Edge Odd Gracefulness of 2-NC ${ }_{4}, 3-\mathrm{NC}_{4}, 4-\mathrm{NC}_{4}$

Dr. A. Solairaju
Associate Professor of Mathematics Jamal Mohamed College, Tiruchirapalli - 620020.
Tamil Nadu, India.
A.Sasikala and C. Vimala
Assistant Professors (SG),
Department of Mathematics, Periyar Maniammai University, Vallam Thanjavur - Post.. Tamil Nadu, India.

Abstract

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map $f: E(G) \rightarrow\{1,3, \ldots, 2 q-1\}$ so that induced map $f_{+}: V(G) \rightarrow\{0,1,2,3, \ldots,(2 k-1)\}$ defined by $\mathrm{f}_{+}(\mathrm{x}) \equiv \Sigma \mathrm{f}(\mathrm{x}, \mathrm{y})(\bmod 2 \mathrm{k})$, where the vertex x is incident with other vertex y and $k=\max \{p, q\}$ makes all the edges distinct.

Key words: Generalised n-squares, Graceful Graphs, Edgeodd graceful labeling, Edge-odd Graceful Graph

\section*{1. INTRODUCTION} A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2009, 2010] that the Cartesian product of path C_{3} and circuit C_{n} for all integer n , is edge-odd graceful.

Section-2: Edge-odd graceful labeling of

2-nC4
Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0,1,2, \ldots, \mathrm{~m}\}$ such that when each edge $u v$ is assigned the label $|f(u)-f(v)|$ and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: $\mathrm{E}(\mathrm{G}) \rightarrow\{1,3, \ldots, 2 q-$ 1 \} so that induced map $\mathrm{f}_{\mathrm{t}}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-$ $1)$ \} defined by $f_{+}(\mathrm{x}) \equiv \Sigma \mathrm{f}(\mathrm{x}, \mathrm{y})(\bmod 2 \mathrm{k})$, where the vertex x is incident with other vertex y and $\mathrm{k}=$ max $\{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Definition 2.3:Generalised \mathbf{n}-squares: $\mathrm{n}-\mathrm{C}_{4}$ is a collection of n number of $\mathrm{C}_{4} \cdot 2-\mathrm{nC}_{4}(\mathrm{n} \geq 1)$ is a connected graph whose vertex set is $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{4 \mathrm{n}}$ whose edge set $\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{3}$, $\mathrm{v}_{3} \mathrm{v}_{4}, \ldots, \mathrm{v}_{4 \mathrm{n}-1} \mathrm{v}_{4 \mathrm{n}}, \mathrm{v}_{4 \mathrm{n}} \mathrm{v}_{4 \mathrm{n}-3}, \mathrm{v}_{2} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{10}, \ldots, \mathrm{v}_{4 \mathrm{n}-6}, \mathrm{v}_{4 \mathrm{n}-2}, \ldots, \mathrm{v}_{3} \mathrm{v}_{7}$, $\mathrm{v}_{7} \mathrm{v}_{11}, \ldots, \mathrm{v}_{4 \mathrm{n}-5} \mathrm{v}_{4 \mathrm{n}-1}$.

Theorem 2.1: The square 2-nC ${ }_{4}$ is is edge -odd graceful.
Proof: The square $2-\mathrm{nC}_{4}$ is a connected graph with 4 n vertices and $6 \mathrm{n}-2$ edges and the arbitrary labelings for vertices and edges for $2-\mathrm{nC}_{4}$ are mentioned below.

Figure 1: Edge-odd graceful Graph of 2-nC $\mathbf{4}_{4}$
To find edge-odd graceful, define $\mathrm{f}: \mathrm{E}\left(2-\mathrm{nC}_{4}\right) \rightarrow\{1,3, \ldots$, $2 q-1\}$ by
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=2 \mathrm{i}-1, \quad \mathrm{i}=1,2,3, \ldots(\mathrm{n}-1),(\mathrm{n}+1),(\mathrm{n}+2), \ldots,(3 n-1)$, $(3 n+1), \ldots,(6 n-2) \quad \operatorname{Rule}(1)$

Case $\mathbf{i} . \mathbf{n}$ is even

$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=6 \mathrm{n}-1, \mathrm{f}\left(\mathrm{e}_{3 \mathrm{n}}\right)=2 \mathrm{n}-1 \quad$ Rule (2)
Case ii. \mathbf{n} is odd
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=2 \mathrm{n}-1, \mathrm{f}\left(\mathrm{e}_{3 \mathrm{n}}\right)=6 \mathrm{n}-1 \quad$ Rule (3)
Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{+}(\mathrm{v}) \equiv \Sigma \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k})$, where this sum run over all edges through v

Rule (4)
Thus the induced map f_{+}provides the distinct labels for vertices and also the edge labeling is distinct. Hence the square 2-nC ${ }_{4}$ is edge odd - graceful.

