
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

10

Performance Improvement in Large Graph Algorithms on

GPU using CUDA: An Overview

Swapnil D. Joshi
Student

Department of Computer Engineering and IT,
College of Engineering, Pune, MS, India

Mrs. V. S. Inamdar
Assistant Professor

Department of Computer Engineering and IT,
College of Engineering, Pune, MS, India

ABSTRACT

The basic operations on the graphs with millions of vertices are

common in various applications. To have faster execution of such

operations is very essential to reduce overall computation time.

Today’s Graphics processing units (GPUs) have high

computation power and low price. This device can be treated as

an array of Single Instruction Multiple Data (SIMD) processors

using CUDA software interface by Nvidia. Massively

Multithreaded architecture of a CUDA device makes various

threads to run in parallel and hence making optimum use of

available computation power of GPU. In case of graph

algorithms, vertices of the graphs are processed in parallel by

mapping them to various threads on device. By making

thousands of threads to run in parallel, computation time

required for these algorithms is drastically decreased as

compared to their CPU implementation.

We studied different parallel algorithms for Breadth first search,

all pairs shortest path that are carried out on GPU using CUDA

and make their comparative study with respect to execution time,

data structure used, input data etc. In the paper, we presented

overview of various parallel methods carried out on GPU using

its multithreaded architecture for BFS, APSP by various authors.

General Terms

Parallel computing, Graph Algorithms, SIMD architecture, GPU,

CUDA.

Keywords
BSP mode, Level Synchronization.

1. INTRODUCTION

1.1 Need of Performance Improvement in

large graph algorithms
Graphs are very popular data representations in various fields

including scientific and engineering domains. In some problems

large graphs with millions of vertices are to be processed. These

operations have found applications in various problems like map

of the countries, routing analysis, transportation, robotics, VLSI

chip layout, network traffic analysis, data mining, and plant &

facility layout etc. Basic operations on the graphs such as

Breadth first search, all pairs shortest path, max flow/min cut

algorithm plays important role in such problems. Sequential

methods for such graph operations are available but they are not

that efficient with respect to computing time and use of available

resources [1]. It is always essential to have faster execution of

such operations to reduce overall complexity of whole problem

[4]. Also, to store the graph with millions of vertices in a file and

processing of such a large file in efficient manner is a

challenging task. For this purpose, various data structures are

studied and compared for their performance with respect to space

complexity.

1.2 Graphics Processing Unit (GPU)
GPU stands for Graphics Processing Unit and is a single chip

processor used primarily for 3D applications. It creates lighting

effects and transforms objects every time a 3D scene is redrawn.

These are mathematically-intensive tasks, which otherwise,

would put quite a strain on the CPU. Lifting this burden from the

CPU frees up cycles that can be used for other jobs. GPU

provides high computational power with low costs. More

transistors can be devoted for data computation rather than data

caching & flow control as in case of CPU. With multiple cores

driven by very high memory bandwidth, today's GPUs offer

incredible resources for both graphics and non-graphics

processing.

1.3 Compute Unified Device Architecture

(CUDA)
CUDA stands for Compute Unified Device Architecture and is a

new hardware and software architecture for computation on

GPU. This architecture is by Nvidia and it makes use of

maximum of the computation power provided by GPU by

deploying massive multithreading. Also, GPU and CUDA can be

used in association to design and implement any general purpose

application on GPU, thus making it GPGPU (General purpose

graphics processing unit). CUDA provides an API that’s an

extension to the C programming language for a minimum

learning curve. It also provides general DRAM memory

addressing for more programming flexibility i.e. both scatter and

gather memory operations. It features a parallel data cache or on-

chip shared memory with very fast general read and writes

access, that threads use to share data with each other [2]. GPU

and CUDA collectively used to achieve parallelism in great

sense.

The overview of the graph algorithms on GPU using CUDA

presented here is organized as follows. Section 2 is about the

various possible representations of the graphs. The details of

CUDA hardware and software models are described in section 3.

Then types of graphs used in experiments and some

terminologies related to the topic are covered. Section 6 talks

about the Parallel implementation of the breadth first search.

Subsequent sections contain overview of parallel single source

shortest path and all pairs shortest path.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

11

2. GRAPH REPRESENTATION ON CUDA

DEVICE
It is very important to have efficient way of storing the complex

graphs, as it involves millions of vertices. We have various data

structures those can be used to store such graphs. J. Hyvonen et

al. [5] have studied these data structures in depth for CPU. It is

very much useful in case of sparse representations.

