
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

23

A Strategic Approach for Risk Analysis of Production
Software Systems

Sumithra A
Research Scholar

Madurai Kamaraj University
Madurai, India

Ramaraj E
Technology Advisor

Madurai Kamaraj University
Madurai, India

Sree Ram Kumar T
Research Scholar

Madurai Kamaraj University
Madurai, India

ABSTRACT
Defects in production software can incur heavy

damage to a business operation; yet most current

approaches to software security assessment focus

primarily on new code development. The paper aims

at introducing a strategic approach for reducing the

operational security risk. The familiar top-down

structured development process used by internal

development groups is totally inappropriate for risk

analysis of production software systems. And

generally the cost of finding and fixing a bug in a

production system is regarded as too high. So there is

an imperative necessity to focus on approaches

tailored specifically for production software systems

which is the one attempted here.

Keywords
Risk, Production Software System, Security Risk,

Vulnerability, Software Components

1. INTRODUCTION
Insecure software is a major factor in internal/external

fraud. This seemingly obvious observation is

graphically borne out in a study that analyzed a

sample of 167 customer data breaches in 2005.[1]

Based on data provided by the Privacy Rights

Clearinghouse,[2] the study classified each event

according to attack method, attacker and vulnerability

exploited. A conservative estimate showed that 49%

of the events exploited software defects as shown in

the below table. Theoretically we can mitigate half of

the risk by removing software defects in existing

applications. The question, which we will answer

later, is how. A

Table 1. Various Vulnerabilities

Vulnerability type Total Percentage

Accidental

disclosure by email

5 3.0%

Human weakness

of system

users/operators

13 7.8%

Unprotected

computers / backup

media

67 40.1%

Software defects

maliciously

exploited

82 49.1%

Grand Total 167 100.0%

The Carnegie Mellon Software Engineering Institute

(SEI) reports that 90 percent of all software

vulnerabilities are due to well-known defect types (for

example using a hard coded server password or

writing temporary work files with world read

privileges). All of the SANS Top 20 Internet Security

vulnerabilities are the result of “poor coding, testing

and sloppy software engineering” [3].

1.1 Do organizations really want to

improve production software quality?
Let’s examine commitment to quality at three levels in

an organization: end-users, development managers and

top executives. Users are conditioned to accept

unreliable software on their desktop and development

managers are inclined to accept faulty software as a

tradeoff to meeting a development schedule.

Executives, while committed to quality of their own

products and services, do not find security breaches

sufficient reason to become security leaders with their

enterprise systems because:

a.They usually receive conflicting proposals for new

information security initiatives with weak or missing

financial justifications.

b.The recommended security initiatives often disrupt

the business. [4]

1.2 How relevant are firewalls, anti-

virus and anti-spyware to reducing

operational risk?
IT security products are used to defend the

organization rather than as a means of improving

understanding and reducing operational risk. Today’s

defense in depth strategy is to deploy multiple tools at

the network perimeter such as firewalls, intrusion

prevention and malicious content filtering. The

defense-focus is primarily on outside-in attacks,

despite the fact that the majority of attacks on

customer data and intellectual property are inside out.

The notion of trusted systems inside a hard perimeter

has practically disappeared with the proliferation of

Web services, SSL VPN and convergence of

application transport to HTTP.

A reactive tool such as a firewall cannot protect

exploitation of production software defects and black-

box application security that relies on checklists of

vulnerabilities is no replacement for in-depth

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

24

understanding of specific source code vulnerabilities.

We must conclude that traditional IT security products

can do little to mitigate the risk due to vulnerabilities

in buggy software.

2. COST EFFECTIVE DEFECT

REDUCTION FOR PRODUCTION

SOFTWARE
It is rare to see systematic defect reduction projects in

production software running in the enterprise,

apparently, if it were easy, everyone would be doing

it. So what makes it so hard?

1.The familiar top-down structured development

processes (including Extreme Programming) used by

internal development groups are totally inappropriate

for risk analysis of production software systems.

2.The cost of finding and fixing a bug in a production

system is regarded as too high.[5]

3.The application developers and IT security teams

don’t usually talk to each other. The larger the

organization, the more they lose when information

gets lost in the cracks.

We can meet these challenges in a cost-effective way

by establishing three core principles:

1.Use a risk analysis process that is suitable for

production software systems. Collect data from all

levels in the organization that touch the production

system and classify defects for risk mitigation

according to standard vulnerability and problem types.

2.Provide executives with financial justification for

defect reduction. Quantify the risk in terms of assets,

software vulnerabilities, and the organization’s current

threats.

