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ABSTRACT 
A (p, q) connected graph is edge-odd graceful graph if there exists an 

injective map f: E(G) → {1, 3, …, 2q-1} so that induced map f+: 

V(G) → {0, 1,2, 3, …, (2k-1)}defined by f+(x)  f(x, y) (mod 2k), 

where the vertex x is incident with other vertex y and k = max {p, q} 

makes all the  edges distinct and odd.  In this article, the Edge- odd 

gracefulness of  strong product of P2 and Cn  is obtained. 
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1. INTRODUCTION 
A.Solairaju and K.Chitra  [2009] obtained edge-odd graceful labeling 

of some graphs related to paths. A. Solairaju et.al. [2009, 2010] 

proved that the square 2-nC4, 3-nC4, 4-nC4 are edge -odd graceful. 

 

Section-2: Edge-odd graceful labeling of strong 

product of P2  Cn 
Definition 2.1: Graceful Graph: A function f of a graph G is called 

a graceful labeling with m edges, if f is an injection from the vertex 

set of G to the set {0, 1, 2, …, m} such that when each edge uv is 

assigned the label │f(u) – f(v)│ and the resulting edge labels are 

distinct. Then the graph G is graceful. 

 

Definition 2.2: Edge-odd graceful graph:  A (p, q) connected 

graph is edge-odd graceful graph if there exists an 
injective map f: E(G) → {1, 3, …, 2q-1} so that induced 

map f+: V(G) → {0, 1, 2, …,(2k-1)} defined by f+(x)   f(x, 
y) (mod 2k), where the vertex x is incident with other 
vertex y and  k = max {p, q} makes all the edges distinct and 

odd.  Hence the graph G is edge- odd graceful. 

 

Theorem 2.1: The strong product of P2Cn is edge-odd graceful. 

 

Proof:   The strong product of the path  P2 and the  circuit Cn is given 

and the arbitrary labelings for vertices and edges for P2Cn are 

mentioned below. 

                       

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Edge-odd graceful Graph of P2  Cn 

 
To find edge-odd graceful, define by f: E(P2  Cn ) → {1, 3, …, 2q-

1}  

Case i . n  0 (mod 5) 

 

 

f(e1) = 5, f(e2) =1, f(e3) = 7, f(e4) = 3                                          

f(ei) = 2i-1,     i = 5,6,7,…5n                           Rule(1) 

 

Case ii.  n 2(mod 5) 

f(e1) = 5, f(e2) = 3, f(e3) = 1, f(e4) = 7 

f(ei) = 2i-1,  i = 5,6,7,…,(2n+2), (3n+3), (3n+4), …, 5n             

f(e3n+3-i) = f(e2n+2)+2i,   i=1,2,……n               Rule (2) 

 

Case iii.  n  4 (mod 5) 

f(e1) = 5, f(e2) = 7, f(e3) = 1, f(e4) = 3 

f(ei) = 2i-1, i = 5,6,7,…,(2n+2), (3n+3), (3n+4), …, 5n              

f(e3n+3-i) = f(e2n+2)+2i,   i=1,2,……n               Rule (3)        

                                                                                       

 Case iv.  n  3 (mod 5) 

f(e1) = 7, f(e2) = 1, f(e3) = 3, f(e4) = 5 

f(ei) = 2i-1, i = 5,6,7,…,(2n+2), (3n+3), (3n+4), .., 5n                 

f(e3n+3-i) = f(e2n+2)+2i,   i=1,2,……n   Rule (4) 

 

For n  1 (mod 5), the arbitrary labelings for vertices and 

edges for P2Cn are mentioned below  

 

e2 
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Figure 2: Edge-odd graceful Graph of P2  Cn 

 
Case iv.  n  1 (mod 5) 

 

f(ei)=2i-1,i=1,2,3,…,5n                   Rule (5).                                                 

Define f+: V(G) → {0, 1, 2, …, (2k-1)} by f+(v)   f(uv) mod[2k]  

where this sum run over all edges through v …Rule (6). Hence the 

induced map f+ provides the distinct labels for vertices and also the 

edge labeling is distinct. Hence the strong product graph P2 and Cn is 

edge odd - graceful. 

 

 

Example 2.1: The strong product graph  P2  C5 is edge-odd 

graceful. 

 

Proof: The strong product graph  P2  C5 is a connected graph with 

10 vertices and 25 edges, where n  0 (mod 5). Due to the rules (1) & 

(6) in theorem 2.1, edge odd-graceful labelings of the required graph 

is obtained as follows. 

 
 

 

 

 

 

 

 

 

 
Figure 3: Edge-odd graceful Graph of P2  Cn 

 
Example 2.2: The strong product graph  P2  C7 is edge-odd 

graceful. 

 

Proof: The strong product graph  P2  C7 is a connected graph with 

14 vertices and 35 edges, where  

 

n  2 (mod 5). Due to the rules (2) & (6) in theorem 2.1, edge odd-

graceful labelings of the required graph is obtained as follows.   

(Figure 3: Edge-odd graceful Graph of P2  C5) 

 

 

 

 

 

 

 

                                 

                          

 

 

 

 
 

 

 

Figure 4: Edge-odd graceful Graph of P2  C7 

 

Example 2.3: The strong product graph  P2  C9 is edge-odd 

graceful. 

 

Proof: The strong product graph  P2  C9 is a connected graph with 

18 vertices and 45 edges, where  

n  4 (mod 5). Due to the rules (3) & (6) in theorem 2.1, edge odd-

graceful labelings of the required graph is obtained as follows. 

 

 

 

 

 

 

 

 

 

                                                              
 

Figure 5: Edge-odd graceful Graph of P2  C9 
 

 

Example 2.4: The strong product graph  P2  C8 is edge-odd 

graceful. 

Proof: The strong product graph  P2  C8 is a connected graph with 

16 vertices and 40 edges, where  n  3 (mod 5).  Due to the rules (4) 

& (6) in theorem 2.1, edge odd-graceful labelings of the required 

graph is obtained as follows.                                                              

  

   

 

 

 

 

 

   
Figure 6: Edge-odd graceful Graph of P2  C8 

 

Example 2.5: The strong product graph  P2  C8 is edge-odd 

graceful. 

 

Proof: The strong product graph  P2  C6 is a connected graph with 

12 vertices and 30 edges, where n  1 (mod 5). Due to the rules (5) & 

(6) in theorem 2.1, edge odd-graceful labelings of the required graph 

is obtained as follows.                                                           
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Figure 7: Edge-odd graceful Graph of P2  C6 
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