In case of GPU, it does not allow the use of user defined data

structures very well. So it is very challenging job to represent the

data as an efficient data structure [6]. With the help of CUDA,

GPU can be programmed with better data representations as

CUDA treats memory as a general array and hence can support

efficient data structures. For the graph G (V, E), adjacency

matrix is popular data structure as it is very simple to represent

and to understand. However in case of large graphs with millions

of vertices, it is not the good choice as space requirement is

O(V²). Also in case of sparse graphs, it has various entries zero.

Adjacency list is a better choice for storing the graphs. Vibhav

Vinit et al.[7] have suggested the use of packed adjacency list

representation for the graphs. It consists of two lists for vertex

and the edges in the graph. Every vertex in the vertex list points

to its starting edge list in the packed adjacency list of edges. This

uses feature of CUDA as it supports uneven array size. This

approach is very efficient with respect to space complexity as it

requires just O(V+E) memory size.

3. COMPUTE UNIFIED DEVICE

ARCHITECTURE (CUDA)
Compute Unified Device Architecture (CUDA) is a new software

and hardware architecture for issuing and managing

computations on the GPU as a data parallel computing device

(SIMD) without the need of mapping them to a graphics API.

CUDA has been developed by Nvidia and to use this architecture

requires an Nvidia GPU. It is available for the GeForce 8 series

GPUs, Tesla Solutions and some Quadro Solutions.

3.1 Hardware Model
CUDA Device is collection of various multiprocessors with m

processors each (figure 1). Each multiprocessor has a Single

Instruction, Multiple Data architecture (SIMD). It has its own

shared memory which is common to all the processors inside it.

The processors within multiprocessors have set of 32-bit

registers, texture and constant memory caches. Texture and

constant caches are read only cached memory space and texture

cache is optimized for texture fetching operations. These

multiprocessors communicate with each other through the device

memory, which is available to all processors of the

multiprocessors.

Figure 1: CUDA Hardware Model

3.2 Programming Model
A CUDA program is organized into a host program, consisting of

one or more sequential threads running on the host CPU, and one

or more parallel kernels that are suitable for execution on a

parallel processing device like the GPU.As a software interface,

CUDA API is a set of library functions which can be coded as an

extension of the C language. A compiler generates executable

code for the CUDA device.

Figure 2: CUDA Software Model

As a software interface, CUDA API is a set of library functions

which can be coded as an extension of the C language. A

compiler generates executable code for the CUDA device. For

the programmer, the CUDA model is a collection of threads

running in parallel. A warp is a collection of threads that can run

simultaneously on a multiprocessor. The warp size is fixed for a

specific GPU, 32 on present GPUs. The programmer decides the

number of threads to be executed. If the number of threads is

more than the warp size, they are time-shared internally on the

multiprocessor. A collection of threads (called a block) is

mapped to a multiprocessor at a given time (figure 2). A thread

block is a batch of threads that can cooperate together by

efficiently sharing data through some fast shared memory and

synchronizing their execution to coordinate memory accesses.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

12

 Multiple blocks can be assigned to a multiprocessor and their

execution is time-shared. A single computation on a device

generates a number of blocks. A collection of all blocks in a

single computation is called a grid. All threads of the blocks

mapped to a multiprocessor divide its resources equally amongst

themselves. Each thread and block is given a unique ID that can

be accessed within the thread during its execution. Each thread

executes a single instruction set called the kernel. GPU is a co-

processor to the CPU and needs to be initiated by the CPU.

3.3 Extensions to C programming language
CUDA supports various programming languages like C, C++,

JAVA with JCUDA. It provides some extensions to program on

CUDA device i. e. Kernel code. Some examples include:
 Function type qualifiers to specify whether a function is

executed on the device or the host and whether it is callable

from the device or the host. E.g. _device_, _global_, _host_

 Variable type qualifiers to specify the memory space in which

a variable resides. E.g. _device_, _constant_, _shared_.

 A directive to be given while the execution of a kernel and

which specifies the execution model viz. the grid and block

dimensions.

 Variables to specify grid and block dimensions and block and

thread IDs. E.g. griddim, threadIDx, blockdim, blockIDx,

warpsize.

Also, CUDA provides some additional libraries such as

following.

 The CUBLAS library: CUBLAS is an implementation of

BLAS (Basic Linear Algebra Subprograms) on top of the

CUDA driver. It provides functions to create matrix and

vector objects in GPU memory and process them; uploading

the final result in host memory in the end.

 The CUFFT library: CUFFT provides a simple interface for

computing parallel Fast Fourier Transforms on the GPU.