3.Require the development and IT security teams to

start talking. Explicit communications between

software developers and IT security can be facilitated

by an online knowledge base and ticketing tool that

provide an updated picture of well-known defects and

security events.

This paper examines the first principle in more detail.

3. RISK ANALYSIS FOR

PRODUCTION SOFTWARE
The process identifies, classifies and evaluates

software vulnerabilities in order to recommend cost-

effective countermeasures. The process is iterative and

its steps can run independently, enabling any step to

feed changes into previous steps even after partial

results have been attained.

Figure 1

Continuous review of findings is key to success of the

project. For example, an end-user may point-out fatal

flows in an order entry form to the VP engineering

during the Validate Findings step and influence the

results in the Classify Vulnerabilities and Build the

threat model steps.

3.1. Set scope

The first step is to determine scope of work in terms of

business units and assets. Focus on a particular

business unit and application functions will improve

the ability to converge quickly. The process will also

benefit from executive level sponsorship that will need

to buy into implementation of the risk mitigation plan.

1. SET SCOPE

Select a business unit,

business functions
Set Time Schedule,

Participants

2. IDENTIFY BUSINESS
ASSETS

Decompose business unit

into data and functions at
risk

3. IDENTIFY SOFTWARE
COMPONENTS

Map Application functions

into business assets,
Decompose to software

components at risk

4. CLASSIFY

VULNERABILITIES
Compute CVSS Scores

Assign software problem

type classification

5. BUILD THE THREAT
MODEL

Identify Threats

Valuate Assets, Map
Vulnerabilities to threats

6. BUILD THE RISK

MITIGATION PLAN
Specify Counter Measures

for vulnerable components

Calculate prioritized risk
mitigation plan

7. VALIDATE FINDINGS
Validate the current findings

with other players in the

enterprise, downgrade low
scoring items, and escalate

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

25

The team members are chosen at a preliminary

planning meeting with the lead analyst and the

project’s sponsor. There will be 4-8 active participants

with relevant knowledge of the business and the

software. The team is guided by expert risk analysts

that have good people skills and patience to work in a

chaotic process.

Figure 2

3.2 Identify business assets
In step 2, the team identifies operational business

functions and their key assets:

This part of the process can be done using wall-charts

as shown in the below figure. The graphic format

helps the team visualize the scope of assets and

estimate potential impact of threats on assets. Business

functions (shaded boxes) are placed on a diagonal

from top left to bottom right as shown in the below

figure. Assets flow clockwise around the diagonal of

business functions.

Team Members

Catalog Sales

Mgr

Web Site Sales

Mgr

Fulfillment

Supervisor

DBA

Ecommerce Lead

CC authorization

prgmr

ERP Analyst

Business Units

Phone/Internet

sales

Internal

Customer

VP Global Sales

Schedule

Kickoff – Jan 4

First iteration – Feb 15

Mgmt Review – Mar 1
Executive Review – Apr

5

Assets

Customer List

Credit Cards

Internal Pricelist

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

26

Figure 3

3.3 Identify software components
After identifying business functions in Identify

business assets, the team now identifies software

components (but doesn’t assess vulnerabilities) using

two sub-steps:

a.Identify application functions that serve the business

function

b.Decompose application functions to software

components

In order to help build a consistent, reasonably high-

level view of the system, this part of the process can

be done using wall-charts as shown in the below

figure. Application functions (shaded boxes) are

placed on a diagonal from top left to bottom right as

shown in the below figure. Decomposed components

flow clockwise around the diagonal of application

functions.

Order Details

Customer Details

Credit Card

Details

Customer Orders

Order Entry

Order Fulfillment

Order Tracking Work Order

Master Schedule

Bill of materials

Process load

scheduling

Production Scheduling

New Work Orders

Work In Progress
Tracking

Finished goods tracking

Manufacturing Process Control

Process Engineering Specs

Process Control Application

Statistical Process Control

Finished Goods

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

27

Figure 4

3.4. Classify the software

vulnerabilities.
CVSS[6] scores are computed for each component

identified in the Identify software

components step. In addition to the CVSS score, we

collect an additional field, the CLASP [7] problem

type category, for example “Use of hard-coded

password”.

The knowledge base supporting the process contains a

baseline of classified software vulnerabilities and

evolves over time as the team classifies new

vulnerabilities. Various source code scanners may also

be used in this step, for example – FindBugs to find

problems in Java source code.