Example 2.2: The square 2-6 C_{4} is edge-odd graceful.
Proof: The square $2-6 \mathrm{C}_{4}$ is a connected graph with 24 vertices and 34 edges.
Due to the rules (1), (2) \& (4) in theorem 2.1, then $2-6 \mathrm{C}_{4}$ is edge-odd-graceful.

Figure 2-Edge-odd graceful of graph of 2-6C $\mathbf{4}_{4}$

Section-3: Edge-odd graceful labeling of 3-nC4

Definition 3.1:Generalised n-squares: $\mathrm{n}-\mathrm{C}_{4}$ is a collection of n number of $\mathrm{C}_{4} \cdot 3-\mathrm{nC}_{4}(\mathrm{n} \geq 1)$ is a connected graph whose vertex set is $v_{1}, v_{2}, v_{3}, v_{4}, \ldots . . v_{4 n}$ whose edge set $\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{2} \mathrm{v}_{3}, \mathrm{v}_{3} \mathrm{v}_{4}, \ldots . . \mathrm{v}_{4 \mathrm{n}-1} \mathrm{v}_{4 \mathrm{n}}, \mathrm{v}_{4 \mathrm{n}} \mathrm{v}_{4 \mathrm{n}-3}, \mathrm{v}_{2} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{10}, \ldots \ldots . \mathrm{v}_{4 \mathrm{n}-6} \mathrm{v}_{4 \mathrm{n}-}$ $2, \ldots \ldots . . v_{3} \mathrm{v}_{7}, \mathrm{v}_{7} \mathrm{v}_{11}, \ldots . . \mathrm{v}_{4 \mathrm{n}-5} \mathrm{v}_{4 \mathrm{n}-1}, \ldots \ldots \ldots, \mathrm{v}_{4} \mathrm{v}_{8}, \mathrm{v}_{8} \mathrm{v}_{12}, \ldots \ldots . . \mathrm{v}_{4 \mathrm{n}-4} \mathrm{v}_{4}$.

Lemma 3.2: The square $3-2 C_{4}$ is edge -odd graceful
Proof: The square $3-2 \mathrm{C}_{4}$ is a connected graph with 8 vertices and 11 edges.
The arbitrary labelings of edge- odd graceful of the required graph is obtained as follows.

Figure 3: Edge-odd graceful Graph of 3-2C4

Theorem 3.1: The square 3-nC4 is edge -odd graceful.

Proof: The square $3-\mathrm{nC}_{4}$ is a connected graph with 4 n vertices and $7 \mathrm{n}-3$ edges and the arbitrary labelings for vertices and edges for $3-\mathrm{nC}_{4}$ are mentioned below.

Figure 4: Edge-odd graceful Graph of 3-nC $\mathbf{4}_{4}$
To find edge-odd graceful, define $\mathrm{f}: \mathrm{E}\left(3-\mathrm{nC}_{4}\right) \rightarrow\{1,3, \ldots$, $2 q-1\}$ by
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=2 \mathrm{i}-1, \quad \mathrm{i}=1,2,3, \ldots(7 \mathrm{n}-3) \quad$ Rule (1)
Define $\mathrm{f}_{+}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{+}(\mathrm{v}) \equiv \Sigma \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k})$, where this sum run over all edges through v \qquad Rule (2)

Hence the induced map f_{+}provides the distinct labels for vertices and also the edge labeling is distinct. Hence the square $3-\mathrm{nC}_{4}$ is edge odd - graceful.

Example 3.1: The square $\mathbf{3 - 5 C}_{4}$ is edge-odd graceful.