4. TYPES OF GRAPHS
There are three major categories of the graphs. Experiments on

these graphs are carried out. Random Graphs are the graphs in

which there is not much difference in the degrees of the vertices

in the graph as well as large number of vertices have similar

degrees. A slight variation from the average degree results in a

drastic decrease in number of such vertices in the graph. In case

of R-MAT / Scale Free graphs, a large number of vertices have

small degree with a few vertices having large degree. This model

best approximates large graphs found in real world. For these

graphs, it is difficult to predict the load on processors at

particular time and processing activities in two iterations may

vary greatly. Due to its small degree distribution over most

vertices and uneven degree distribution these graphs expand

slowly in each iteration and exhibit uneven load balancing on the

threads. Therefore these graphs have poor performance even after

applying multithreading as compared to the other graphs.

SSCA#2 graphs are made up of random sized cliques of vertices

with a hierarchical distribution of edges between cliques based

on a distance metric. It is explained by D A Badar et al [9].

There is one more type of graph called grid graphs. In grid

graphs each node has fixed number of neighbors. Therefore the

number of nodes traversed in current level is almost same as

those in previous one.

5. SOME BASIC TERMINOLOGIES
 Heterogeneous programming: The Compute Unified Device

Architecture (CUDA) from Nvidia presents a heterogeneous

programming model where the parallel hardware can be

used in conjunction with the CPU. This provides good

control over sequential flow of execution which was absent

from the earlier GPGPU. Serial code executes on the host

while parallel code executes on the device.

 Host and Skeleton: CPU is known as Host. Also, code to be

run on Host as skeleton code. Basically these are the

sequential steps necessary for synchronization of threads

and performed on CPU.

 Device and Kernel: The steps which are specific to the

algorithm we are constructing are to be run on GPU and is

called device code or Kernel.

 Synchronization of the threads: The CUDA hardware can be

seen as a multicore/manycore co-processor in a bulk

synchronous parallel mode when used in conjunction with

the CPU. As we know, there are thousands of vertices to be

processed at a time, so it is very essential to have

synchronization between the threads running in parallel.

 Bulk synchronous parallel model (BSP): CUDA hardware is

used in conjunction with CPU. Synchronization of the

threads is achieved with CPU deciding the barrier for

synchronization. Concurrent computation takes place on

each processing element asynchronously. Processing

elements exchange the data between them if necessary.

Each thread waits for all other threads to finish achieving

synchronization.

6. PARALLEL BREADTH FIRST SEARCH
The Breadth first search (BFS) has tremendous applications in

various areas. These include image processing, space searching,

network analysis, graph partitioning, automatic theorem proving

etc. The BFS problem is, given an undirected, unweighted graph

G(V,E) and a source vertex S, find the minimum number of

edges needed to reach every vertex V in G from source vertex S.

The best time complexity reported for sequential algorithm is

O(V+E).

6.1 BSP mode and Level Synchronization
P. Harish et al. [11] solve the problem using concept of level

synchronization, in which all the vertices at particular level are

processed in parallel. It assigns a thread to every vertex.

Concurrent computation takes place at vertices of current level

and all threads waits for other threads at that level to finish,

treating CUDA device as bulk synchronous parallel model. They

maintained one global cost array Ca of size V, which contains the

number of edges needed to reach that vertex from source vertex.

Also, frontier array Fa contains the vertices at the current level.

Vertices those are present in frontier array updates the costs of

their neighbor vertices with cost of itself plus one. Vibhav et al.

[7] have used vertex compaction process with the help of prefix

sum i. e. deploying threads only for those vertices which are

active. At particular time, only small number of vertices may be

active. Vertex compaction is very useful for removing

unnecessary threads. They carried out experiments on various

types of graphs and compared the results with the best sequential

implementation of BFS.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

13

It shows lower performance on low degree graphs. In such case,

parallelism is achieved at small extent i. e. very small number of

vertices is processed at a time in linear graphs. Due to linear

nature of R-MAT graphs, expansion of frontier is very slow at

every level and it results in low multithreading. Also, uneven

load balancing is one reason for poor performance of such

graphs. Authors report 5 times speed up in case of R-MAT

graphs. In case of random graphs and SSCA#2 graphs, expansion

of frontier is somewhat uniform and enough number of threads is

deployed at every level. This results in speed up of nearly 15

times over their CPU implementation [7].