Shipping form

Customer login

form

Secure Shopping

Cart

Order Entry

Order Header

Line Items
Terms and

Conditions

Email Order Status

Order Tracking

Module

Update Delivery

Terms

Shipper XML

Interface

Order Tracking

New Sales Orders Entry

Partial Shipment update

Final Delivery Update

Order Fulfillment

Receive finished goods from

factory

Update Sales Order Status

Update Sales Order

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

28

Figure 5

3.5. Build the threat model
The team now populates the PTA (Practical Threat

Analysis) threat model.

Assets collected in the Identify business assets step are

assigned a financial value.

Threats are named and classified as to their probability

of occurrence and damage levels. Vulnerabilities that

were collected in the Classify the vulnerabilities step

are associated with threats

3.6 Build the risk-mitigation plan

In step 6, the team specifies countermeasures for

vulnerabilities found in the software components and

records them in the PTA data model. While the best

countermeasure for a problem is fixing it, in reality

there may not be documentation and the programmers

who wrote the code are probably in some other job.

This means that other means may be required, such as

code wrappers or application proxies. The possible

types of countermeasures are Retain, Modify and Add

as seen in the below figure:

●Retain the existing component (leave the defects in

place) or,

Base Metric Group

Temporal Metric Group

Environmental Metric
Group

Impact Bias

Access

Complexity

Authentication

Access Vector

Confidentiality

Impact

Integrity

Impact

Availability

Impact

Exploitability

Remediation

Level

Report

Confidence

Collateral

Damage
Potential

Target

Distribution

Overall
Vulnerabiliity

Score

Temp

Formula

Env

Formula

Base

Formula

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

29

●Modify the component (fix the defect or put in a

workaround) or,

●Add components (for example call the Global LDAP

directory to authenticate on-line users instead of using

a proprietary customer table).

●Each countermeasure is assigned a cost and

mitigation level. The cost may be a combination of

fixed and variable cost in order to describe a one time

cost of fixing a problem and ongoing maintenance

cost.

Figure 6

3.7. Validate findings
This extremely important step validates the current

findings with expert/relevant players in the enterprise.

The objective is to use all means at the disposal of the

team to qualify components and vulnerabilities as to

where (they are in the system), which (assets are

involved), what (they do now and in the past), why

(they perform the way they do) and when (a

component is initialized and activated). Conceptually,

no limits are placed on what questions can be asked.

Users may downgrade low-risk software components

and escalate others for priority attention. They may

add or remove assets from the model and argue

parameters such as probability, asset value, estimated

damage etc. For example, a server-side order

confirmation script that sends email to the customer

may have received a low CVSS score in Classify the

software vulnerabilities. The team can simply decide

to eliminate that vulnerability from the list during

Validate findings.

4. Conclusion and Future Work
In this paper, we presented a strategic approach for

risk management in production software systems.

Attention was paid to the “risk analysis” phase of this

process. More work has to be done with regard to the

second and third phases – viz. providing financial

justification to executives and requiring the IT and

security team to talk to each other. Considering the

tremendous impact such security risks can have on

organizations, the effort required is justifiable.

Risk Level in

financial terms

Modify Component

Validate Query
String as numeric

and no longer than 8

digits

Add Component

Break form into 2
parts – Validate

Order number and

POST back form

Mitigate Threats

Assign Counter
Measures to

vulnerabilities

How much does it
cost?

Refine Mitigation

plan
Drop/Add/Replace

Countermeasures

Risk Reduction

Optimizer
Calculate mitigation

level in financial

terms

Prioritize the list

Total Cost of

Counter Measures

Mitigation Levels

Counter Measures

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.2, November 2010

30

5. References
[1] 2005 Breach Analysis, April 2006

http://www.software.co.il/downloads/breachAnalysis2

005.xls

[2] Privacy Rights Clearinghouse,

http://www.privacyrights.org/

[3] Developing Secure Software, Noopur Davis,

http://www.softwaretechnews.com/stn8-2/noopur.html

[4] Top-down Security”, Alan Paller,

http://infosecuritymag.techtarget.com/articles/1999/pal

ler.shtml

[5] In production, it’s often 100 times more expensive

than finding and fixing the bug during requirements

and design phase”. Barry Boehm, Victor R. Basili,

IEE Computer, 34(1): 135-137, 2001

[6] CVSS (Common Vulnerability Scoring System) is

a standard way to convey vulnerability severity and

help determine urgency and priority of response,

http://www.first.org/cvss/intro/ Vendors such as

Cisco, Symantec and Skype use CVSS to score their

own application vulnerabilities.

[7] CLASP (Comprehensive, Lightweight Application

Security Process),

http://www.owasp.org/index.php/CLASP

