

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

70

ABSTRACT
Forecasting plays an important role in business, technology,

climate and many others. As an example, effective forecasting can

enable an organization to reduce lost sales, increase profits and

more efficient production planning. In this paper, we present a

parallel algorithm for short term forecasting based on a time series

model called weighted moving average. Our algorithm is mapped

on OTIS-mesh, a popular model of optoelectronic parallel

computers. Given m data values and n window size, it

requires)1(5 −n electronic moves + 4 OTIS moves using n2

processors. Scalability of the algorithm is also discussed.

Keywords
Parallel algorithm, OTIS-mesh, time series forecasting, weighted

moving average

INTRODUCTION
OTIS-mesh is a popular model of Optical Transpose

Interconnection Systems (OTIS) [1]. In an OTIS-mesh, n2

processors are organized into n groups in a two dimensional

layout (as shown in Figure 1)

where each group is a nn × 2D-mesh. The processors within

each group are connected by electronic links following mesh

topology where as the processors in two different groups are

connected via optical links following transpose rule discussed

afterwards. Let Gxy denote the group placed in the x
th row and yth

column, then we address the processor placed in the uth row and vth

column within Gxy by (Gxy,Puv). Using transpose rule, (Gxy,Puv) is

directly connected to (Puv, Gxy). In the complexity analysis of a

parallel algorithm on a OTIS model, the electronic and the optical

links are distinguished by counting the data movement over

electronic and the optical links separately which are termed as

electronic moves and OTIS moves respectively.

In the recent years, OTIS has created a lot of interests among the

researchers. Several parallel algorithms for various numeric and

non-numeric problems have been developed on different models

of OTIS including image processing [2], matrix multiplication [3],

basic operations [4], BPC permutation [5], prefix computation [6],

polynomial interpolation and root finding [7], Enumeration sorting

[8], phylogenetic tree construction [9] randomized algorithm for

routing, selection and sorting [10].

Among different quantitative forecasting models available for

successful implementation of decision making systems, time series

models are very popular. In these models, given a set of past

observations, say d1, d2, …, dm, the problem is to estimate d(m + τ)
through extrapolation, where τ (called the lead time) is a small
positive integer and usually set to 1. The observed data values

usually show different patterns, such as constant process, cyclical

and linear trend as shown in Figure 2. Several models are

available for time series forecasting. However, a particular model

may be effective for a specific pattern of the data, e.g. moving

average is very suitable when the data exhibits a constant process.

Weighted moving average is a well known time series model for

short term forecasting which is suitable when the data exhibits a

cyclical pattern around a constant trend [11].

In this paper, we present a parallel algorithm for short term

forecasting which is based on weighted moving average of time

series model and mapped on OTIS-Mesh. We show that the

G11 G12

G21 G22

Figure 1. OTIS-Mesh network of 24 processors.

 P11

 P21

 P12

 P22

 P11

 P21

 P12

 P22

 P11

 P21

 P12

 P22

 P11

 P21

 P12

 P22

Sudhanshu Kumar Jha
Senior Member, IEEE

Department of Computer Science and
Engineering

Indian School of Mines, Dhanbad 826 004,
India

Prasanta K. Jana
Senior Member, IEEE

Department of Computer Science and
Engineering

Indian School of Mines, Dhanbad 826 004,
India

Parallel Algorithm for Time Series Based
Forecasting on OTIS-Mesh

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

71

algorithm requires)1(5 −n electronic moves + 4 OTIS moves

for m size data set and n window size using n2 processors.

This is important to note that the exponential weighted moving

average is more widely accepted technique method for short term

forecasting than the (simple) weighted moving average. However,

our motivation to parallelize weighted moving average with the

fact that both the exponential weighted moving average and the

simple moving average (MA) are the special cases of the weighted

moving average as will be discussed in section 2. Moreover, in

order to find the optimum value of the window size, it involves

O(m) iterations where each iteration requires O(n2) time for

calculating (m – n + 1) weighted averages for a window size n

and m size

data set. This is expensive when the data size is very large.

Quite a few parallel algorithms have been reported for short term

forecasting. The parallel algorithms presented in [12] are based on

weighted moving average and shown to implement on a linear

array in m + 1 steps using n processors and on a tree architecture

in (m – n + 2) + log n steps with (2n – 1) processors. The

algorithms have also been extended to map on a ST-array and ST-

tree in 1)1(−++− pnm
p

n

and]log)2[(2 pnm
p

n
++−

steps

respectively when only p processors are available. The systolic

algorithm [13] for moving average was shown to require m - n + 1

steps with n + 1 processors. To the best of our knowledge, no

other parallel algorithms have been reported for short term

forecasting.