6.2 Lockstep BFS for grid graphs
The method mentioned in 6.1 utilizes an array of flags of length

V, as number of nodes traversed at each depth level is arbitrary

and not depends upon the number of nodes in previous level. On

the other hand, there is one type of graphs in which every vertex

has fixed number of neighbors, called grid graphs. During graph

traversal, single direction is traversed at a time. Such traversal

guarantees that particular vertex is traversed from a single vertex

only. Also, number of nodes traversed in certain depth level is

nearly same as that in its preceding depth level. Mohamed

Hussein et al. [16] have implemented this method, called

Lockstep BFS for grid graphs. They concluded when traversing

nodes at depth level k from nodes at depth level k-1, applying the

lockstep BFS traversal technique allows us to use an array of

flags whose size is equal to the number of nodes in level k-1,

which is much smaller than V, total number of vertices in the

graph.

7. PARALLEL SINGLE SOURCE

SHORTEST PATH
The single source shortest path (SSSP) problem is, given

weighted graph G(V, E, W) with all weights positive, find the

smallest combined weights of the edges between other vertices in

the graph and given source vertex. Dijkstra’s sequential

algorithm requires computation time of O (VlogV+E).

Parallel implementations of SSSP using CUDA are carried out by

some researchers. P. Harish et. al. [11] and Vibhav et. al [7]

reports good speed up over CPU counterpart of SSSP. Unlike

BFS, level synchronization is not possible in case of SSSP due to

the reason that cost may change later on discovering less

weighted path between the vertices. Vibhav et al. [7]

demonstrate multithreading to great extent. They maintains two

arrays, one Boolean array as Execution mask Ma which contains

the vertices currently getting processed and cost array Ca which

holds the smallest weight of the path between source vertex and

other vertices. The vertices present in Ma updates the cost of all

its neighbors. Here two costs are compared, one of which is the

current cost of the neighbor and other is cost of current plus the

weight between the current and neighbor vertices. The minimum

of these two is appended to cost array Ca. The whole procedure

ends when execution mask gets empty or no further changes in

cost array.

During this process, simultaneous updating may take place at

same location in Ca. This problem is resolved by maintaining the

alternate array Cua and using atomic functions provided by

CUDA. These functions are used to resolve the concurrent writes

by allowing only one thread to write at certain place at a time.

P. Harish et. al. [11] consider the graphs with degree per vertex

6-7 and weights ranging from 1-10 and report speed up of 70

times over CPU version of SSSP. Scale free graphs have large

degree at some vertices, which results in more lookups to the

device memory and hence computation time gets increased. Due

to this, like BFS, SSSP also shows lower performance for scale

free graphs than random graphs. Vibhav et al [7] experimented

on bigger graphs with average degree 12 and weights up to 100

on GTX 280 GPU. As compared to boost sequential

implementation of SSSP, they gain speed up of 20. R-MAT

graphs perform badly as compared to other types of graphs.

Vertex compaction process is used here also and observed 40%

improvement in computation time than normal parallel version in

case of R-MAT graphs.

8. PARALLEL ALL PAIRS SHORTEST

PATH
In all pairs shortest path problem (APSP), given an weighted

graph G(V, E, W) with positive weights, aim is to find out least

weighted path from every vertex to every other vertex. Floyd-

Warshall’s, the well known APSP algorithm requires O(V³)

computing time and O(V²) space. Due to this large space

requirement, it is not feasible to handle the large graphs with

millions of vertex on GPU as memory size restrictions.

8.1 APSP using SSSP
This approach suggests implementing APSP by running Single

source shortest path (SSSP) for every vertex. P. Harish et al. [11]

have carried out this approach. They reported that SSSP requires

O (V) space. They considered large graphs with average degree

of vertex as 6-7, maximum degree as thousand and average

weights 1-10 in magnitude. This SSSP implementation carried

out on GPU NVIDIA Geforce 8800 GTX is 70 times faster than

its CPU counterpart. Also, for random graphs SSSP timings are

comparable to those for BFS. They conclude that FW algorithm

on GPU requires single O(V) operation looping over O(V²)

threads which creates extra overhead for context switching the

threads whereas their approach of APSP using SSSP requires

only O(V) threads.

8.2 Tiled FW algorithm
The problem of restrictions on the graph size due to available

memory is solved by Katz et al. [12]. Their approach handles

graph size larger than on-board memory available to the GPU by

breaking the graphs in nontrivial on-chip shared memory cache

efficient manner to increase performance and is shared memory

cache efficient. They implemented blocked (tiled) formulation of

the algorithm. The basic idea is to revise original FW algorithm

into a hierarchically parallel method that can be distributed, in

parallel, across multiple processors on the GPU and further on

multiple GPUs. Matrix is partitioned in sub blocks of equal size

and processed. This technique provides 60-130X speedup over a

standard CPU solution O(V³). The implementation of this

method on NVIDIA QUADRO FX 5600 is 5-6.5 times faster

than previous approach by P. Harish et al. [11].

