm on a OTIS model, the electronic and the optical 

links are distinguished by counting the data movement over 

electronic and the optical links separately which are termed as 

electronic moves and OTIS moves respectively. 

 

In the recent years, OTIS has created a lot of interests among the 

researchers. Several parallel algorithms for various numeric and 

non-numeric problems have been developed on  different models 

of OTIS including image processing [2], matrix multiplication [3], 

basic operations [4], BPC permutation [5], prefix computation [6], 

polynomial interpolation and root finding [7], Enumeration sorting 

[8], phylogenetic tree construction [9] randomized algorithm for 

routing, selection and sorting [10].  

 

Among different quantitative forecasting models available for 

successful implementation of decision making systems, time series 

models are very popular. In these models, given a set of past 

observations, say d1, d2, …, dm, the problem is to estimate d(m + τ) 
through extrapolation, where τ (called the lead time) is a small 
positive integer and usually set to 1. The observed data values 

usually show different patterns, such as constant process, cyclical 

and linear trend as shown in Figure 2. Several models are 

available for time series forecasting. However, a particular model 

may be effective for a specific pattern of the data, e.g. moving 

average is very suitable when the data exhibits a constant process. 

Weighted moving average is a well known time series model for 

short term forecasting which is suitable when the data exhibits a 

cyclical pattern around a constant trend [11].  

In this paper, we present a parallel algorithm for short term 

forecasting which is based on weighted moving average of time 

series model and mapped on OTIS-Mesh. We show that the 
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Figure 1. OTIS-Mesh network of 24 processors. 
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algorithm requires )1(5 −n  electronic moves + 4 OTIS moves 

for m size data set and n window size using n2 processors. 

 

This is important to note that the exponential weighted moving 

average is more widely accepted technique method for short term 

forecasting than the (simple) weighted moving average. However, 

our motivation to parallelize weighted moving average with the 

fact that both the exponential weighted moving average and the 

simple moving average (MA) are the special cases of the weighted 

moving average as will be discussed in section 2. Moreover, in 

order to find the optimum value of the window size, it involves 

O(m) iterations where each iteration requires O(n2) time for 

calculating (m – n  + 1) weighted  averages for a window size n 

and m size  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data set. This is expensive when the data size is very large. 
 

Quite a few parallel algorithms have been reported for short term 

forecasting. The parallel algorithms presented in [12] are based on 

weighted moving average and shown to implement on a linear 

array in m + 1 steps using n processors and on a tree architecture 

in (m – n + 2) + log n steps with          (2n – 1) processors. The 

algorithms have also been extended to map on a ST-array and ST-

tree in 1)1( −++− pnm
p

n
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steps 

respectively when only p processors are available. The systolic 

algorithm [13] for moving average was shown to require m - n + 1 

steps with    n + 1 processors. To the best of our knowledge, no 

other parallel algorithms have been reported for short term 

forecasting. 

The rest of the paper is organized as follows. Section 2 describes 

the time series forecasting and the method of weighted moving 

average with its special cases. In section 3, we present our 

proposed parallel algorithm followed by the conclusion in section 

4. 

1. WEIGHTED MOVING AVE-RAGE 

TECHNIQUE 
For the completeness of the paper, we describe here the 

forecasting methodology using weighted moving average as given 

in [12]. In this method, for a set of n data values dt, dt + 1, …, dt – n + 

1 and a set of positive weights w1, w2, …, wn,  we calculate their 

weighted moving average at time t by the following formula  
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where wn ≥ wn -1 ≥ … ≥ w1 ≥ 0. We then use WM (t) to estimate the 

forecast value )(ˆ τ+td  at time t +τ, i.e., )()(ˆ tWtd M≈τ+ . The 

quality of the forecast depends on the selection of the window size 

(n). Therefore, in order to find the optimum value of n, we 

calculate m – n + 1 weighted averages for a specific value of n by 

sliding the window over the data values and the corresponding 

mean square error (MSE) is also calculated using  
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We then vary the window size (n) to obtain the corresponding 

MSE with the newly calculated weighted moving averages. The 

same process is repeated for   n = 1, 2, 3, …, m. The value of n for 

which MSE is least is chosen for forecasting. 

