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ABSTRACT 

The paper presents a new design of adaptive and dynamic neural 

network-based controller architecture with feedback connection 

for non-linear multivariable systems. The network is trained on-

line at each sampling interval using the desired output trajectory 

and the training method used is the Real Time Recurrent 

Learning Algorithm (RTRL). The recurrent network is a fully 

connected one, with feedback from output layer to the input layer 

through a delay element. Since the synaptic weights to the 

neurons are adjusted on-line, this controller has potential 

applications in real time control also. Moreover, it can be used 

for both continuous and discrete systems. The simulation results 

obtained by applying the algorithm to a non-linear multivariable 

system demonstrate the effectiveness of the proposed method.  

Keywords 
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1. INTRODUCTION 
 Adaptive controllers in general are designed for dynamic 

systems having unknown parameters, under the  assumption that 

these parameters are linear, which is unrealistic for complex non-

linear systems.  Since most of the commonly encountered time-

varying systems are non-linear in nature, the recent advances in 

non-linear control theory inspired the development of adaptive 

control schemes for these systems. One of the successful areas of 

application of neural networks is non-linear control system 

because neural networks are capable of producing highly non-

linear mappings.   

Most of the results reported in the literature of the adaptive 

control of non-linear dynamical systems are related to single-

input single-output systems (SISO), while, the practical systems 

have multiple inputs and multiple outputs (MIMO). Hence, our 

interest in this work is to develop a controller for multivariable 

systems. In  such  systems, unlike in SISO systems, there exists 

more than one control loop which will cause loop interactions. 

These interactions can cause system instability or result in poor 

control performance. A multivariable controller can achieve non- 

interacting controls, but the design methods involve the 

construction of a mathematical model describing the dynamics of 

the plant. In practice, the exact model representation of the plant 

is difficult to obtain. A complex system requires an intelligent 

controller with adaptive and learning capabilities in the presence 

of unknown disturbances, unmodeled dynamics and unstructured 

uncertainties. 

The ability of Artificial Neural Network (ANN) to model non-

linear systems can be readily exploited in the synthesis of non-

linear controllers. The neural networks can learn sufficiently 

accurate model and can give good non-linear control when model 

equations are not known or when only partial state information is 

available. Hence, neural network-based controller design is an 

efficient approach to process non-linearity as well as variable 

interactions. 

 In control applications, neural networks can be incorporated in 

direct strategy or indirect strategy [5].  In direct strategy, for a 

given current state of the system and the target state for the next 

sampling instant, the network is trained to produce the control 

action that drives the system to the target state. In indirect 

strategy, the network is trained with input-output data from the 

dynamic system. For a given current state and current control 

action, the network learns to predict the next state of the system. 

In this work, a direct control strategy has been adopted to design 

the controller. 

 A number of researchers proposed methods for identification 

and control of non-linear multivariable systems.  In complex 

control system applications, adaptive and robust control 

techniques have high potential, because the modification of 

controller parameters are based on convergence and stability 

constraints, which can limit the performance of adaptive systems. 

AL-Zahary et.al [1] explains the realization of neuro controllers 

for non-linear multivariable systems. They suggested two 

extended models of SISO neurocontroller to realize multivariable 

systems for identification and control, in which the controls are 

generated by training the unknown models with available input-

output data. Different control strategies [6], [8], [11], [16] and 

[19] .using neural network with  different training methods like 

feed forward architecture with back propagation learning 

algorithm [3] are available in literature  A methodology to 

develop a proper model for the design of a robust controller for 

multivariable system is explained in [17], where the controller is 
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designed for structurally ill-conditioned processes. Different 

aspects of controller design for non-linear systems are available 

in literatures [4] and [20]. 

 In most of the training techniques, retaining the information 

about the infinite past are not possible, which is a drawback for 

the real-time applications. In feed forward neural networks, back 

propagation with adaptive learning rate is the most widely used 

gradient based algorithm. But this algorithm is very sensitive to 

noise and relatively unstable. Hence there is a need for a real-

time recurrent learning algorithm, which stabilizes the system 

and also improves the convergence. A suitable architecture for 

this type of learning is a fully connected dynamic recurrent 

neuron architecture in which the output of the neuron is fed back 

to the input through a delay. Different training methods are 

available for recurrent neurons [8], [13] and [18].  A method for 

non-linear system control using ANN is suggested in paper [15], 

but that is applicable only for SISO systems. 

