
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

79

An Efficient WS-QoS Broker Based Architecture for Web

Services Selection

T.Rajendran
AP cum Research Scholar

Department of CSE
SNS College of Technology

Dr.P.Balasubramanie
Professor

Department of CSE
Kongu Engineering College

Resmi Cherian
Final Year ME (CSE)
Department of CSE

SNS College of Technology

ABSTRACT
Web Service selection is a key component in service-oriented
computing. Service-oriented Architectures follow the find-bind-
execute paradigm in which service providers register their
services in public or private registries, which clients use to locate
web services. The QoS based web service selection mechanisms
plays an essential role in service-oriented architectures, because
most of the applications want to use services that accurately meet
their requirements. Currently, the UDDI catalogue supports only
primitive matching mechanisms and provides no control over the
quality of registered services. We propose a QoS broker based
architecture for dynamic web service selection which facilitates
the clients to specify the non-functional requirements like QoS
along with functional requirements. The paper presents an
efficient mechanism for finding the most suitable web service
according to the consumer’s requirements.

Categories and Subject Descriptors

Primary Classification:

H. Information Systems, H.3 INFORMATION STORAGE AND
RETRIEVAL, H.3.5 On-line Information Services, Subjects: web-
based services.

Additional Classification:

C. Computer Systems Organization, C.2 COMPUTER-
COMMUNICATION NETWORKS, C.2.4 Distributed Systems,
Subjects: distributed applications

General Terms
Algorithms, Design, Verification

Keywords
Web Service Selection, Quality of Services (QoS), WS-QoS
Broker, UDDI, WSDL, SOAP, tModel

1. INTRODUCTION
A service-oriented architecture is essentially a collection of
services that communicate with each other. The communication
can involve either simple data passing or it could involve two or
more services coordinating some activity. Hence some means of
connecting services to each other is needed. A key driver for SOA
implementations is the hope to save development time and costs
through a higher degree of reuse of components in the form of
readily implemented services [3],[4]. To achieve this aim it is

necessary, among other things, to make Web services
discoverable. SOA services have self-describing interfaces in
platform-independent XML documents. Web Services Description
Language (WSDL) is the standard used to describe the services.
SOA services communicate with messages formally defined via
XML Schema. Communication among consumers and providers
or services typically happens in heterogeneous environments, with
little or no knowledge about the provider. SOA services are
maintained in the enterprise by a registry that acts as a directory
listing. Applications can look up the services in the registry and
invoke the service. Universal Description, Discovery, and
Integration (UDDI) is the standard used for service registry. Web
services are self-described software entities which can be
advertised, located, and used across the Internet using a set of
standards such as SOAP, WSDL, and UDDI. Web services
encapsulate application functionality and information resources,
and make them available through programmatic interfaces, as
opposed to the interfaces typically provided by traditional Web
applications which are intended for manual interactions. However,
discovering web services using keyword-based search techniques
offered by the existing UDDI registry does not yield results that
are tailored to client’s needs. Several web services may share
similar functionalities, but possess different non-functional
properties. When discovering web services, it is essential to take
into consideration, the functional and non-functional properties in
order to render an effective and reliable service selection process.

Nowadays, both Web Service providers and clients are concerned
with the QoS guaranteed by web services. From the client point of
view, web service based QoS discovery is a multi-criteria decision
mechanism that requires knowledge about the service and its QoS
description. However, most of clients are not experienced enough
to acquire the best selection of web service based on its described
QoS characteristics. They simply trust the QoS information
published by the provider; however most of web services
providers do not guarantee and assure the level of QoS offered by
their web services. Based on the above we propose a Web
Services discovery architecture that contains an extended UDDI to
accommodate the QoS information, and WS-QoS Broker to
facilitate the Web Service discovery.

Measuring the degrees to which the web services can deliver the
functionality through a combination of QoS parameters becomes
significant, particularly in distinguishing services competing in
the same domain. The QoS parameters can be used to characterize
the web services’ overall behavior. Service providers QoS claims
may not be trustworthy. Hence some method is needed to

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

80

automate the process of measuring QoS for registered web
services. Current UDDI registries don’t have built-in-capabilities
to validate or monitor published web services. They include only
metadata about businesses and their related web services. If the
UDDI registries let service providers publish their QoS claims,
they could publish false or inaccurate information or the published
information could be passive or outdated. Hence the clients should
be able to obtain web service information based on QoS metrics
from a trusted service broker. This would yield more relevant
results.

