Edge-odd Gracefulness of Product of P₂ and C_N

Dr. A. Solairaju Associate Professor of Mathematics Jamal Mohamed College, Tiruchirapalli – 620 020. Tamil Nadu, India.

> A.Sasikala and C. Vimala Assistant Professors (SG), Department of Mathematics, Periyar Maniammai University, Vallam Thanjavur – Post.. Tamil Nadu, India.

ABSTRACT

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) $\rightarrow \{1, 3, ..., 2q-1\}$ so that induced map f₊: V(G) $\rightarrow \{0, 1, 2, 3, ..., (2k-1)\}$ defined by f₊(x) $\equiv \Sigma f(x, y) \pmod{2k}$, where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge- odd gracefulness of strong product of P₂ and C_n is obtained.

Key words: , Graceful Graphs, Edge-odd graceful labeling, Edge-odd Graceful Graph

1. INTRODUCTION

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A. Solairaju et.al. [2009, 2010] proved that the square $2-nC_4$, $3-nC_4$, $4-nC_4$ are edge -odd graceful.

Section-2: Edge-odd graceful labeling of strong product of $P_2 \boxtimes C_n$

Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge uv is assigned the label |f(u) - f(v)| and the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge-odd graceful graph: A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ so that induced map f+: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ defined by f+(x) = Σ f(x, y) (mod 2k), where the vertex x is incident with other vertex y and $k = \max \{p, q\}$ makes all the edges distinct and odd. Hence the graph G is edge- odd graceful.

Theorem 2.1: The strong product of $P_2 \boxtimes C_n$ is edge-odd graceful.

Proof: The strong product of the path P_2 and the circuit C_n is given and the arbitrary labelings for vertices and edges for $P_2 \boxtimes C_n$ are mentioned below.

Figure 1: Edge-odd graceful Graph of P₂ 🗵 C_n

To find edge-odd graceful, define by f: $E(P_2\boxtimes C_n\;)\to\{1,\,3,\,...,\,2q\text{-}1\}$

Case i . $n \equiv 0 \pmod{5}$

Case ii. $n \equiv 2 \pmod{5}$

 $\begin{array}{l} f(e_1)=5,\,f(e_2)=3,\,f(e_3)=1,\,f(e_4)=7\\ f(e_i)=2i\text{-}1,\,\,i=5,6,7,\ldots,(2n+2),\,(3n+3),\,(3n+4),\,\ldots,\,5n\\ f(e_{3n+3\cdot i})=f(e_{2n+2})\text{+}2i,\,\,\,i\text{=}1,2,\ldots,n \qquad Rule\ (2) \end{array}$

Case iii. $n \equiv 4 \pmod{5}$

Case iv. $n \equiv 3 \pmod{5}$

For $n \equiv 1 \pmod{5}$, the arbitrary labelings for vertices and edges for $P_2 \boxtimes C_n$ are mentioned below

Figure 2: Edge-odd graceful Graph of P₂ X C_n

Case iv. $n \equiv 1 \pmod{5}$

 $\begin{array}{ll} f(e_i)=2i\text{-}1,i=1,2,3,\ldots,5n & Rule~(5). \\ \text{Define}~f_+:~V(G) \rightarrow \{0,~1,~2,~\ldots,~(2k\text{-}1)\}~by~f_+(v) \equiv \Sigma~f(uv)~mod[2k] \\ \text{where this sum run over all edges through } v~\ldots Rule~(6). \\ \text{Hence the} \\ \text{induced map}~f_+~provides the distinct labels for vertices and also the} \\ \text{edge labeling is distinct. Hence the strong product graph}~P_2 \text{ and } C_n \text{ is} \\ \text{edge odd - graceful.} \end{array}$

Example 2.1: The strong product graph $P_2 \boxtimes C_5$ is edge-odd graceful.

Proof: The strong product graph $P_2 \boxtimes C_5$ is a connected graph with 10 vertices and 25 edges, where $n \equiv 0 \pmod{5}$. Due to the rules (1) & (6) in theorem 2.1, edge odd-graceful labelings of the required graph is obtained as follows.

Figure 3: Edge-odd graceful Graph of P₂ Z C_n

Example 2.2: The strong product graph $P_2 \boxtimes C_7$ is edge-odd graceful.

Proof: The strong product graph $P_2 \boxtimes C_7$ is a connected graph with 14 vertices and 35 edges, where

 $n \equiv 2 \pmod{5}$. Due to the rules (2) & (6) in theorem 2.1, edge oddgraceful labelings of the required graph is obtained as follows. (Figure 3: Edge-odd graceful Graph of $P_2 \boxtimes C_5$)

Figure 4: Edge-odd graceful Graph of P₂ Z C₇

Example 2.3: The strong product graph $P_2 \boxtimes C_9$ is edge-odd graceful.

Proof: The strong product graph $P_2 \boxtimes C_9$ is a connected graph with 18 vertices and 45 edges, where

 $n \equiv 4 \pmod{5}$. Due to the rules (3) & (6) in theorem 2.1, edge odd-graceful labelings of the required graph is obtained as follows.

Figure 5: Edge-odd graceful Graph of P₂ X C₉

Example 2.4: The strong product graph $P_2 \boxtimes C_8$ is edge-odd graceful.

Proof: The strong product graph $P_2 \boxtimes C_8$ is a connected graph with 16 vertices and 40 edges, where $n \equiv 3 \pmod{5}$. Due to the rules (4) & (6) in theorem 2.1, edge odd-graceful labelings of the required graph is obtained as follows.

Figure 6: Edge-odd graceful Graph of P₂ Z C₈

Example 2.5: The strong product graph $P_2 \boxtimes C_8$ is edge-odd graceful.

Proof: The strong product graph $P_2 \boxtimes C_6$ is a connected graph with 12 vertices and 30 edges, where $n \equiv 1 \pmod{5}$. Due to the rules (5) & (6) in theorem 2.1, edge odd-graceful labelings of the required graph is obtained as follows.

Figure 7: Edge-odd graceful Graph of P₂ 🗵 C₆

REFERENCES

- 1. A.Solairaju, A.Sasikala, C.Vimala, Gracefulness of a spanning tree of the graph of product of P_m and C_n , The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136
- A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs "Electronics Notes in Discrete Mathematics Volume 33, April 2009, Pages 15 - 20
- 3. A.Solairaju, A.Sasikala, C.Vimala, edge-odd gracefulness of the square 2-nC₄, 3-nC₄, 4-nC₄, (communicated to Serial Publications, New Dehli)