In all these reported works, fully connected recurrent neural 

network is seldom used for the real time control of non-linear 

multivariable systems.  Thus an intelligent controller is required 

to replace the conventional controllers. Among the several 

architectures found in literature, recurrent neural networks 

(RNN) involving dynamic elements and internal feedback 

connections have been considered as more suitable for real time 

applications. The critical issue in the application of recurrent 

neural network is the choice of the network architecture, i.e., the 

number and type of neurons, the location of feedback loops and 

the development of a suitable training algorithm. In this paper we 

discuss the use of RTRL algorithm to train the network, which is 

an optimal algorithm such that it minimizes the instantaneous 

squared error at the output neuron for every discrete time 

instants. Number of neurons in the output layer is equal to the 

number of states of the system and it is a fully connected 

recurrent neural network, i.e., all the outputs from the neuron is 

fed back to the input through a delay.  

2. REAL TIME RECURRENT LEARNING 

ALGORITHM 
 

This is a forward gradient algorithm, which makes use of a 

matrix of partial derivatives of the network state values with 

respect to every weight. The algorithm is based on minimizing 

the instantaneous squared error at the output of the neuron. The 

main difficulty related to the recursive training of recurrent 

network arises from the fact that the output of the network and 

its partial derivatives with respect to the weights depend on the 

inputs. In this method, partial derivatives of each node with 

respect to each weight are computed at every iteration [14]. The 

method is completely online and is simple to implement.  

 

 

 

Figure 1.  Layout of a fully connected recurrent network  

 

 

 Figure 1 shows the layout of a fully connected recurrent network 

and Fig. 2 shows its architecture [14] with three states, one bias 

and two control inputs.  All the outputs are fed back to the source 

nodes through a delay. There are two distinct layers for the 

network, a concatenated input feedback layer and a processing 

layer of computational nodes. 

If q is the number of states of the system and m  is the number of 

control inputs to the system, then the dynamic system can be 

represented by the non-linear difference equation given in (1) 

and (2). 

)]()([)1( nuWnxWnx ba                 (1) 

)()( nCxny                                             (2) 

 

Where aW  is a q x q  matrix,  bW   is a q x (q+m+1)  

matrix and  C  is a p x q matrix. Let ψ: R →R is a non-linear 

map. The  neural network with m inputs, p outputs and q states 

can be represented in state space form  as given in (3), (4) and  

(5). 

Figure 2.  Structure of a fully connected recurrent 

network  
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The matrices aW , bW , C  and the  non-linear function   

are interpreted as follows: 

 In (1), the total weights are split into two, 

namely, aW , and bW . The matrix aW  represents the 

synaptic weights associated with the q neurons in the 

hidden layer that are fed back as inputs in the input 

layer. The matrix bW  represents the synaptic weights 

associated with this hidden layer, which are connected 

to the input sources including the bias. Thus, the bias 

terms of the hidden neurons are included in bW . 

 The matrix C represents the synaptic weights of p 

output neurons connected to the hidden layers. The 

neurons in the hidden layers are with hyperbolic 

tangent non-linear function given by : 

x
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Or the logistic function: 

x
e

x
21

1
)(


                                (7) 

 

The network consists of a set of N fully connected neurons and a 

set of M inputs. Let )(nWki  denote the weight associated with 

the link originating from neuron  i  towards neuron  k at time n.      

The net input to neuron k, )(nSk  is defined as the weighted 

sum of all activations in the network. Based on standard RTRL 

terminology, the output of node k at time (n+1) is to be 

calculated as: 
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The nonlinear activation function (.)f  maps to the range 

]1,0[  The overall network error at time n is defined by an error 

function )(nJ   represented as: 
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where )(ndk   denotes the desired target value for output k 

at time  n. 

