
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

11

Efficient Tree Based Distributed Data Mining

Algorithms for mining Frequent Patterns

T.SathishKumar
Asst.Prof ,

Department of IT

VCET,Erode,India

V.Kavitha
Asst.Prof,

Department of IT

VCET,Erode,India.

Dr.T.Ravichandran

Principal,

HIT,

Coimbatore,India

ABSTRACT
Advancements in the field of wired and wireless network

environments have paved route to the advent of many dynamic

distributed computing environments. These environments have

diverged computing resources and multiple heterogeneous

sources of data. Most mining algorithms are designed to mine

rules from monolithic non-distributed databases. Even

algorithms exclusively designed to operate on distributed

databases normally download the relevant data to a centralized

location and then perform the data mining operations. This

centralized approach does not work well in many of the

distributed, ubiquitous, privacy sensitive data mining

applications, which opened a new area of research Distributed

Data Mining (DDM) under the data mining domain. Out of

various methods employed to mine frequent Itemsets, tree based

methodology proves some efficiency in distributed

environment. So in this paper we study a set of tree based

algorithms [DTFIM, PP, LFP and PP] to mine frequent pattern

in distributed environment.

General Terms

Tree based frequent pattern mining.

Keywords
Tree based algorithms, Distributed data mining, Mining

Frequent patterns.

1. INTRODUCTION

1.1 Overview and motivation
Advancements in the field of wired and wireless network

environments have paved route to the advent of many dynamic

distributed computing environments. These environments have

diverged computing resources and multiple heterogeneous

sources of data. Most mining algorithms are designed to mine

rules from monolithic non-distributed databases. Even

algorithms exclusively designed to operate on distributed

databases normally download the relevant data to a centralized

location and then perform the data mining operations. This

centralized approach does not work well in many of the

distributed, ubiquitous, privacy sensitive data mining

applications, which opened a new area of research Distributed

Data Mining (DDM) under the data mining domains.

In datamining one of the key area is finding frequent patterns

which plays an essential role in finding interesting patterns from

databases such as association rules, correlations, episodes,

clusters, sequences, classification and many more. Association

rule mining (ARM) one of the important areas in Market Basket

Analysis, Agrawal, Imielinski, and Swami (1993)[1] first

introduced the problem of mining association rules from

transaction data . The need for ARM was to analyze the

business transactional data, which is to identify the consumer

behaviour in terms of product purchase / service received. In

order to identify how often the items are bought together can be

well described using association rules. For example an

association rule “milk (80%)” states that eight out of

ten consumers that bought milk also bought bread. We can use

this to improvise the marketing decisions based on the current

trends and the mined rules. A large number of FP mining

algorithms focussing upon parallel and distributed environment

have already been proposed. Out of this FP-tree based

parallelisation algorithm has been proved to be more efficient,

when compared to the other approaches.

As mentioned earlier most FP mining methods typically

assume that the data is centralized, memory-resident, and

static. Whereas, in actual environment, it is proven that methods

of data mining using centralized concepts is less valid.

Therefore, researchers focused on large-scale parallel and

distributed FP mining algorithms [5,6,7,8,14,21,27] The

objective of this paper is to identify and compare the

efficiencies of those algorithms that employ tree based

methodology in mining frequent from distributed databases.

2. MINING FREQUENT PATTERNS

2.1 Need for Mining Frequent Patterns
Mining Frequent patterns is a sub problem to the problem of

mining association rules, which is defined by, for a given

transaction database T, an association rule is an expression of

the form X , where X and Y are subsets of A and X

holds with Confidence , if % of transactions in D that support

X also support Y. The rule X has support in the

transaction set T if % of transactions in T support X Y. This

means that a transaction of the database which contains X tends

to contain Y. Given a set of transactions, T, the problem of

mining association rules is to deliver all rules that have support

and confidence greater than or equal to the user-specified

minimum support and minimum confidence respectively.

The problem of mining association rules are then decomposed

into two sub problems:

 Find all patterns whose support is greater than the user-

specified minimum support, . Such patterns are called

frequent patterns.

 Use the frequent patterns to generate the desired rules. The

general idea is that if, say KLMN and KL are frequent

patterns, then we can determine if the rule KL

holds by checking the following inequality

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

12

Where s(X) is the support of X in T.

Out of the two sup problems mentioned above much research

works have been focused on the first sub problem, as the

database is accessed in this part of the computation.