QoS delivered to a client may be affected by many factors,
including the performance of the web service itself, the hosting
platform and the underlying network. A set of verification
procedures is essential for providers to remain competitive and for
clients to make the right selection and trust the published QoS
metrics. For the success of any QoS based web services
architecture, it should support a set of features: 1) QoS
Verification and Certification to guide web service selection 2)
QoS aware web services publishing and discovery. In this paper,
we propose a broker based architecture for web service selection
and QoS management. The role of the WS-QoS broker is to
support QoS provisioning and assurance in delivering web
services. It implements the concept of QoS verification and
certification.

The remainder of the paper is organized as follows. Section 2
outlines the related research conducted in the area of web services
discovery, QoS and reputation. In Section 3, we describe the
architecture of our proposed WS-QoS broker. Section 4 concludes
the paper and presents possible future research in this direction.

2. Related Work
Web service technology uses an interface description to expose its
functionality and makes it publicly available for use by other
programs. Standard web services protocols such as WSDL and
UDDI are designed mainly for their functional features. Such
protocols do not provide QoS support and verification. Several
web services may have similar functionalities but with different
QoS property values. When discovering web services, it is
necessary to consider both functional and non-functional
properties. But the UDDI registry does not include QoS
information. To solve this problem, some work has been
implemented for enhancing UBR’s inquiry operations by
embedding QoS information within the message. An example is
the UDDIe [1], which provides an API that can associate QoS
information through a set of user defined properties. The search
queries are executed based on these properties.

Blum [2] proposed to extend the use of Technical models
(tModels), within the UDDI to represent different categories of
information such as version and QoS information. Ran [5]
proposed an extended service discovery model containing the
traditional components: service provider, service consumer and
UDDI registry, along with a new component called a Certifier.
Certifier verifies the QoS of a web service before its registration.
However, it lacks support for the dynamism of web services.
Majithia et al [6] proposed a framework for reputation-based
semantic service discovery. Ratings of services in different
contexts are collected from service consumers by a reputation
management system. Rajendran and Balasubramanie [7] proposed
a framework for agent-based web services discovery with QoS to
select the suitable web service that satisfies the client’s

preferences and QoS constraints. It contains an extended UDDI to
accommodate the QoS information. IBM proposes Web Service
Level Agreements (WSLA), which is an XML specification of
SLAs for web services focusing on QoS Constraints [8]. Many of
these approaches do not provide guarantees as to the accuracy of
the QoS values over time or having up-to-date QoS information.

UDDI extension to support QoS- enriched service publication and
discovery has generated several research efforts. ShaikhAli’s
approach [9] is based on the extension of the UDDI business
service structure, but potential QoS changes are not considered.
Chen et al [10] proposed a registry that receives reports made by
consumers to generate QoS summaries for invoked web services.
Kalepu et al [11] evaluated the reputation of a service as a
function of three factors: ratings made by users, service quality
compliance, and the changes of service quality conformance over
time. However, these solutions do not take into account the
trustworthiness of QoS reports produced by users, which is
important to assure the accuracy of the QoS-based web service
selection and ranking results. Liu et al [12] suggested an approach
for rates services computationally in terms of their quality
performance from QoS information provided by monitoring
services and users. The authors also employ a simple approach of
reputation management by identifying every requester to avoid
report flooding. Diego and Maria [13] proposed an extended Web
service architecture to support QoS management. The architecture
is currently being integrated with Business Process Management
(BPM) Technology. The major contributions are: Extending the
WS policy framework to specify QoS policies for web services,
extending the UDDI information model and API set to refine
service discovery and using tModels to define QoS related
concepts.

Tian et al [14] explained the WS-QoS architecture that enables
QoS-aware service specifications as well as the broker based web
service selection model that enables an efficient QoS-aware
service selection. Eyhab and Qusay [15] introduced a mechanism
that extends the Web Services Repository Builder (WSRB) of
Web Services. It also introduced the Web Service Relevancy
Function (WsRF) used for measuring the relevancy ranking of a
particular Web service based on client’s preferences and QoS
metrics. Xu et al [16] presented a web service discovery model
that contains an extended UDDI to accommodate the QoS
information, a reputation management system to build and
maintain service reputations and a discovery agent to facilitate
service discovery. A service matching, ranking and selection
algorithm is also developed. Demian et al [17] explored different
types of requester’s QoS requirements and a tree model for
requester’s QoS requirements. It also proposed a QoS broker
based web service architecture which facilitates the requester to
select a suitable web service based on QoS requirements and
preferences. The Web service selection and ranking mechanism
uses the QoS broker based architecture [19]. The QoS broker is
responsible for the selection and ranking of functionally similar
Web services. The Web service selection mechanism [19] ranks
the Web services based on prospective levels of satisfaction of
requester’s QoS constraints and preferences. Serhani [20]
presented a web service selection architecture which employs an
extended UDDI registry to support service selection based on
QoS, but only the certification approach is used to verify QoS and
no information is provided about the QoS specification.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