 

Some Special Cases:  

Simple Moving Average: In this method, equal importance is 

given to each data value. Hence we assign equal weight 1/n to all 

the data values and obtain the following moving average 
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As we have discussed in section 1, this method is best when the 

data pattern shows a constant process.
 

Exponential Moving Average: In this method, the more recent 

observations are given a larger weight to face smaller error and 

thus the weights are assigned in decreasing order. The formula for 

exponential moving average is as follows   
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(c) Cyclical data pattern 

Figure 2. Illustration of different types of 
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where weight wi = α (1 - α)
n - i, 1 ≤  i  ≤  n and          0 ≤ α ≤ 1. This 

method is suitable for a cyclical pattern around a constant trend 

and is widely accepted specially for business environment. 

However, the method suffers form the proper selection of the 

value of the α parameter and there is no easy method to do it. 

3.  PROPOSED ALGORITHM 

Assume τ = 1. Then (m – n + 1) weighted moving averages are 
obtained form equation (2.1) for a given window size n along with 

their error term as follows  
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                                     This is easy to note that the sequential 

implementation of the above computation requires O(n2) time. For 

a different value of n say ni, 1 ≤ i ≤ m, we require to compute 

different set of (m - ni + 1) weighted moving averages (as given 

above) for a maximum of m iterations. However, our target is to 

parallelize the above computation for a single iteration so that the 

overall time complexity can be significantly reduced. The basic 

idea is as follows. We initially feed the data values and the weight 

vector through the boundary processors. Then using suitable 

electronic and OTIS moves, they are stored in the D and W 

registers respectively. Next we calculate their products for each 

processor in parallel. The products are then used to form the local 

sum in each group which are finally accumulated using suitable 

electronic and OTIS moves to produce weighted moving averages. 

The algorithm is now formally described as follows. 

Algorithm: Parallel_WMA 

Step 1.   /* Data Input */ 

1.1 Feed the data values di’s, 1 ≤ i ≤ m to the boundary 
processors in the 1st column position of each group Gxy, 1 ≤ x, 

y ≤ n  as shown in Figure 3. 
 
 

1.2 Feed the weights wj’s, 1 ≤ j ≤ n to the boundary processors in 

the 1st row position of the group G1y, 1 ≤ y ≤ n  as shown in 

Figure 3. 
 

Step 2.   /* Data distribution into D-registers */  
 

       Shift the data values row-wise to store them in D-registers in a 

pipeline fashion (as data storing for mesh sort [14]).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Step 3.   /* Distribution of weights */ 
 

3.1 Perform column-wise broadcast on the weights fed in step 1.2 

and store them in W register. 

 

Illustration 1: Contents of D and W registers after this step are 

shown in Figure 4. 

 

3.2 Perform one OTIS move on the contents of W registers stored 

in step 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. After row-wise shift of di’s and  

column wise broadcast of wj’s. 

  d1      d2            d3          d4         d5         d6          d7        d8          d9 
  w1        w2           w3         w4         w5       w6             w7     w8         w9    
  d2         d3            d4          d5      d6         d7              d8      d9          d10  
  w1        w2           w3             w4      w5       w6             w7      w8         w9 
 
  d3      d4            d5         d6          d7          d8         d9      d10        d11 
  w1     w2           w3         w4         w5       w6         w7     w8         w9 
 
 
  d4      d5            d6         d7      d8          d9             d10     d11        d12 
 
  d5      d6            d7         d8       d9        d10             d11    d12         d13 

 
  d6      d7            d8              d9       d10       d11            d12    d13          d14 
 

 
  d7         d8            d9         d10        d11      d12       d13    d14         d15 

 
  d8      d9             d10        d11     d12        d13          d14      d15        d16 

 
  d9      d10      d11        d12     d13          d14          d15      d16       d17 