The rest of the paper is organized as follows. Section 2 describes

the time series forecasting and the method of weighted moving

average with its special cases. In section 3, we present our

proposed parallel algorithm followed by the conclusion in section

4.

1. WEIGHTED MOVING AVE-RAGE

TECHNIQUE
For the completeness of the paper, we describe here the

forecasting methodology using weighted moving average as given

in [12]. In this method, for a set of n data values dt, dt + 1, …, dt – n +

1 and a set of positive weights w1, w2, …, wn, we calculate their

weighted moving average at time t by the following formula

)1.2()(
11

1111

www

dwdwdw
tW

nn

nttntnM

+++

+++
=

−

+−−−

L

L

where wn ≥ wn -1 ≥ … ≥ w1 ≥ 0. We then use WM (t) to estimate the

forecast value)(ˆ τ+td at time t +τ, i.e.,)()(ˆ tWtd M≈τ+ . The

quality of the forecast depends on the selection of the window size

(n). Therefore, in order to find the optimum value of n, we

calculate m – n + 1 weighted averages for a specific value of n by

sliding the window over the data values and the corresponding

mean square error (MSE) is also calculated using

)2.2(
)1(

]ˆ[2

∑
+=

+−−

−
=

m

nt

tt

nm

dd
MSE

τ
τ

We then vary the window size (n) to obtain the corresponding

MSE with the newly calculated weighted moving averages. The

same process is repeated for n = 1, 2, 3, …, m. The value of n for

which MSE is least is chosen for forecasting.

Some Special Cases:

Simple Moving Average: In this method, equal importance is

given to each data value. Hence we assign equal weight 1/n to all

the data values and obtain the following moving average

)3.2()(121

n

dddd
tS nttttM +−−− ++++
=

K

As we have discussed in section 1, this method is best when the

data pattern shows a constant process.

Exponential Moving Average: In this method, the more recent

observations are given a larger weight to face smaller error and

thus the weights are assigned in decreasing order. The formula for

exponential moving average is as follows

Time

(a) Constant data pattern

Mean

O
b
se
rv
ed
 d
at
a

v
al
u
es

Time

(b) Trend data pattern

O
b
se
rv
ed
 d
at
a

v
al
u
es

Time

(c) Cyclical data pattern

Figure 2. Illustration of different types of

 data pattern

O
b
se
rv
ed
 d
at
a

v
al
u
es

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

72

where weight wi = α (1 - α)
n - i, 1 ≤ i ≤ n and 0 ≤ α ≤ 1. This

method is suitable for a cyclical pattern around a constant trend

and is widely accepted specially for business environment.

However, the method suffers form the proper selection of the

value of the α parameter and there is no easy method to do it.

3. PROPOSED ALGORITHM

Assume τ = 1. Then (m – n + 1) weighted moving averages are
obtained form equation (2.1) for a given window size n along with

their error term as follows

 Weighted Moving Average

)5.2(

)(

)2(

)1(

)(

21

2211

21

24231

21

13221

21

2211






















+++

+++
=

+++

+++
=+

+++

+++
=+

+++

+++
=

+−+−

+

+

n

mnnmnmM

n

nnM

n

nnM

n

nnM

www

dwdwdw
mW

www

dwdwdw
nW

www

dwdwdw
nW

www

dwdwdw
nW

L

L

M

L

L

L

L

L

L

)7.2(

)6.2(

)1(

)2(

)1(

)(

TermsError

1

2

33

22

11

∑
+=

++

++

++

−
=
















−−=

+−=

+−=

−=

m

nt

i

M
mm

M
nn

M
nn

M
nn

nm

E
MSE

mWdE

nWdE

nWdE

nWdE

M

 This is easy to note that the sequential

implementation of the above computation requires O(n2) time. For

a different value of n say ni, 1 ≤ i ≤ m, we require to compute

different set of (m - ni + 1) weighted moving averages (as given

above) for a maximum of m iterations. However, our target is to

parallelize the above computation for a single iteration so that the

overall time complexity can be significantly reduced. The basic

idea is as follows. We initially feed the data values and the weight

vector through the boundary processors. Then using suitable

electronic and OTIS moves, they are stored in the D and W

registers respectively. Next we calculate their products for each

processor in parallel. The products are then used to form the local

sum in each group which are finally accumulated using suitable

electronic and OTIS moves to produce weighted moving averages.

The algorithm is now formally described as follows.