2.2 Frequent Itemsets

Let T be the transaction database and be the user-specified

minimum support. An itemset X ⊆ A is said to be frequent

itemset in T with respect to , if

S(X)r ≥

Consider the following set of transactions in a bookshop, in the

first transaction, purchases are made of books on Compiler

Architecture, Distributed Databases, Theory of Computations,

Client Server and System Software; let the subjects be denoted

by CA, DD, TOC, CS and SS, respectively. Thus the set of

transactions are described as follows :

t1 := { SS, CA, TOC, CS }

t2 := { CA, DD, CS }

t3 := { SS, CA, TOC, CS }

t4 := { SS, CA, DD, CS }

t5 := { SS, CA, DD, TOC, CS }

t6 := { CA, DD, TOC}

if support count is assumed to be = 50%, then { SS, CA,

TOC} is a frequent set as it is supported by at least 3 out of 6

transactions. It can be found that any subset of this set is also

frequent set. On the other hand {SS, CA, DD} is not a frequent

itemset and hence, no set which properly contains this set is a

frequent set.

Interesting Properties of frequent sets for a given transaction, T:

 Downward Closure Property Any subset of a

frequent set is a frequent set.

 Upward Closure Property Any superset of an

infrequent set is an in frequent set.

2.3 Basic Mining Methodologies

2.3.1 Apriori
 Major idea (Agrawal and Srikant 1994)[2]

- A subset of a frequent itemset must be frequent.

 Core of Apriori algorithm

- Use frequent (k – 1)-itemsets to generate candidate

frequent k-itemsets.

- Use database scan and pattern matching to collect

counts for the candidate itemsets.

 Methodology

- Mining frequent itemsets in a large transaction

database using scalable methods proves to be highly

challenging because each transaction databases

contains large number of distinct single items also the

combination of these single items form large itemsets.

Agrawal and Srikant (1994) [2] observed an

interesting downward closure property, called

Apriori, among frequent k itemsets: A k-itemset is

frequent only if all of its sub-itemsets are frequent.

The essence of the Apriori (Agrawal and Srikant

1994)[2] and its alternative (Mannila et al. 1994)[21]

is that to find frequent 1-itemsets by scanning the

database once, then using frequent 1-itemsets the

frequent 2-itemsets are generated after k+1 time of

scanning the database frequent k-itemsets are

generated.

 Improvements or extensions

- Hashing (Park et al. 1995)[25],

- Partitioning (Savasere et al. 1995)[26],

- Sampling approach (Toivonen 1996)[28],

- Incremental mining (Cheung et al. 1996)[7],…etc.

 Two-nontrivial costs

- Generating a huge number of candidate sets.

 104 frequent 1-itemset will generate 107

candidate 2-itemsets

- Repeatedly scanning the database and checking the

candidates by pattern matching.

 Needs (n +1) scans, n is the length of the

longest pattern

 Real reason of Apriori Algorithm’s failure

- It lacks of good database processing method.

ALGORITHM Apriori
Input: D,

Output: F(D,)

1: C1 := {{i} | i I}

2: k := 1

3: while Ck {} do

4: // Compute the supports of all candidate itemsets

5: for all transactions (tid , I) D do

6: for all candidate itemsets X Ck do

7: if X ⊆ I then

8: X.support++

9: end if

10: end for

11: end for

12: // Extract all frequent itemsets

13: Fk := {X | X.support }

14: // Generate new candidate itemsets

15: for all X, Y Fk,X[i] = Y [i] for 1 i k − 1, and

X[k] < Y [k] do

16: I = X {Y [k]}

17: if J I, |J| = k : J Fk then

18: Ck+1 := Ck+1 I

19: end if

20: end for

21: k++

22: end while

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

13

2.3.2 ECLAT
 Major idea (Zaki (1997))[18].

- Mining frequent itemsets using vertical data format

 Core of Eclat algorithm

- The frequent itemsets are determined using simple

tid-list intersections in a depth-first graph.

 Methodology

- Transaction Id set (TID_set) for each frequent item is

generated during the first scan of the database. Éclat

too presumes Apriori property as such it extracts

(K+1)-itemsets from the previously generated K-

itemsets, with a depth-first computation order similar

to FP-growth (Han et al. 2000)[12]. The (k+1)

itemsets are generated from the K – itemsets by

intersecting their TID_sets. This process is repeated

until no new frequent itemsets are generated.

 Improvements or extensions

- Eclat Z, (Laszlo Szathmary et al (2008)) [19]

- UEclat (Laila A. Abd-Elmegid et al(2010)) [18]

- Eclat VJ (Minho Kim et al (2003)) [22]

 ECLAT is very efficient for large itemsets but less

efficient for small ones.