81

3. WS-QOS BROKER ARCHITECTURE
The architecture consists of the basic web service model
components like the web service provider, web service consumer
and the UDDI registry. In addition, UDDI registry has the
capability to store QoS information using tModel data structure
and a WS-QoS Broker component. The WS-QoS Broker assists
clients in selecting web services based on a set of QoS parameters.
The WS-QoS Broker has four components: Service Publisher
[17], Verifier and Certifier, Service Selector [17] and Web Service
Storage (WSS) [18]. Broker services may be used to facilitate
service registry access. The broker performs the interaction with
the UDDI. It provides the QoS management operations.

The broker is also a web service. This enables the architecture
deployment in restricted and open environments. Figure 1 presents
an agent-based architecture with features that overcome the
limitations of existing approaches. The service publisher
component facilitates the registration, updating and deletion of
web service related information. It gets the business specific and
performance specific QoS property values of web services from
the service providers. The service provider publishes its service
functionality to the UDDI registry through the service publisher
after certification and verification. For every service or group of
services there exists a service publisher that handles all
communication with registries, bindings, negotiations, requests
and responses for that service. The service consumer can search
the UDDI registry for a specific service through the service
selector. The main functionality of the service selector component
is to select the most suitable web service satisfying requester’s
QoS constraints and preferences, along with service functionality.
The WS-QoS broker performs the verification and certification
tasks. QoS verification is the process of validating the correctness
of information described in the service interface as well as the
described QoS parameters. The verification will be used as input
for the certification process that will be issued when the
verification succeed.

The QoS property values obtained from the service providers are
verified and certified by the Verifier and Certifier component
before registering them into the UDDI registry. The Verifier and
Certifier component is implemented within the WS-QoS Broker
and is responsible for certifying web services and their provided
QoS. A certificate is sent to the web services provider and a copy
is stored in the WSS for future use. The web service consumer can
verify the advertised QoS with the service selector before binding
to a web service. The QoS information is represented in UDDI
registry by a tModel, which allows specification, standardization
and reuse of QoS related concepts. This extension allows the use
of brokers to facilitate service selection according to functional
and non-functional requirements, and monitors to verify QoS
attributes. QoS represents the non-functional aspects of the service
being provided to the web service users. The following QoS
parameters are considered:

• Price: The cost involved in requesting the service which can
be estimated by operation or volume of data

• Response Time: Time taken by a service to respond to the
client request

Figure 1. Architecture for WS-QoS Broker

• Availability: Percentage of time that the service is operating

• Throughput: The maximum requests that can be handled at
a given unit in time.

A tModel consists of a key, a name, an optional description and a
Uniform Resource Locator (URL), that point to the location where
the details about the actual concept can be found. When a service
is published in the UDDI registry, a tModel is created to represent
the QoS information of the service. It is registered with the UDDI
registry and referenced in the bindingTemplate that represents the
deployment information of the web service. In the tModel, each
QoS metrics is represented as a KeyedReference, which contains
the name of a QoS attribute as keyName and keyValue, which
contains the value. A service provider should regularly update the
QoS information of the services, it publishes, to ensure that the
information is accurate and up-to-date. To update the QoS
information of a service, the service provider searches the UDDI
registry through the service publisher to find the corresponding
tModel. It then updates the QoS information in the tModel and
saves it back using the same tModel key that was assigned to the
tModel when it was created.

The units of QoS attributes are not represented in the tModel. We
assume default units are used for the values of QoS attributes in
the tModel. For example, the default unit used for price is CAN$
per transaction, for response time is second, for availability is
percentage, and for throughput is transaction per second. For
example, a company publishes its Stock Quote service in a UDDI
registry with the QoS information.

