Edge- Odd Gracefulness of Cartesian product of C₃ and C_N

Dr. A. Solairaju
Associate Professor of Mathematics
Jamal Mohamed College, Tiruchirapalli – 620 020.
Tamil Nadu, India.

A.Sasikala and C. Vimala
Assistant Professors (SG),
Department of Mathematics,
Periyar Maniammai University, Vallam
Thanjavur – Post.. Tamil Nadu, India.

ABSTRACT

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) \rightarrow {1, 3, ..., 2q-1} so that induced map f₊: V(G) \rightarrow {0, 1,2, 3, ..., (2k-1)}defined by f₊(x) \equiv Σ f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge -odd gracefulness of the cartesian product of C₃ and C_n is obtained.

Keywords: Graceful Graphs, Edge-odd graceful labeling, Edge-odd Graceful Graph

1. INTRODUCTION

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2009, 2010] that the strong product of path P_3 and circuit C_n for all integer n, is edge-odd graceful.

Section-2: Edge-odd graceful labeling of cartesian product of C_3 and C_n

Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge uv is assigned the label |f(u) - f(v)| and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f : E(G) \to \{1, 3, ..., 2q-1\}$ so that induced map $f_+ : V(G) \to \{0, 1, 2, ..., (2k-1)\}$ defined by $f_+(x) \equiv \Sigma \ f(x, y) \ (mod \ 2k)$, where the vertex x is incident with other vertex y and k = max $\{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Lemma 2.3: The Cartesian product graph $C_3 \square C_n$ is edge odd graceful where n = 3, 4, 8.

Proof: The cartesian product graph $C_3 \uparrow C_3$ is a connected graph with 9 vertices and 18 edges.

The arbitrary labelings of edge- odd graceful of the required graph is obtained as follows.

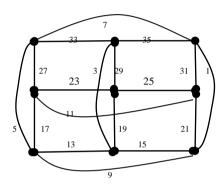


Figure 1: Edge-odd graceful Graph $C_3 \square C_3$

The cartesian product graph $C_3 \square C_4$ is a connected graph with 12 vertices and 24 edges. The arbitrary labelings of edge-odd graceful of the required graph is obtained as follows.

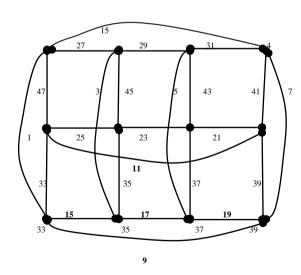


Figure 2: Edge-odd graceful Graph $C_3 \square C_4$

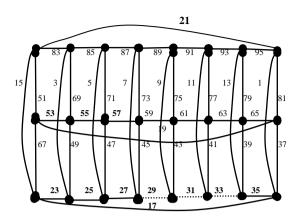


Figure 3: Edge-odd graceful Graph $C_3 \square C_8$

The cartesian product graph $C_3 \square C_8$ is a connected graph with 24 vertices and 48 edges. The arbitrary labelings of edge-odd graceful of the required graph is given in figure 3.

Theorem 2.1: The Cartesian product of $C_3 \square C_n$ is edge-odd graceful.

Proof: The Cartesian product of the path C_3 and the circuit C_n is given and the arbitrary labelings for vertices and edges for $C_3\square C_n$ are mentioned below.

Case (1): n is odd

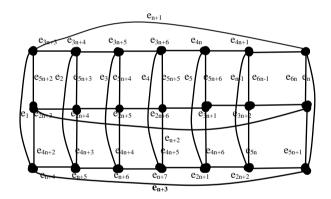


Figure 4: Edge -odd graceful Graph $C_3 \square C_n$, for n is odd

Case (2): n is even

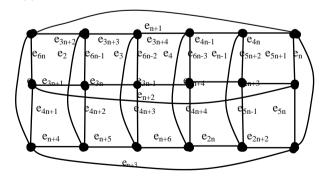


Figure 5: Edge- odd graceful Graph $C_3 \square C_n$, for n is even

To find edge-odd graceful, define f: $E(C_3\,\square\,\,C_n\,) \to \{1,\,3,\,...,\,2q\text{-}1\}$ by