  d14 d15 d16 

d7 d8 d9 d4 d5 d6 d10 d11 d12 

d10 d11 d12 d7 d8 d9 d13 d14 d15 

d7 d8 d9 

d9 d10 d11

d8 d9 d10 

d8 d9 d10 

d9 d10 d11

d5 d6 d7 

d6 d7 d8 

d11 d12 d13 

d12 d13 d14 

d11 d12 d13 

d12 d13 d14 

 d8d9 d10 

d9 d10d11 d15 d16 d17 

d4 d5 d6 

d5 d6 d7 

d6 d7 d8 

d1 d2 d3 

    w1w2w3 

d2 d3 d4 

d3 d4 d5 

  w4w5w6   w7w8w9 

Figure 3. Data input of di’s and wi’s value. 
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3.3 Perform column-wise broadcast on W register contents stored 

in step 3.2. 

 

3.4 Perform OTIS move on W registers. 

 

Illustration 2. The results after step 3.3 and 3.4 are shown in 

Figures 5 and 6 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 1: The distribution of wj’s can be similarly implemented 

as the data values di’s  by feeding them in the 1
st column position 

of each group. However, it would increase the total number of I/O 

ports.  

 

Step 4.. ∀ processors do in parallel  
 

   Form the products with the contents of D and W registers 

and store it in C-register. 

 

Step 5. ∀ groups do steps 5.1 and 5.2 in parallel 
 

5.1 Sum up the contents of C-registers row-wise and store the 

partial sum into C-register of the 1st column processors of 

each group. 

 

5.2 Sum up the contents of W-register row-wise and store the 

partial sum into W-register of the 1st column processors of 

each group. 

 

Illustration 3: The results after this step is shown in Figure 7 in 

which
j

iC indicates the ith partial sum of the jth computation and 

jW denotes the jth partial sum of the weights. We also show the 

detailed results of
j

iC ’s and 
jW ’s processor-wise within each 

group in Table 1. 

 

Step 6. Perform OTIS move on the contents of      both C and W-

registers stored in step 5. Result is shown in Figure 8. 

 

Step 7.  Same as step 5.  

 

Step 8: Perform OTIS move on C and W- registers to 

rearrange them.  

 

Step 9:   ∀ processors do in parallel  
 Divide the content of C-register by the   W-register to 

store in R-registers 

 

Remark 2: The final results emerge from the R- registers of 

processors (Gx1, Pu1), nx ≤≤1 , nu ≤≤1 .                                           

 

Time Complexity: Each of the steps 2, 3.1, 3.3, 5, 7, requires 

1−n electronic moves, steps 3.2, 3.4, 6, 8 require one OTIS 

moves for each and rest of the steps are completed in constant 

time. Therefore, the above algorithm requires )1(5 −n  electronic 

moves + 4 OTIS moves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. After column-wise broadcast of wj’s. 
 

  d1      d2            d3          d4         d5         d6          d7        d8          d9 
  w1        w4           w7         w2         w5       w8             w3     w6         w9    
  d2         d3            d4          d5      d6         d7              d8      d9          d10  
  w1        w4           w7         w2         w5       w8             w3     w6         w9 
 
  d3      d4            d5         d6          d7          d8         d9      d10        d11 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 
  
 

  d4      d5            d6         d7      d8          d9             d10     d11        d12 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 
 

  d5      d6            d7         d8       d9        d10             d11    d12         d13 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 
 

  d6      d7            d8              d9       d10       d11            d12    d13          d14 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 

 
  d7         d8            d9         d10        d11      d12       d13    d14         d15 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 
 

  d8      d9             d10        d11     d12        d13          d14      d15        d16 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 
 
  d9      d10      d11        d12     d13          d14          d15      d16       d17 
  w1        w4           w7         w2         w5       w8             w3     w6         w9 

 

Figure  6.  After OTIS move on wj’s. 