ALGORITHM Eclat
Input: D, , I ⊆ I

Output: F[I](D,)

1: F[I] := {}

2: for all i 2 I occurring in D do

3: F[I] := F[I] {I {i}}

4: // Create D i

5: D i := {}

6: for all j I occurring in D such that j > i do

7: C := cover({i}) cover({j})

8: if |C| then

9: D i := D i {(j,C)}

10: end if

11: end for

12: // Depth-first recursion

13: Compute F [I {i}](D i,)

14: F[I] := F[I] F[I {i}]

15: end for

2.3.3 FP-Growth
 Major idea (Han et al. (2000))[12]

- a combination of the vertical and horizontal database

layout to store the database in main memory.

 Core of FP-Growth algorithm

- A divide-and-conquer methodology: decompose

mining tasks into smaller ones.

- No candidate generation: only need sub-database test.

 Methodology

FP-growth employs divide-and-conquer method. A list of

frequent itemsets in descending order is generated during

the first scan of the database. By using this list , a

compressed data representation in tree form named

Frequent Pattern tree, or FP-tree is generated, which

maintains the itemset association information. By

assuming the frequent length-1 pattern as the initial suffix

pattern the FP-tree is mined, constructing its conditional

pattern base, which is a sub database that contains co-

occurring prefix paths with suffix pattern in the FP-tree,

next the conditional FP-tree is generated and mining is

recursively performed on that tree. On concatenating the

suffix patterns and the frequent patterns the resultant

pattern growth is achieved.

 Improvements or extensions

- H-Mine, by Pei et al. (2001)[16]

- Pattern-growth mining, by Liu et al. (2002; 2003)[18]

- Prefix-tree-structure, by Grahne and Zhu (2003)[11]

 Two Nontrivial cost

- Generating a huge number of candidate sets.

- Repeatedly scanning the database and checking the

candidates by pattern matching.

ALGORITHM FP-Growth
Input: D, , I I

Output: F[I](D,)

1: F [I] := {}

2: for all i I occurring in D do

3: F [I] := F[I] {I {i}}

4: // Create Di

5: Di := {}

6: H := {}

7: for all j I occurring in D such that j > i do

8: if support(I {i, j}) then

9: H := H {j}

10: end if

11: end for

12: for all (tid ,X) D with i X do

13: Di := Di [{(tid,X H)}

14: end for

15: // Depth-first recursion

16: Compute F[I {i}](Di,)

17: F[I] := F[I] F[I {i}]

Analysing all the three basic mining methodologies of frequent

pattern mining, the number of candidate sets generated for

mining Frequent patterns was very large in Apriori as compared

to FP-growth & Eclat, where as the FP-growth algorithm too

generates much candidate sets, which is not the case in éclat ,

but it proves efficient only in very large databases. Altogether

the FP-tree based mining method proves to be more reliable as

it was proven in later extensions and improvement works.

3 MINING FREQUENT PATTERNS

FROM DISTRIBUTED & DYNAMIC

DATABASES USING TREE DATA

STRUCTURE
Recent advancements in the areas like networking and wireless

technologies have led a new highly demandable source of data

named Distributed and Dynamic databases. A more real time

example of such a scenario can be best found in the repositories

of multinational corporations that contain disjoint databases that

are demographically separated. Also each such database is kept

updated continuously for every corresponding transaction. The

http://www.springerlink.com/content/?Author=Minho+Kim

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

14

differentials in the frequency of updating and its credentials are

unique to each individual site. This environment provides a vast

scope for researchers to research; one such area of research is to

mine frequent patterns from distributed and dynamic databases.

Algorithms [5],[26],[21] developed over last decade for mining

Frequent patterns trough parallel and distributed mining mainly

finds its roots as Apriori based, and inherits the same

performance bottlenecks of Apriori technique mentioned above.

To overcome this bottleneck, parallelization of efficient FP-tree

based FP-growth mining can be found in

[6],[8],[15],[29],[9],[13], . The algorithms FP-Forest [13] ,

Parallel FP-tree (PFP-tree) [15] , Load Balancing FP-tree (LFP-

tree) [29] , Multiple Local Parallel Trees (MLPT)[30] and

Parallel Pattern Tree (PP-tree) [27] all employs the concept of

dividing large databases into smaller parts that can be handled

by individual node by using its available resources. The then

individual nodes construct local FP-trees by mining its

respective database twice. While mining each individual nodes

transmit and share their respective frequent itemset count with

other nodes. In distributed environment the major factor to be

considered are load sharing and minimizing the number of

transactions between the nodes. In respect of this we are

analyzing the following algorithms.