n is even

Case i: $n \equiv 0 \pmod{4}$ $f(e_i) = 2i-1, i = 1,2,3,...n,(n+4),(n+5),...6n$

$$\begin{array}{l} f(e_{n+1}) = 2n+3, \ f(e_{n+2}) = 2n+1, \ f(e_{n+3}) = 2n+5, \\ f(e_{5n+1}) = 10n+3, \ f(e_{5n+2}) = 10n+1 & Rule(1) \ \textbf{Case ii: n} \equiv \textbf{2} \\ \textbf{(mod 4), n} \neq \textbf{8} \\ f(e_i) = 2i\text{-}1, \quad i = 1,2,3,\dots,(n+4),(n+5),\dots 6n \\ f(e_{n+1}) = 2n+3, \ f(e_{n+2}) = 2n+1, \ f(e_{n+3}) = 2n+5 \\ Rule(2) \end{array}$$

n is odd

Case iii. $n \equiv 1 \pmod{4}$ $f(e_i) = 2i-1, i = 1,2,3, \dots 6n$ Rule(3)

Case iv. $n \equiv 3 \pmod{4}$ $f(e_1) = 2n-1, f(e_n) = 1,$

$$\begin{split} f(e_i) = 2i\text{--}1, \ i = 2, 3, 4, \dots, (n\text{--}1), \ (n\text{+}4), \ \ (n\text{+}5), \\ \dots, \ 6n & \text{Rule (4)} \\ f(e_{n\text{+}1}) = 2n\text{+-}3, \ f(e_{n\text{+}2}) = 2n\text{+-}1, \ f(e_{n\text{+}3}) = 2n\text{+-}5 \end{split}$$

Define $f_+: V(G) \to \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v Rule (5)

Hence the induced map f_+ provides the distinct labels for vertices and also the edge labeling is distinct. Hence the Cartesian product graph $C_3 \square C_n$ is edge- odd graceful.

Example 2.1: The Cartesian product graph $C_3 \square C_{12}$ is edge-odd graceful.

Proof: The cartesian product graph $C_3 \uparrow C_{12}$ is a connected graph with 36 vertices and 72 edges, where $n \equiv 0 \pmod{4}$. Due to the rules (1) & (5) in theorem 2.1, edge odd-graceful labelings of the required graph is obtained as follows.

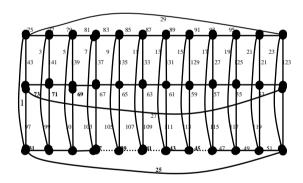


Figure 6: Edge-odd graceful Graph $C_3 \square C_{12}$

Example 2.3: The Cartesian product graph $C_3 \square C_9$ is edge-odd graceful.

Proof: The cartesian product graph $C_3 \square C_9$ is a connected graph with 27 vertices and 54 edges, where $n \equiv 1 \pmod{4}$. Due to the rules (3) & (5) in theorem 2.1, edge odd-graceful labelings of the required graph is obtained as follows.

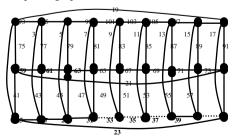


Figure 7: Edge-odd graceful Graph $C_3 \square C_9$

REFERENCES

- A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs "Electronics Notes in Discrete Mathematics Volume 33,April 2009, Pages 15 - 20
- 2. A.Solairaju, A.Sasikala, C.Vimala Edge-odd Gracefulness of a spanning tree of Cartesian product of P_2 and C_n , Pacific-Asian Journal of Mathematics, Vol. 3, No. 1-2. (Jan-Dec. 2009) pp:39-42
- A.Solairaju, A.Sasikala, C.Vimala Edge-odd Gracefulness of strong product of P₂ and C_n, communicated to serials publications, New Dehli.
- 4. A.Solairaju, A.Sasikala, C.Vimala, Edge-odd Gracefulness of strong product of P₃ and C_n, Communicated to serials publications, New Dehli.