Algorithm: Parallel_WMA

Step 1. /* Data Input */

1.1 Feed the data values di’s, 1 ≤ i ≤ m to the boundary
processors in the 1st column position of each group Gxy, 1 ≤ x,

y ≤ n as shown in Figure 3.

1.2 Feed the weights wj’s, 1 ≤ j ≤ n to the boundary processors in

the 1st row position of the group G1y, 1 ≤ y ≤ n as shown in

Figure 3.

Step 2. /* Data distribution into D-registers */

 Shift the data values row-wise to store them in D-registers in a

pipeline fashion (as data storing for mesh sort [14]).

Step 3. /* Distribution of weights */

3.1 Perform column-wise broadcast on the weights fed in step 1.2

and store them in W register.

Illustration 1: Contents of D and W registers after this step are

shown in Figure 4.

3.2 Perform one OTIS move on the contents of W registers stored

in step 3.1.

Figure 4. After row-wise shift of di’s and

column wise broadcast of wj’s.

 d1 d2 d3 d4 d5 d6 d7 d8 d9
 w1 w2 w3 w4 w5 w6 w7 w8 w9
 d2 d3 d4 d5 d6 d7 d8 d9 d10
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d3 d4 d5 d6 d7 d8 d9 d10 d11
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d4 d5 d6 d7 d8 d9 d10 d11 d12

 d5 d6 d7 d8 d9 d10 d11 d12 d13

 d6 d7 d8 d9 d10 d11 d12 d13 d14

 d7 d8 d9 d10 d11 d12 d13 d14 d15

 d8 d9 d10 d11 d12 d13 d14 d15 d16

 d9 d10 d11 d12 d13 d14 d15 d16 d17

 d14 d15 d16

d7 d8 d9 d4 d5 d6 d10 d11 d12

d10 d11 d12 d7 d8 d9 d13 d14 d15

d7 d8 d9

d9 d10 d11

d8 d9 d10

d8 d9 d10

d9 d10 d11

d5 d6 d7

d6 d7 d8

d11 d12 d13

d12 d13 d14

d11 d12 d13

d12 d13 d14

 d8d9 d10

d9 d10d11 d15 d16 d17

d4 d5 d6

d5 d6 d7

d6 d7 d8

d1 d2 d3

 w1w2w3

d2 d3 d4

d3 d4 d5

 w4w5w6 w7w8w9

Figure 3. Data input of di’s and wi’s value.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

73

3.3 Perform column-wise broadcast on W register contents stored

in step 3.2.

3.4 Perform OTIS move on W registers.

Illustration 2. The results after step 3.3 and 3.4 are shown in

Figures 5 and 6 respectively.

Remark 1: The distribution of wj’s can be similarly implemented

as the data values di’s by feeding them in the 1
st column position

of each group. However, it would increase the total number of I/O

ports.

Step 4.. ∀ processors do in parallel

 Form the products with the contents of D and W registers

and store it in C-register.

Step 5. ∀ groups do steps 5.1 and 5.2 in parallel

5.1 Sum up the contents of C-registers row-wise and store the

partial sum into C-register of the 1st column processors of

each group.

5.2 Sum up the contents of W-register row-wise and store the

partial sum into W-register of the 1st column processors of

each group.

Illustration 3: The results after this step is shown in Figure 7 in

which
j

iC indicates the ith partial sum of the jth computation and

jW denotes the jth partial sum of the weights. We also show the

detailed results of
j

iC ’s and
jW ’s processor-wise within each

group in Table 1.

Step 6. Perform OTIS move on the contents of both C and W-

registers stored in step 5. Result is shown in Figure 8.

Step 7. Same as step 5.

Step 8: Perform OTIS move on C and W- registers to

rearrange them.

Step 9: ∀ processors do in parallel
 Divide the content of C-register by the W-register to

store in R-registers

Remark 2: The final results emerge from the R- registers of

processors (Gx1, Pu1), nx ≤≤1 , nu ≤≤1 .

Time Complexity: Each of the steps 2, 3.1, 3.3, 5, 7, requires

1−n electronic moves, steps 3.2, 3.4, 6, 8 require one OTIS

moves for each and rest of the steps are completed in constant

time. Therefore, the above algorithm requires)1(5 −n electronic

moves + 4 OTIS moves.