 To execute the RTRL algorithm, three matrices )(nj , 

)(nj  and )(n  are calculated which are explained in 

(12), (13) and (15) 

1. )(nj , is a q x (q+m+1) matrix defined as the 

partial derivative of the state vector with respect to the 

weight vector. 

qj
w

nx
n

j

j ,.....2,1;
)(

)( 



              (12) 

2. )(nj ) is a  q x (q+m+1) matrix whose rows are 

all zero except for the jth
 row, which is equal to the 

transpose of the vector  (n). 
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3. )(n  is a q x q diagonal matrix whose diagonal 

              elements are the partial derivatives of the non-    



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 5 

63 

 

              linear activation function given by: 
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Proceeding through the steps of the LMS algorithm using 

Steepest descent method, the correction in the synaptic 

weights can be calculated as: 

 

qjnnnWann jjj ,.....2,1;)]()()()[()1(    

(16) 
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where )(ne  is the error and )(nd  is the desired output 

in nth  instant.  The correction in weight is given by: 
 

)()()( nenCnW jj                         (18) 

 

Thus, the RTRL algorithm can be summarized as follows: 

 Initialize the weights: 
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 Set the initial states as x(0) = x0, where x0 is 

calculated for any operating condition. 

 Set )(nj =0 for  j = 1, 2, · · · , q 

 Compute for n = 0, 1, · · · 
   

qjnnnWann jjj ,.....2,1;)]()()()[()1(    

 

)()()(

)()()(

nenCnW

nCxndne

jj 





 

 
 
By identifying the partial derivatives of the output function 

with respect to the weights as sensitivity elements, the 

sensitivity can be denoted as given in (19): 
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where 

 

                      (20) 

 

In this algorithm, the storage requirements cannot be 

reduced [15] as they constitute a crucial component in the 

weight upgradation  procedure.  

3. PROPOSED CONTROLLER 
 

The proposed controller has been designed using the states 

of the system as the input signals, which are fed back from 

the output neurons through a delay. The control strategy at 

any instant can be written as: 

 

)),(),(()1( biasnunyFny                  (21) 

 

Where 

 

vectoroutputnynynyny p :)](..,),........(),([)( 21  

 

vectorcontrolnunununu m :)](,),........(),([)( 21  

 

 When the desired output trajectory is given at any instant, 

say (n + 1)th
 instant, then the required control input is 

generated by the controller with the available knowledge of 

the states in nth
 instant. For the purpose of training the 

network, the desired trajectory can be obtained by any 

method.  

 The controller generates an appropriate control to achieve 

the desired state trajectory after on-line training of the 

network using RTRL algorithm. The proposed controller is 

given in Fig.3. The number of neurons in the controller is 

same as the number of control inputs to the system.   Each 

controller neuron is connected to all the states in the input 

layer and given an external bias. 

The system states at (n + 1)th
 instant can be calculated as: 

 

))]()([()1( nKWnxWnx ba                          (22) 

 

Where )](;[)( ninputscontrolbiasnK   

 

The desired output at (n + 1)th
 instant is given by: 

 

)1()1(  nCxny                        (23) 

 

The control input generated by the controller in (n + 1)th 

instant is given by: 
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where uiW  is the synaptic weights associated with the 

controller neuron,   is the activation function used in the 

controller and    is the activation function used in the 

RTRL algorithm. 

 

 

 

4. CASE STUDY  
In this section, two simulation studies one for SISO system 

and the second for MIMO system are  conducted with the 

proposed adaptive control algorithm. For training the 

neural network, initially all the system state variables are 

assumed to a small value and given to the neural network. 

Then the desired system outputs are given as the required 

closed loop state trajectories. These desired trajectories can 

be generated by any conventional methods. The synaptic 

weights of the neurons are first initialized to random 

values. After the desired outputs are presented to the 

network, at each instant, the error function )(ne  is 

computed and the correction in synaptic weights can be 

updated by using. (18). The value of learning rate 

parameter is problem dependent. In this work, we used a 

suitable value 0.5, which gives a fast convergence rate of 

the learning process. Hyperbolic tangent function given in 

.(6) is used as the activation function for the controller and 

the  output neurons. 

 

4.1 Single Input, Single Output systems 

(SISO) 
 

 The system considered here is an inverted pendulum 

problem, a classical problem in dynamics and control 

theory, widely used as benchmark for testing control 

algorithms. The objective of the controller is to control the 

angle of an inverted pendulum. The inverted pendulum 

has its mass above its pivot point and is mounted on a 

motor driven cart. In the system formulation, it is assumed 

that the pendulum moves only in a two dimensional space. 