Proof: The square $3-5 \mathrm{C}_{4}$ is a connected graph with 20 vertices and 32 edges

Due to the rules (1) \& (2) in theorem 3.1, edge odd-graceful labelings of the required graph is obtained as follows

Figure 5: Edge-odd graceful Graph of 3-5C $\mathbf{4}_{4}$

Section-4: Edge-odd graceful labeling of 4 -nC4.

Definition 4.1:Generalised \mathbf{n}-squares: $\mathrm{n}-\mathrm{C}_{4}$ is a collection of n number of $\mathrm{C}_{4} \cdot 4-\mathrm{nC}_{4}(\mathrm{n} \geq 1)$ is a connected graph whose vertex set is $v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{4 n}$ whose edge set $v_{1} v_{2}, v_{2} v_{3}$, $\mathrm{v}_{3} \mathrm{v}_{4}, \ldots, \mathrm{v}_{4 \mathrm{n}-1} \mathrm{v}_{4 \mathrm{n}}, \mathrm{v}_{4 \mathrm{n}} \mathrm{v}_{4 \mathrm{n}-3}, \mathrm{v}_{2} \mathrm{v}_{6}, \mathrm{v}_{6} \mathrm{v}_{10}, \ldots, \mathrm{v}_{4 \mathrm{n}-6} \mathrm{v}_{4 \mathrm{n}-2}, \ldots, \mathrm{v}_{3} \mathrm{v}_{7}$,
$\mathrm{v}_{7} \mathrm{v}_{11}, \ldots, \mathrm{v}_{4 \mathrm{n}-5} \mathrm{v}_{4 \mathrm{n}-1}, \ldots, \mathrm{v}_{4} \mathrm{v}_{8}, \mathrm{v}_{8} \mathrm{v}_{12}, \ldots, \mathrm{v}_{4 \mathrm{n}-4} \mathrm{v}_{4 \mathrm{n}}, \ldots, \mathrm{v}_{1} \mathrm{v}_{5}$, $\mathrm{v}_{5} \mathrm{v}_{9}, \ldots, \mathrm{v}_{4 \mathrm{n}-7} \mathrm{v}_{4 \mathrm{n}-3}$.

Lemma 4.2: The square $\mathbf{4 - 2 C} 4$ is edge -odd graceful

Proof: The square $4-2 C_{4}$ is a connected graph with 8 vertices and 12 edges.
The arbitrary labelings of edge- odd graceful of the required graph is obtained as follows.

Figure 7: Edge-odd graceful Graph of 4-2C 4

Theorem 4.1: The square $4-\mathrm{nC}_{4}$ is edge -odd graceful.

Proof: The square $4-\mathrm{nC}_{4}$ is a connected graph with 4 n vertices and $8 \mathrm{n}-4$ edges and the arbitrary labelings for vertices and edges for 4-nC4 are mentioned below

Figure 7: Edge-odd graceful Graph of 4-nC4

Define f: $\mathrm{E}\left(4-\mathrm{nC}_{4}\right) \rightarrow\{1,3, \ldots, 2 \mathrm{q}-1\}$ by
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=2 \mathrm{i}-1, \quad \mathrm{i}=1,2,3, \ldots(8 \mathrm{n}-4) \quad$ Rule (1)
Define $\mathrm{f}_{+}: V(\mathrm{G}) \rightarrow\{0,1,2, \ldots,(2 \mathrm{k}-1)\}$ by
$\mathrm{f}_{+}(\mathrm{v}) \equiv \Sigma \mathrm{f}(\mathrm{uv}) \bmod (2 \mathrm{k})$, where this sum run over all edges through v....... Rule (2)

Thus the induced map f_{+}provides the distinct labels for vertices and also the edge labeling is distinct. Hence the square 4-nC C_{4} is edge odd - graceful.

REFERENCES

1. A.Solairaju and K.Chitra Edge-odd graceful labeling of some graphs " Electronics
2. Notes in Discrete Mathematics Volume 33,April 2009, Pages 15-20
3. A.Solairaju, A.Sasikala, C.Vimala Edge-odd Gracefulness of a spanning tree of Cartesian product of P_{2} and C_{n}, Pacific-Asian Journal of Mathematics, Vol .3, No.1-2. (Jan-Dec.2009) pp:39-42.
4. A.Solairaju, A.Sasikala, C.Vimala Edge-odd Gracefulness of strong product of C_{3} and C_{n}, communicated to serials publications, New Dehli.