<tModel tModelKey = "somecompany.com: Stock
QuoteService:PrimaryBinding:QoSInformation">

 <name>QoS Information for Stock Quote Service</name>

 <overviewDoc>

 <overviewURL>

 http://<URL describing schema of QoS attributes>

 </overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference

 tModelKey="uddi:uddi.org:QoS:Price"

 keyName="Price "

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

82

 keyValue=" 0.01" />

 <keyedReference

 tModelKey="uddi:uddi.org:QoS:ResponseTime"

 keyName="ResponseTime"

 keyValue="0.05" />

 <keyedReference

 tModelKey="uddi:uddi.org:QoS:Availability"

 keyName="Availability"

 keyValue="99.99" />

 <keyedReference

 tModelKey="uddi:uddi.org:QoS:Throughput"

 keyName=" Throughput"

 keyValue="500" />

 </categoryBag>

</tModel>

Figure 2. tModel with QoS Information

Above given is an example of the QoS Information tModel, which
contains a categoryBag, which is a list of name-value pairs
specifying QoS metrics. This tModel contains a categoryBag that
specifies four QoS metrics of Response Time, Throughput, Price
and Availability. The tModelKey in each keyedReference is used
as a namespace which provides a uniform naming scheme. The
company creates and registers a tModel that contains the QoS
information for this service before it publishes the service with the
UDDI registry.

A typical usage scenario is described here by considering an
example in which a requester consumes the Web service of a
provider.

• Step1: Initially WS-QoS Broker publishes the interface to
the UDDI registry.

• Step2: Web service provider finds the broker interface in
UDDI registry.

Figure 3. Architectural Component Interactions

• Step3: The service provider registers the web service with
the service publisher and provides functional and non-
functional information about the offered services.

• Step4: The Verifier and Certifier component in the WS-QoS
broker verifies the QoS information and issues a certificate.

• Step5: A copy of the QoS certificate is stored in WSS and a
copy is sent to the service provider.

• Step6: The service publisher then publishes the web service
in the UDDI registry along with the QoS certificate.

• Step7: The web service consumer requests service selection
and provides functional and QoS requirements.

• Step8: The service selector selects a service in the UDDI
registry according to the required service functionality and
QoS requirements of the application.

• Step9: Service selector can verify the provided QoS
certificate with the one stored in the WSS.

• Step10: The service selector then reports the selected
service back to the application.

• Step11: The web service consumer then binds the web
service from the service provider.

3.1 Service Publisher
The service publisher component communicates with the service
provider and the UDDI registry. The web service provider
registers the business and web service related information with the
service publisher. It also gets the specific QoS property values of
web services from providers. Once the QoS property values and
other information are obtained from the provider it is hand over to
the Verifier and Certifier component. The QoS information is
verified and certified before publishing it in the UDDI registry.

3.2 Verifier and Certifier
This is the key component of the WS-QoS Broker that performs
the verification of the QoS information supplied by the service
provider and issues a certificate to the service provider through
the service publisher. This QoS certificate assures that the QoS
offered by the provider conform to their descriptions. The service
provider initiates the verification process through the service
publisher by supplying the QoS property values. The verifier is
provided with the WSDL document and additional information
about resources available at the provider’s platform. The verifier
performs the testing of the service URI, the XML schema
definition, the service binding information and the availability of
all operations described in the service interface. Verifier also
performs the verification of the QoS information introduced in the
service interface.

The QoS verification is conducted through a set of test cases
generated by the verifier. For each test, additional information like
server capacity, network bandwidth about the provider and its web
services are needed. The four QoS parameters (Response Time,
Availability, Throughput, and Price) are also verified. The
verification process is done in three levels: General web services
information verification, WSDL content verification and QoS
verification. A web service is said to be compliant with a given
level when it passes the corresponding tests described in the
verification document. Based on this, web services can be
classified into three classes. Class A includes web services for

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

83

which all verification tests have succeeded. Class B includes web
services for which more than 80% of the verification tests have
succeeded. Class C contains the services for which most of the
verification scenarios have failed.

Once the verification process is completed successfully, the
certification process is initiated. The certifier issues a certificate to
the service provider through the service publisher which indicates
that the offered QoS conform to their descriptions. The main
responsibility of the certifier is to certify the web services and
their provided QoS. A copy of the certificate sent to the service
provider, which is also stored in the WSS for future use. The
certificate includes information such as certificate number,
certificate issue date, number of years in business and service
location. In case, if the certificate cannot be issued, feedback will
be sent to the provider. After the QoS certification process, the
service publisher can register the functional description of the web
service and the certified QoS information with the UDDI registry.

3.3 Service Selector
The service selector component is concerned with selecting the
most suitable web service satisfying the consumer’s QoS
constraints and the specific service functionality. It receives
messages from the web service consumer, specifying the service
functionality along with the QoS constraints. Based on the
received requirements specification, it discovers functionally
similar web services from the UDDI registry. The service selector
can check the validity of the QoS information in the UDDI
registry by comparing the QoS certificate provided by the Verifier
and Certifier with the one stored in the WSS.