   d1      d2            d3         d4         d5           d6         d7        d8          d9 
   w1        w2           w3       w4         w5         w6             w7     w8         w9    
   d2         d3            d4         d5      d6          d7              d8      d9         d10  
   w1        w2           w3       w4         w5        w6              w7     w8         w9 
 
   d3      d4            d5         d6          d7         d8         d9      d10       d11 
   w1        w2           w3        w4         w5       w6             w7     w8         w9 

   
   d4      d5            d6         d7      d8          d9             d10     d11        d12 
   w1        w2           w3        w4         w5       w6             w7     w8         w9 
 

   d5      d6            d7         d8       d9        d10            d11    d12         d13 
   w1        w2           w3        w4         w5       w6             w7     w8         w9 
 

   d6      d7            d8              d9       d10      d11            d12    d13        d14 
   w1        w2           w3        w4         w5       w6             w7     w8         w9 

 
   d7         d8            d9         d10        d11    d12         d13    d14        d15 
   w1        w4           w7        w2         w5       w8             w3     w6         w9 
 

   d8      d9             d10        d11     d12      d13            d14      d15      d16 
   w1        w2           w3        w4         w5       w6             w7     w8         w9 
 

   d9      d10      d11        d12     d13         d14           d15      d16      d17 
   w1        w2           w3        w4         w5       w6             w7     w8         w9 

 

Figure 7. Contents of C and W registers after 

step 5. 
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   W1                    W2
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Scalability: Now we consider any arbitrary size of the window to 

map the above algorithm on a nn ×  OTIS-mesh. In other 

words, we consider the case when the window size is independent 

of the number of processors. For the sake of simplicity and 

without any loss of generality, let us assume it to be kn. Note that 

in this case, the size of the data set will be 2kn − 1. Then we can 
partition the weight set into k subsets: {w1, w2, …, wn}, {wn + 1, w2, 

…, w2n}…,    {w(k − 1)n + 1, w(k − 1)n + 2, …, wkn}. Accordingly the data 

set is also partition into k subsets: {d1, d2, …, dn}, {d2, d3, …, dn + 

1}, …,{d2kn - n, d2kn – n + 1, …, d2kn − 1}. Given a subset of the data, its 

corresponding weight subset is fed to the nn ×  OTIS-mesh. 

We then run the above algorithm (Parallel_WMA) and store the 

result temporarily. Next we input another data subset along with 

the corresponding weight subset, execute Parallel_WMA and 

update the current result with the previously calculated partial 

result. This process is repeated k times to yield the final result. 

This is obvious to note that this version of the algorithm requires 

)1(5 −nk  electronic moves + 4k OTIS moves, which is k times 

more than time complexity of parallel_WMA. 

4. CONCLUSION 
In this paper, we have presented a parallel algorithm for short term 

forecasting using weighted moving average technique. The 

algorithm is mapped on n2- processor OTIS-mesh. We have shown 

that it requires )1(5 −n  electronic moves + 4 OTIS moves. The 

algorithm is also shown to be scalable. 
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Figure 8. After one OTIS move. 

Table 1. Showing the result after row-wise addition in step 5. 
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  C1
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3 = d7w7 +d8w8 +d9w9 
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 C2
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3 = w7+ w8 + w9 
 

  C3
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2 = d6w4 +d7w5 +d8w6               C3
3 = d9w7 +d10w8 +d11w9 

  W1 = w1+ w2 + w3                         W
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3 = w7+ w8 + w9 
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  C7
1 = d7w1 +d8w2 +d9w3                    C7

2 = d10w4 +d11w5 +d12w6                 C7
3 = d13w7 +d14w8 d15w9 

  W1 = w1+ w2 + w3                        W
2 = w4+ w5 + w6                     W

3 = w7+ w8 + w9 
  

  C8
1 = d8w1 +d9w2 +d10w3                    C8

2 = d11w4 +d12w5 +d13w6         C8
3 = d14w7 +d15w8 d16w9 
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3 = w7+ w8 + w9 
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2 = d12w4 +d13w5 +d14w6         C9
3 = d15w7 +d16w8 d17w9 

  W1 = w1+ w2 + w3                                      W
2 = w4+ w5 + w6                     W

3 = w7+ w8 + w9 
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