3.1 Distributed Trie Based Frequent item

set Mining
This algorithm DTFIM[4] , uses a trie based methodology in

order to find out the frequent Item sets in the each site. All the

K- frequent item set (Ck)is calculated at each site separately.

Finally all the local K item sets are pruned in, by transferring

the trie between the sites. the final K item set calculated in

global is considered., only if the k item set satisfies the global

support count.

In this DTFIM algorithm the number of transactions is

minimized by transferring only the local Ck item sets between

the sites. The problem is that the infrequent item set in a local

site may be missed while calculating the global frequent item

set but the difference in the distributed calculation of first pass

of Ck item set is negligible compared to the speed obtained by

data transferring between the sites and the speed up of the

algorithm

3.2 Revised DTFIM

This algorithm is an optimization of the previous algorithm.

This algorithm optimises by stopping the calculation of

infrequent item sets. After every pass in a local site the trie is

exchanged between the sites. If a frequent item set is infrequent

in other sites then the corresponding item is removed from the

frequent item set thereby reducing the time in the calculation of

frequent item sets.

In this algorithm it tries to speed up the computation by

reducing the frequent item set calculation from the first pass

onwards, but this may have high impact on the final frequent

item set . Since the item which is infrequent at an site may be

frequent in other sites, All the local sites may not be

synchronized, an local site may have to wait for the answer of

other sites before it enters into the other pass. Even though it

speedup the computation time , the time taken to complete the

process may grow large if the synchronization is not good or

when there is a slow site.

3.3 PP Tree
Tanbeer et.al [2010] [27]proposes an efficient method for

finding the frequent pattern using parallel and distributed

algorithm using PP Tree. This is an advanced application of FP

tree in distributed environment. The large database is

partitioned into non overlapping blocks and each block is

assigned to individual node in a distributed environment there

by load is shared equally in all the nodes. The Frequent patterns

are constructed in five phases First phase each individual node

scans the database once and generates a local PP through this it

counts the support of each item distinctly. Second phase

calculates the global count of each item. Third phase the local

PP tree is reconstructed according to the global count of each

item. Fourth phase potential global frequent item set is

generated at each local site. Fifth phase the actual global

frequent patterns are constructed.

All the nodes are considered to be identical, so the load sharing

is achieved by partitioning equally. The frequent pattern

identified will be same as that are generated homogenous

algorithm. Since the all local PP tree is send to the master

processor all the data items are included in frequent pattern

generation. The data transfer overhead involved in this

algorithm will be more compared to the DTIFM.

3.4 Load balancing Frequent pattern tree

(LFP)
Kun-Ming Yu et.al [17] proposes an algorithm which shares the

load between the nodes in the distributed environment. The

database is equally partitioned and distributed to the nodes. A

local header table is generated at each node (Slave node SN)

which scan the database once and counts the occurrence of each

item. The entire local table from the slave nodes are transmitted

to the master node (MN). The master node prepares a global

table. The global table has the number of occurrences of the all

data items.

The global table is transmitted to all the nodes. FP tree is

constructed in each slave node based upon the local database

and the global databases. Each node of FP tree consists of item

name, count and link. The item name is the item of the node

represents, count represents the number of transaction occurred

in the corresponding path. And link links to the next node. The

depth and width of FP tree is calculated in each node. To avoid

large database transfer SN preserves the data item in which

loading is large. The load degree is decided at each node.

Depending upon the load degree each SN is assigned a data

item to mine. Then the FP tree is exchanged between the SN.

Each node calculates frequent item sets in its FP tree. Finally

MN collects all the frequent patterns.

3.5 Parallel FP-Growth (PFP)
Haoyuan Li et al (2008)[14] in their work proposed an

algorithm to parallelize the FP-Growth algorithm on distributed

machines. At the core this algorithm partitions computation in

such a way that each individual machine executes an

independent group of mining tasks, through this it eliminates

the computational dependencies each machine and thereby

reducing the communication between the machines. This

algorithm targets to overcome and reduce the challenges such as

Storage Overheads, Complexity in distributing the computation

& Communication complexities in the FP-growth algorithm.