3.4 QoS Matching, Ranking and Selection

Algorithm
A web service consumer sends a service selection request to the
service selector, which then contacts the UDDI registry to find
services that meet the customer’s functional and QoS
requirements. A service is said to be a “match” if it satisfies the
customer’s functional requirements and its QoS constraints. If no
matched service is found by the matching process, the service
selector returns an empty result to the customer. If multiple
services match the functional and QoS requirements, the service
selector calculates a QoS score for each matched service based on
the dominant QoS attribute specified by the customer, or on the
default dominant attribute, average response time. The best
service is assigned a score of 1, and the other services are assigned
scores based on the value of the dominant QoS attribute. The top
M services (M being the maximum number of services to be
returned as specified by the customer) with the highest QoS scores
are returned to the customer. If M is not specified, one service is
randomly selected from those services whose QoS score is greater
than LowLimit. Figure 4 shows the details of QoS matching
algorithm. It is comprised of the following methods:
getServiceQoS finds the QoS advertisements of a service in a
UDDI registry. qosMatchAdvert finds if the QoS advertisements
of a service satisfies the QoS requirements.

qos Match(services,qosReqt){

 matches=Service[];

 for each s in services

//get Qos info from UDDI
qosAds=getServiceQoS(s);
//if QoS info available and satisfies QoS requirements

If(qosAds!=null&& qosMatchAdvert(qosAds,qosReqt)

matches.add(s);

 end for

 return matches;

}

Figure 4. QoS Matching Algorithm

Figure 5 shows the details of QoS ranking algorithm. It consists of
the following methods: calculateQoSScore calculates QoS scores
for the services that meet the QoS requirements. sortByQoSScore
returns a list of services sorted by the QoS score in descending
order.

//rank matches with QoS information

qosRank(services,qosReqt){

 //calculate QoS scores

 services= calculateQoSScore(services,qosReqt);

 //sort the result by QoS score in descending order

 services= sortByQoSScore(services);

 return services;

}

Figure 5. QoS Ranking Algorithm

Figure 6 shows the details of the service selection algorithm. If the
maxNumServices, that is the maximum number of services to be
returned by service selector, is greater than 1, then the top
maxNumServices services are returned if the option is “random”,
or the top maxNumServices services with the highest QoS or
overall scores if the option is “byQoS” or “byOverall”, are
returned to the customer. Otherwise, one service is randomly
selected if the option is “random”, or from those whose QoS or
overall score is greater than LowLimit if the option is “byQoS” or
“byOverall”.

// select services according the max number of services to be
 // returned
selectServices (matches, maxNumServices, option) {
 selection = service [];
 if maxNumServices > 1
 i = 0;
 while i < maxNumServices && i < matches.size()
 selection.add(matches[i]);
 i++;
else
 candidate = service [];
 if option == "random"
 candidate = matches;
else
 for each s in matches
 if option == "byQoS"
 if s.QoSScore >= LowLimit
 candidate.add(s);
 else
 if s.overallScore >= LowLimit
 candidate.add(s);
 end for
 pickNum = random (0, candidate.size());
 selection.add(candidate[pickNum]);
return selection; }

Figure 6. The service selection algorithm

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 9

84

4. CONCLUSION
The integration of the various QoS properties is essential for the
success of the web service technology. Due to the increasing
popularity of Web services technology and the potential of
dynamic service selection and integration, multiple service
providers are now providing similar services. QoS is a decisive
factor to distinguish functionally similar Web services. The major
problem with the current web service selection is the absence of a
mechanism that considers QoS properties for the web service
selection. We propose an approach that reduces the complexity of
matching user requests according to the specified functional and
QoS requirements. We implement a new WS-QoS broker based
architecture that solves the problems associated with web service
selection. The broker performs the process of publishing and
selection of web services. Our suggested theoretical architecture
will be based and implemented on QoS properties. An amount of
services is needed to test the performance of the system. This will
enable a more flexible, and trustable architecture. Results of this
work will be reported in a future paper. Future work involves
enhancing the capabilities of the proposed architecture to handle
other QoS attributes and adapting the architecture to support
mobile Web services.