8.3 Matrix multiplication method
Vibhav et al [7] have used adjacency matrix for cache efficient

graph representation. The two methods are designed and

implemented for APSP and they reported better results than any

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

14

of the previous work for the algorithm. Like Katz et al. sub

matrices of a matrix are processed but in different ways. This

technique provides two new ideas as follows:

 Streaming blocks: It is assumed that CPU memory is large

enough for storing large graphs. Adjacency matrix present in

the CPU memory is divided into the rectangular row and

column sub matrices. These are streamed into the host global

memory.

 Lazy minimum evaluation: For sparse graphs the connections

are few and the other entries of the adjacency matrix are

infinity. For the entry infinity, all operations on that can be

skipped without missing correctness and hence skipping all

paths involving a non-existent edge. It is reported that this

method results in speed up of 2 to 3 times.

As compared to Katz et al. this matrix based method proves to be

2-4 times faster for larger graphs.

8.4 Gaussian Elimination based method
The Gaussian elimination based APSP by Buluc et al [13] based

on idea of splitting each APSP step recursively into 2 APSPs

involving graphs of half the size. The base case is when there are

16 or fewer vertices, Floyd’s algorithm is applied. It is fastest

among the all approaches for APSP. However, introducing the

Lazy minimum evaluation to that approach provides further

speed up of 2-3 times, according to Vibhav et. Al [7].

9. CONCLUSION AND FUTURE WORK
In the paper we presented overview of the graph algorithms like

BFS, APSP those are implemented on GPU using CUDA in

parallel. For storing the input graph and the results of the

algorithms, it is very important to use efficient data structure. As

compared to the CPU implementation of such graphs, GPU

implementation achieves very great speed up. It is very important

how programmers make optimum use of multithreading that can

be possible on CUDA device.

We think it is also useful to print the subsequent vertices those

found in the shortest path for any algorithm. Also, sometimes

there is need of first n shortest paths in the graph i. e. first

shortest, second shortest etc. In future, we will be working on

these two requirements in graph algorithms.

10. REFERENCES
[1] The Ninth DIMACS implementation challenge on shortest

pathshttp://www.dis.uniroma1.it/ challenge9/

[2] NVIDIA. NVIDIA CUDA Programming Guide 2.0

[3] http://www.nvidia.com/object/cudadevelop.html/www.gpgp

u.org

[4] S. Nagendran, M. Ashrafulla, J. Bagga, 2008 “Assessment

of SIMD programming on graphics card”.

[5] J. Hyvonen, J. Saramaki, and K. Kaski, 2008 Efficient data

structures for sparse network representation. Int. J. Comput.

Math., 85(8):1219-1233.

[6] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha,

2006 Memory model for scientific algorithms on graphics

processors. In SC '06: Proceedings of the 2006 ACM/IEEE

conference on Supercomputing, page 89.

[7] Vibhav Vineet and P. J. Narayanan, 2009 “Large graph

algorithms for massively multithreaded architecture”

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos, 2004 R-MAT: A

recursive model for graph mining. In In SIAM International

Conference on Data Mining.

[9] D. A. Bader and K. Madduri, 2006 Designing

Multithreaded Algorithms for Breadth-First Search and st-

connectivity on the Cray MTA- 2. In ICPP, pages 523-530

[10] Paulius Micikevicius, 2004 General parallel computation on

commodity graphics hardware: Case study with the all pairs

shortest paths problem. In PDPTA, pages 1359–1365.

[11] P. Harish and P. J. Narayanan, 2007 Accelerating Large

Graph Algorithms on the GPU Using CUDA. In HiPC,

volume 4873 of Lecture Notes in Computer Science, pages

197-208,

[12] G. J. Katz and J. T. Kider, Jr. , 2008 All pairs shortest-paths

for large graphs on the GPU. In GH '08: Proceedings of the

23rd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pages 47-55.

[13] A. Buluc, J. R. Gilbert, and C. Budak, 2008 Gaussian

Elimination Based Algorithms on the GPU. Technical

report, November.

[14] D. A. Bader and K. Madduri, 2006 GTgraph: A Synthetic

Graph Generator Suite. Technical report.

[15] P. J. Narayanan, 1993 Processor Autonomy on SIMD

Architectures. In International Conference on

Supercomputing, pages 127-136.

[16] M. Hussein, A. Varshney, and L. Davis, 2007 On

Implementing Graph Cuts on CUDA. In First Workshop on

General Purpose Processing on Graphics Processing Units.