Figure 5. After column-wise broadcast of wj’s.

 d1 d2 d3 d4 d5 d6 d7 d8 d9
 w1 w4 w7 w2 w5 w8 w3 w6 w9
 d2 d3 d4 d5 d6 d7 d8 d9 d10
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d3 d4 d5 d6 d7 d8 d9 d10 d11
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d4 d5 d6 d7 d8 d9 d10 d11 d12
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d5 d6 d7 d8 d9 d10 d11 d12 d13
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d6 d7 d8 d9 d10 d11 d12 d13 d14
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d7 d8 d9 d10 d11 d12 d13 d14 d15
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d8 d9 d10 d11 d12 d13 d14 d15 d16
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d9 d10 d11 d12 d13 d14 d15 d16 d17
 w1 w4 w7 w2 w5 w8 w3 w6 w9

Figure 6. After OTIS move on wj’s.

 d1 d2 d3 d4 d5 d6 d7 d8 d9
 w1 w2 w3 w4 w5 w6 w7 w8 w9
 d2 d3 d4 d5 d6 d7 d8 d9 d10
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d3 d4 d5 d6 d7 d8 d9 d10 d11
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d4 d5 d6 d7 d8 d9 d10 d11 d12
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d5 d6 d7 d8 d9 d10 d11 d12 d13
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d6 d7 d8 d9 d10 d11 d12 d13 d14
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d7 d8 d9 d10 d11 d12 d13 d14 d15
 w1 w4 w7 w2 w5 w8 w3 w6 w9

 d8 d9 d10 d11 d12 d13 d14 d15 d16
 w1 w2 w3 w4 w5 w6 w7 w8 w9

 d9 d10 d11 d12 d13 d14 d15 d16 d17
 w1 w2 w3 w4 w5 w6 w7 w8 w9

Figure 7. Contents of C and W registers after

step 5.

 C1
1 - - C1

2 - - C1
3 - -

 W1 W2
 W3

 C2
1 - - C2

2 - - C2
3 - -

 W1 W2
 W

3

 C3
1 - - C3

2 - - C3
3 - -

 W1 W2
 W

3

 C4
1 - - C4

2 - - C4
3 - -

 W1 W2
 W3

 C5
1 - - C5

2 - - C5
3 - -

 W1 W2
 W

3

 C6
1 - - C6

2 - - C6
3 - -

 W1 W2
 W

3

 C7
1 - - C7

2 - - C7
3 - -

 W1 W2
 W

3

 C8
1 - - C8

2 - - C8
3 - -

 W1 W2
 W

3

 C9
1 - - C9

2 - - C9
3 - -

 W1 W2
 W

3

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

74

Scalability: Now we consider any arbitrary size of the window to

map the above algorithm on a nn × OTIS-mesh. In other

words, we consider the case when the window size is independent

of the number of processors. For the sake of simplicity and

without any loss of generality, let us assume it to be kn. Note that

in this case, the size of the data set will be 2kn − 1. Then we can
partition the weight set into k subsets: {w1, w2, …, wn}, {wn + 1, w2,

…, w2n}…, {w(k − 1)n + 1, w(k − 1)n + 2, …, wkn}. Accordingly the data

set is also partition into k subsets: {d1, d2, …, dn}, {d2, d3, …, dn +

1}, …,{d2kn - n, d2kn – n + 1, …, d2kn − 1}. Given a subset of the data, its

corresponding weight subset is fed to the nn × OTIS-mesh.

We then run the above algorithm (Parallel_WMA) and store the

result temporarily. Next we input another data subset along with

the corresponding weight subset, execute Parallel_WMA and

update the current result with the previously calculated partial

result. This process is repeated k times to yield the final result.

This is obvious to note that this version of the algorithm requires

)1(5 −nk electronic moves + 4k OTIS moves, which is k times

more than time complexity of parallel_WMA.

4. CONCLUSION
In this paper, we have presented a parallel algorithm for short term

forecasting using weighted moving average technique. The

algorithm is mapped on n2- processor OTIS-mesh. We have shown

that it requires)1(5 −n electronic moves + 4 OTIS moves. The

algorithm is also shown to be scalable.

REFERENCES
[1] Zane F., Marchand P., Paturi R. and Esener S., 2000.

Scalable network architectures using the optical transpose

interconnection system (OTIS), J. of Parallel and Distributed

Computing, 60, 521-538.

C1
1 C1

2 C1
3 - - - - - -

W1 W2
 W

3

C4
1 C4

2 C4
3 - - - - - -

W1 W2
 W

3

C7
1 C7

2 C7
3 - - - - - -

W1 W2 W3

C2
1 C2

2 C2
3 - - - - - -

W1 W2 W3

C5
1 C5

2 C5
3 - - - - - -

W1 W W3

C8
1 C8

2 C8
3 - - - - - -

W1 W2
 W

3

C3
1 C3

2 C3
3 - - - - - -

W1 W2
 W

3

C6
1 C6

2 C6
3 - - - - - -

W1 W2
 W

3

C9
1 C9

2 C9
3 - - - - - -

W1 W2
 W

3

Figure 8. After one OTIS move.