5. REFERENCES
[1] Martin-Diaz, O., Ruiz-Cortes, A., Corchuelo, R., and Toro,

M., 2003, “A Framework for Classifying and Comparing
Web Services Procurement Platforms”, Proc.of 1st Int’l Web
Services Quality Workshop, Italy, pp. 37-46.

[2] Blum, A., 2004, “UDDI as an Extended Web Services
Registry: Versioning, quality of service, and more”. White
paper, SOA World magazine, Vol. 4(6).

[3] Latimer-Livingston, N.S., Graham, C., Correia, J.M. and
Schroder, N., 2003, “Survey Shows Why Firms Undertake
Web Services Projects”, Technical report, Gartner Group.

[4] Baroudi, C. and Halper, F., 2006, “Executive Survey: SOA
Implementation Satisfaction”, Technical report, Hurwitz
and Associates.

[5] Ran, S., 2004, “A Model for Web Services Discovery with
QoS”. ACM SIGEcom Exchanges, Vol. 4(1), pp.1–10.

[6] Majitha, S., Shaikhali, A., Rana, O. and Walker, D., 2004,
“Reputation based semantic service Discovery”, In Proc. Of
the 13 th IEEE Intl Workshops on Enabling Technologies
Infrastructures for collaborative Enterprises (WETICE),
Modena, Italy, pp.297-302.

[7] Rajendran, T. and Balasubramanie, P., 2009, “An Efficient
Framework for Agent-Based Quality Driven Web Services
Discovery”, IEEE International conference on Intelligent
Agent and Multi Agent Systems (IAMA2009), Chennai.

[8] Keller, A. and Ludwing. H., 2002, “The WSLA framework:
Specifying and Monitoring Service Level Agreements for
Web Services”, IBM Research Report.

[9] ShaikAli, A., Rana, O.F., Al-Ali, R., and Walker, D.W.,
2003, “UDDIe: An extended registry for web services”. In
Proc. Of the Symposium on Applications and the Internet
workshops, IEEE CS, pp 85-89.

[10] Chen, Z., Liang-Tien, C., Silverajan, B. and Bu-Sung, L.,
2003, “UX-An architecture providing QoS-aware and
federated support for UDDI”. In proc. of the Int’l Conf. on
web services, CSREA Press, pp 171-176.

[11] Kalepu, S., Krishnaswamy, S. and Loke, S.W., 2004,
“Reputation = f (User Ranking, Compliance, Verity)”,
Proceedings of ICWS'04.

[12] Liu, Y., Ngu, A. and Zheng, L., 2004, “QoS Computation
and Policing in Dynamic Web Service Selection”,
Proceedings of WWW 2004 Conf.

[13] Diego Zuquim Guimaraes Garcia and Maria Beatriz Felgar
de Toledo, 2006, “A web service Architecture providing
QoS Management”, Institute of Computing, University of
Campinas, Sao Paulo, Brazil, pp -189-198.

[14] Tian, M., Gramm, A., Ritter, H. and Schiller, J., 2004,
“Efficient Selection and Monitoring of QoS aware Web
Services with the WS-QoS Framework”. Proceedings of the
IEEE/WIC/ACM International Conference on Web
Intelligence (WI’04) Exchanges, vol. 4, no. 1, pp. 1–10.

[15] Eyhab Al- Masri, and Qusay H. Mahmoud, 2007, “QoS-
based Discovery and Ranking of Web services”,
Proceedings of IEEE International Conference.

[16] Ziqiang Xu, Patrick Martin, Wendy Powley and Farhana
Zulkernine, 2007, “Reputation Enhanced QoS-based Web
services Discovery”, IEEE International Conference on
Web Services (ICWS 2007).

[17] Demian Antony D’ Mello, V.S.Ananthanarayana and
Santhi.T, 2008, “A QoS Broker Based Architecture for Web
Service Selection”, Proceedings of IEEE International
Conference.

[18] Rajendran, T. and Balasubramanie, P., 2009, “An Agent-
Based Dynamic Web Service Discovery Framework with
QoS Support”, International J. of Engg. Research & Indu.
Appls. (IJERIA), Vol.2(5),pp 1-13.

[19] Demian. A. D’Mello and Ananthanarayana, V.S., 2008, “A
QoS Model and Selection Mechanism for QoS-Aware Web
Services”, Proceedings of the International Conference on
Data Management (ICDM 2008).

[20] Serhani, M.A., Dssouli, R., Hafid, A. and Sahraoui, H.,
2005, “A QoS broker based architecture for efficient Web
services selection”. In Proc. of the IEEE Int’l Conf. on Web
Services, IEEE CS, pages 113–120.