The cart is driven by a motor that exerts a horizontal force 

F on the cart, which is the control input to the system. In 

this problem, balancing the pendulum in a vertical position 

in open loop is unstable. The proposed controller in 

feedback will modify the states of the system by generating 

a control input u to the system. The main objective of the 

controller in this system is to keep the pendulum upright 

in the presence of any disturbance by applying a control 

force u. The non-linear system equations of the inverted 

pendulum can be expressed as: 

 

)cos()sin( 2  xmlmlmgll          (25) 

 

xkllxmFxM   ))sin()cos(( 2     (26) 

 

where M is the mass of the cart, m  is the mass of the 

pendulum, F  is the force applied, k  is a constant and l  

is the length of the pendulum. The system state variables 

are given by: 
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and the output of the system is given by: 

 

 
In this problem, the desired trajectory used for training the 

network is obtained by pole placement technique of the 

linearised model of the system having a small settling 

time, about 2 seconds and reasonable damping with 

damping factor ξ = 0.5.  Figures 4 to 7 shows the state 

trajectories of the system and Fig.8 shows the performance 

of the NN controller. In this example, the tolerance level is 

set to 0.005. The output of the controller, i.e., the required 

control input to the system, generated by the controller for 

the desired output is shown in Fig. 9. 

  

 

Figure.3. Structure of the proposed controller 
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Once the desired trajectory as shown in Fig..8  is supplied 

to the network, the controller will act in such a way to 

track the output in very short time. The controller output is 

shown in Fig. 9 and the error square plot is shown in Fig. 

10. The proposed controller is tested for different operating 

conditions (i.e., for different initial angles of the pendulum 

and the different initial positions of the cart) and it 

performs well, which shows its high robustness. The 

trained neural network can be used as the controller in the 

feedback circuit. 

Figure 4.  Angle of the pendulum –Theta   

 

Figure.3. Structure of the proposed controller 

 

Figure 5.  Angular velocity –Theta dot  

 

Figure 6.  Position of the cart 

 

Figure 7  Velocity of the cart 

 

Figure 8.  Adaptive NN controller performance 



©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 5 

66 

 

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
 controller generated signal versus t

t(sec)

c
o
n
tr

o
lle

r 
o
u
tp

u
t 

U

 

 

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9
x 10

-3 error square Vs t

t(sec)

e
rr

o
r 

s
q
u
a
re

  

 
 

       

 

4.2 Multiple Input, Multiple Output Systems 

(MIMO) 
In this example, we have considered a discrete model of a 

turbo-generator with six system states, two inputs and two 

outputs. The system dynamics are given as: 

 

s
dt

d



                                          (27) 
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where C , b ’s are constants.   is the angle of rotation of 

the rotor, s  is the slip, TP is the mechanical power of the 

turbine, EP is the electrical power generated and Eq  is 

the generated voltage. q  is the valve movement of the 

regulator. 1U and  1U  are the controls on voltage and 

valve position. 12  is the angle of transfer conductivity 

and h  is the turbine velocity controller signal. 

 

 The objective of the controller is to make the deviation 

from the desired generated voltage to be zero and also the 

deviation of the generator load angular position to be zero. 

These are controlled by the throttle valve position and the 

loading torque of the generator. The desired trajectories for 

the outputs are supplied to the network. Then the network 

is trained in such a way that the mean squared error is 

minimized at the output. Figure 11 shows the desired 

trajectories of the outputs, i.e., the change in the desired 

voltage and the change in load angle, supplied to the 

network for training. 

 When these desired trajectories are supplied to the 

network, the control inputs to the system, U1 and U2 are 

generated by the controller in such a way that the 

minimum squared error is obtained in each sample.  

In this case also the controller response is very fast. Figure 

14 shows the efficiency of the proposed controller in 

tracking the outputs. Control inputs generated by the 

controller is shown in Fig.12 and the Error square graph of 

the network is shown in Fig.15  All these simulation 

results shows that the proposed controller is efficient in 

non-linear system control and since its response is very 

fast, this controller can be used for real time applications. 

 

 

Figure 9.  NN controller output 

Figure 10.  Squared Error 
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5. CONCLUSION 
In this paper, we have described the implementation of an 

adaptive neural network-based controller for non-linear, 

multivariable, and dynamic systems. The fully connected 

dynamic neural network architecture selected for 

implementation has been trained by RTRL algorithm. The 

proposed controller is capable of generating the required 

control input by modifying the synaptic weights when the 

desired trajectory of output is presented to the network. 

The quick response makes the ANN based approach very 

attractive for on-line applications in non-linear system 

control. The efficiency of the proposed controller has been 

demonstrated by applying the control strategy to both 

continuous and discrete systems, and the results agree with 

our claim. 
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