The algorithm achieves this through five phases, during the first

phase Sharding , the database is divided into equal parts and

distributed into different machines, the second phase Parallel

Counting ,counts the support values of all items that appear in

http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref9#ref9
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref10#ref10
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref17#ref17
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref8#ref8
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref11#ref11
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref12#ref12
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref13#ref13
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref14#ref14
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref15#ref15
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref18#ref18
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref12#ref12
http://tr.ietejournals.org/article.asp?issn=0256-4602;year=2009;volume=26;issue=1;spage=55;epage=65;aulast=Tanbeer#ref14#ref14

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

15

the database and stores it in list of frequent items, the third

phase Grouping Items, divides the list of frequent items into

groups, then each group is identified uniquely using unique id.,

the fourth phase Parallel FP-Growth, is the core phase which

is sub divide into two sup-phases Mapper & Reducer phase, the

Mapper phase identifies the group-dependent transactions using

a mapper algorithm, followed by the reducer phase that

generates FP-growth on the dependent transactions finally the

aggregating phase aggregates the results arrived at the previous

phase.

4 CONCLUSION & FUTURE WORK
Mining frequent patterns creates a boon for market research

analysis to predict the customer behavioural patterns, since the

source of data have been distributed and dynamic in nature the

frequent pattern mining in such an environment proves to be a

highly demanding researchable area. Existing algorithms

concentrate more on distributing database to multiple machines

by portioning it and mining in parallel. But in real world, the

data source itself is distributed which requires a different

approach rather than that of DDM. In our future research we

propose an effective mining method to mine frequent patterns

from the distributed data sources, with special emphasize on

load sharing between different data source hosts.

5 REFERENCES

[1] R. Agrawal, T. Imielinski and A. N. Swami, 1993.

"Mining association rules between sets of items in large

databases", in ACM SIGMOD Int. Conf. on Management

of Data pp. 207-16.

[2] R. Agrawal and R. Srikant, 1994. "Fast algorithms for

mining association rules,", in VLDB pp. 487-99.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I.

Verkamo 1996.”Fast discovery of association rules”, in

Advances in KnowledgeDiscovery and Data Mining pages

307–328.

[4] E. Ansari, G.H. Dastghaibifard, M. Keshtkaran,” 2008. 19-

21 March, 2008. DTFIM: Distributed Trie-based Frequent

Itemset Mining”, Proceedings of the International

MultiConference of Engineers and Computer Scientists

2008 Vol I IMECS.

[5] M.Z Ashrafi, D. Taniar and K. Smith, 2004. "ODAM: An

optimized distributed association rule mining algorithm",

IEEE Distributed Systems Online 1541-4922, 5 (3).

[6] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc and J.

Saltz,2007. "Toward terabyte pattern mining an

architecture-conscious solution," in PPoPP, p. 2-12.

[7] D. W. Cheung, J. Han, V. T. Ng, and C. Y.Wong. 1996.

“Maintenance of Discovered Association Rules in Large

Databases: An Incremental Updating Technique”. In

proceedings of 12th ICDE.

[8] S. Cong, J. Han, J. Hoeflinger and D. Padua, 2005. "A

sampling-based framework for parallel data mining," in

PPoPP , pp. 255-65

[9] D. Chen, C. Lai, W. Hu, W.G. Chen, Y. Zhang and W.

Zheng, 2006. "Tree partition based parallel frequent

pattern mining on shared memory systems," in IEEE

Parallel and Distributed Processing Symposium.

[10] David Wai-Lok Cheung , Jiawei Han , Vincent Ng , C. Y.

Wong, February 26-March 01. Maintenance of Discovered

Association Rules in Large Databases: An Incremental

Updating Technique, Proceedings of the Twelfth

International Conference on Data Engineering, p.106-114.

[11] G. Grahne and J. Zhu , May 2003. ”High performance

mining of maximal frequent itemsets”, In SIAM’03

Workshop on High Performance Data Mining: Pervasive

and Data Stream Mining.

[12] Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns

without candidate generation. In Proc. 2000

ACMSIGMOD Int. Conf. Management of Data

(SIGMOD’00), Dallas, TX, pp. 1–12

[13] J. Hu and X. Yang-Li, 2008. "A fast parallel association

rules mining algorithm based on FP-Forest," in 5th Int.

Symposium on Neural Networks , pp. 40-9.

[14] Haoyuan Li,Yi Wang,Dong Zhang, Ming Zhang,Edward

Chang 2008.”Pfp: parallel fp-growth for query

recommendation Proceedings of the 2008 ACM

conference on Recommender systems Pages: 107-114.