Table 1. Showing the result after row-wise addition in step 5.

G00

G01

G02

G10

G11

G12

G20

G21

G22

P00

P10

P20

 C1

1 = d1w1 +d2w2 +d3w3 C1
2 = d4w4 +d5w5 +d6w6 C1

3 = d7w7 +d8w8 +d9w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C2
1 = d2w1 +d3w2 +d4w3 C2

2 = d5w4 +d6w5 +d7w6 C2
3 = d8w7 +d9w8 +d10w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C3
1 = d3w1 +d4w2 +d5w3 C3

2 = d6w4 +d7w5 +d8w6 C3
3 = d9w7 +d10w8 +d11w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C4
1 = d4w1 +d5w2 +d6w3 C4

2 = d7w4 +d8w5 +d9w6 C4
3 = d10w7 +d11w8 d12w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C5
1 = d5w1 +d6w2 +d7w3 C5

2 = d8w4 +d9w5 +d10w6 C5
3 = d11w7 +d12w8+d13w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C6
1 = d6w1 +d7w2 +d8w3 C6

2 = d9w4 +d10w5 +d11w C1
3 = d12w7 +d13w8 d14w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C7
1 = d7w1 +d8w2 +d9w3 C7

2 = d10w4 +d11w5 +d12w6 C7
3 = d13w7 +d14w8 d15w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C8
1 = d8w1 +d9w2 +d10w3 C8

2 = d11w4 +d12w5 +d13w6 C8
3 = d14w7 +d15w8 d16w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

 C9
1 = d9w1 +d10w2 +d11w3 C9

2 = d12w4 +d13w5 +d14w6 C9
3 = d15w7 +d16w8 d17w9

 W1 = w1+ w2 + w3 W
2 = w4+ w5 + w6 W

3 = w7+ w8 + w9

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

75

[2] Wang C. F. and Sahni S., 2000. Image processing on the

OTIS-Mesh optoelectronic Computer, IEEE Trans. on

Parallel and Distributed Systems, 11, 97-109.

[3] Wang C. F. and Sahni S., 2001. Matrix Multiplication on the

OTIS-Mesh Optoelectronic Computer, IEEE Transactions on

Computers, 50(July 2001), 635 – 646.

[4] Wang C. F. and Sahni S., 1998. Basic operations on the

OTIS-Mesh optoelectronic computer, IEEE Trans. on Parallel

and Distributed Systems 9(Dec. 1998) 1226–1998.

[5] Wang C. F. and Sahni S., 1998. BPC Permutations on the

OTIS-Hypercube, Optoelectronic Computer, Informatica,

22(3).

[6] Jana P. K. and Sinha B. P., 2006. An Improved parallel prefix

algorithm on OTIS-Mesh, Parallel Processing Letters, 16,

429-440.

[7] Jana P. K.,2006 Polynomial Interpolation and Polynomial

Root Finding on OTIS-Mesh, Parallel Computing, 32(4),

301-312.

[8] Lucas K. T. and Jana P. K., 2009. An Efficient Parallel

Sorting Algorithm on OTIS Mesh of Trees, Proc. IEEE Intl.

Advance Computing Conference , (6-7 March, 2009), Patiala,

India, 175-180.

[9] Lucas K. T., Mallick D. K. and Jana P. K., 2008. Parallel

algorithm for conflict graph on OTIS triangular array,

Lecture Notes in Computer Science, 4904, 274-279.

[10] Rajasekaran S. and Sahni S., 1998. Randomized routing
selection, and sorting on the OTIS-mesh, IEEE Transaction

on Parallel and Distributed Systems, 9, 833-840.

[11] Wheelwright S. C., and Makridakis S., 1980 Forecasting

Methods for Management, John Wiley and Sons.

[12] Jana P. K., Sinha B. P., 1997. Fast Parallel Algorithms for
Forecasting, Computers Math. Applic. 34(9) 39-49.

[13] Evans D.J. and Gusev M., 1994. New linear systolic arrays

for digital filters and convolution, Parallel Computing 20 (1),

29-61.

[14] Nassimi, D., and Sahni, S., 1979. Bitonic sort on a mesh-
connected parallel computer, IEEE Trans. Comput. C-28(1),

2-7.