[15] A. Javed and A. Khokhar, 2004. "Frequent pattern mining

on message passing multiprocessor systems," Distributed

and Parallel Databases , vol. 16, pp. 321-34.

[16] Jian Pei,Jiawei Han ,Hongjun Lu ,Shojiro Nishio ,Shiwei

Tang ,Dongquing Yang,” H-Mine: Hyper-Structure

Mining of Frequent Patterns in Large Databases”, First

IEEE International Conference on Data Mining (ICDM'01)

[17] Kun-Ming Yu, Jiayi Zhou, and Wei Chen Hsiao , 2007.

”Load Balancing Approach Parallel Algorithm for

Frequent Pattern Mining” V. Malyshkin (Ed.): PaCT 2007,

LNCS 4671, pp. 623–631, 2007 Springer-Verlag Berlin

Heidelberg .

[18] Laila A. Abd-Elmegid Mohamed E. El-Sharkawi Laila M.

El-Fangary & Yehia K. Helmy May 2010. “Vertical

Mining of Frequent Patterns from Uncertain Data” journal

on Computer and Information Science Vol. 3, No. 2.

[19] Laszlo Szathmary, Petko Valtchev, Amedeo Napoli, and

Robert Godin 2008. “An Efficient Hybrid Algorithm for

Mining Frequent Closures and Generators “ CLA 2008,

pp. 47–58, ISBN 978–80–274–2111–7, Palack´y

University, Olomouc.

[20] J. Liu, Y. Pan, K. Wang, and J. Han, 2002. ” Mining

frequent item sets by opportunistic projection”. In

SIGKDD.

[21] Mannila, H.; Toivonen, H.; and Verkamo, 1994. A. I.

Efficient algorithms for discovering associationrules. In

AAAI Workshop on Knowledge Discovery in Databases

(KDD 94) , 181 - 192.

[22] Minho Kim, Gye Hyung Kim and R.S. Ramakrishna 2003

.“A Virtual Join Algorithm for Fast Association Rule

Mining “Intelligent Data Engineering and Automated

Learning, Volume 2690/2003, 796-800, DOI:

10.1007/978-3-540-45080-1_108

[23] Mohammed J. Zaki. May/June 2000. Scalable algorithms

for association mining. IEEE Transactions on Knowledge

and Data Engineering, 12(3):372-390.

[24] S. Orlando, P. Palmerini, R. Perego and F. Silvestri,

2003."An efficient parallel and distributed algorithm for

counting frequent sets," in VECPAR , pp. 421-35.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Jian%20Pei
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Jiawei%20Han
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Hongjun%20Lu
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shojiro%20Nishio
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shiwei%20Tang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shiwei%20Tang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shiwei%20Tang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Dongquing%20Yang
http://www.springerlink.com/content/?Author=Minho+Kim
http://www.springerlink.com/content/?Author=Gye+Hyung+Kim
http://www.springerlink.com/content/?Author=R.S.+Ramakrishna
http://www.springerlink.com/content/978-3-540-40550-4/
http://www.springerlink.com/content/978-3-540-40550-4/
http://www.springerlink.com/content/978-3-540-40550-4/

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

16

[25] J.S. Park, M.-S. Chen, and P.S. Yu 1995. ”An effective

hash based algorithm for mining association rules”, In

Proceedings of the 1995 ACM SIGMOD International

Conference on Management of Data, volume 24(2) of

SIGMOD Record, pages 175–186. ACM Press.

[26] Savasere, E. Omiecinski and S. B. Navathe, "An efficient

algorithm for mining association rules in large databases,"

in VLDB , 1995, pp. 432-44.

[27] Tanbeer SK, Ahmed CF, Jeong B. 2009.” Parallel and

Distributed Algorithms for Frequent Pattern Mining in

Large Databases” IETE Tech Rev;26:55-65

[28] H. Toivonen, 1996. ”Sampling large databases for

association rules”,in T.M. Vijayaraman, A.P. Buchmann,

C. Mohan, and N.L. Sarda, editors, Proceedings 22nd

International Conference on Very Large Data Bases, pages

134–145. Morgan Kaufmann.

[29] K.-M. Yu, J. Zhou and W. C. Hsiao, 2007. "Load

balancing approach parallel algorithm for frequent pattern

mining," in PaCT , pp. 623-31.

[30] O.R.Zaοane, M. El-Hajj and P. Lu, 2001. "Fast parallel

association rule mining without candidacy generation," in

IEEE Int. Conf. on Data Mining , pp. 665-8.

