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ABSTRACT 

Data mining or knowledge discovery in databases 

(KDD) is a collection of exploration techniques based on 

advanced analytical methods and tools for handling a large 

amount of information. Mining association rule is a main content 

of data mining research at present, and emphasizes particularly is 

finding the relation of different items in the database. How to 

generate frequent item sets is the key and core. It is an important 

aspect in improving mining algorithm that how to decrease item 

set candidates in order to generate frequent item set effectively. 

Efficient algorithms for mining frequent items etc are 

crucial for mining association rules. Most existing work focuses 

on mining all frequent item sets (FI). However, since any subset 

of a frequent item set also is frequent, it is sufficient to mine only 

the set of maximal frequent item sets (MFI). In this paper we 

study the performance of existing approach, Max-Miner, for 

mining maximal frequent item sets. We have also developed an 

algorithm, called M-fp. We also present experimental results 

which shows that our method outperforms the existing method 

Max-Miner. 
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1. INTRODUCTION 
 Let I={i1, i2, . . . , in} be a set of items , We call 

 X ⊆ I an item set, and we call X a k-item set if the cardinality of 

item set X is k. Let database T be a multi set of subsets of I, and let 

support(X) be the percentage of item set Y in T such that X ⊆ Y . 

Informally, the support of an item set measures how often X 

occurs in the database. If support(X) ≥ minSup , we say that X is a 

frequent item set , and we denote the set of all frequent item sets 

by FI. 

A closed frequent item set is a frequent item set X such that there 

exists no superset of X with the same support count as X. If X is 

frequent and no superset of X is frequent, we say that X is a 

maximal frequent item set, and we denote the set of all maximal 

frequent item sets by MFI.  

 There are basically two types of algorithms to mine 

frequent item sets, breadth first algorithms and depth first 

algorithms. The breadth first algorithms, such as Apriori [1], 

apply a bottom-up level-wise search in the item set lattice. 

Candidate item sets with k+1 items are only generated from 

frequent item sets with k items. For each level, all candidate item 

sets are tested for frequency by scanning the database. On the 

other hand, depth first algorithms such as FP-growth [2] search 

the lattice bottom-up in depth first way. From a singleton item set 

{i}, successively larger candidate sets are generated by adding one 

element at a time  

The drawback of mining all frequent item sets is that if 

there is a large frequent item set with size l, then almost all 2l 

candidate subsets of the item set might be generated. However, 

since frequent item sets are upward closed, it is sufficient to 

discover only all maximal frequent item sets (MFI) . 

 Bayardo [3] introduces Max-Miner which extends 

Apriori to mine only”long” patterns (maximal frequent item sets). 

To reduce the search space, Max-Miner performs not only subset 

infrequency pruning such that a candidate item set that has an 

infrequent subset will not be considered, but also a “look ahead” 

to do superset frequency pruning. Though superset frequency 

pruning reduces the search time dramatically, Max-Miner still 

needs many passes to get all long patterns. 

 In [4], Burdick, Calimlim, and Gehrke gave an 

algorithm called MAFIA to mine maximal frequent item sets. This 

method uses a bitmap representation, where the count of an item 

set is based on the column in the bitmap (the bitmap is 

called”vertical bitmap”). As an example, the bit vectors for items 

B, C, and D are 111110, 011111, and 110110, respectively. To 

get the bit vectors for any item set, we only need to apply the bit 

vector and operation⊗ on the bit vectors of the items in the item 

set. For above example, the bit vector for item set BC is 

111110⊗011111, which equals 011110, while the bitmap for 

item set BCD can be calculated from the bitmaps of BC and D, 

i.e., 011110 ⊗110110, which is 010110. The count of an item set 

is the number of 1’s in its bitvector. A new strategy is used, called 

PEP. MAFIA is a depth first algorithm. 

 G¨osta Grahne and Jianfei Zhu [5] introduces FpMAX, 

which an extension of the FP-growth method, for mining MFI 

only. During the mining process, an FP-tree (Frequent Pattern 

tree) is used to store the frequency information of the whole 

dataset. To test if a frequent item set is maximal, another structure 

called a Maximal Frequent Item set tree (MFI-tree)  is utilized to 

keep track of all maximal frequent item sets. This structure makes 

Fp-MAX effectively reduce the search time and the number of 

subset testing operations.  
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2. RELATED THEORY 

2.1. FP-tree and FP-growth method 

In the aforementioned FP-growth method [2], a novel data 

structure, the FP-tree (Frequent Pattern tree) is used. The FP-tree 

is a compact data structure for storing all necessary information 

about frequent item sets in a database. Every branch of the FP-tree 

represents a frequent item set, and the nodes along the branch are 

ordered decreasingly by the frequency of the corresponding item, 

with leaves representing the least frequent items. Each node in the 

FP-tree has three fields: item-name, count and node-link, when 

item-name registers which item this node represents, count 

registers the number of transactions represented by the portion for 

the path reaching this node, and node-link links to the next node 

in the FP-tree carrying the same item-name, or null if there is 

none. The FP-tree has a header table associated with it. Single 

items are stored in the header table in decreasing order of 

frequency. Each entry in the header table consists of two fields, 

item-name and head of node-link (a pointer pointing to the first 

node in the FP-tree carrying the item-name).  

Compared with Apriori [1] and its variants which need several 

database scans, the FP-growth method only needs two database 

scans when mining all frequent item sets. In the first scan, all 

frequent items are found. The second scan constructs the first FP-

tree which contains all frequency information of the original 

dataset. Mining the database then becomes mining the FP-tree. 

Figure 1 shows a database example. After the first scan, all 

frequent items are inserted in the header table of an initial FP-tree. 

Figure 2 shows the first FP-tree constructed from the second scan. 

The FP-growth method relies on the following principle: if X and 

Y are two item sets, the support of item set X ∪ Y in the database 

is exactly that of Y in the restriction of the database to those 

transactions containing X. This restriction of the database is called 

the conditional pattern base of X. Given an item in the header 

table, the growth method constructs a new FP-tree corresponding 

to the frequency information in the sub-dataset of only those 

transactions that contain the given item. Figure 3 shows the 

conditional pattern base and the FP-tree for item {p}, this step is 

applied recursively, and it stops when the resulting smaller FP-

tree contains only one single path. The complete set of frequent 

item sets is generated from all single path FP-trees. When adding 

an item i to the existing item set head, we denote the item set 

head∪ i by Z, the path from the parent node of this node (node’s 

item-name is i) to the root node in the head’s FP-tree is called Z’s 

prefix path. Figure 4 shows the prefix paths for item {p}. 

 

 

 

2.2. Max-Miner method 

Bayardo proposed the concept of MFI (Maximal 

Frequent Item sets) and the Max-Miner algorithm for mining only 

MFI [3]. Max-Miner looks only the MFIs, because of that, the 

search space can be reduced. Max-Miner uses a bottom up 

traversal of a database. Max-Miner employs a purely breadth-first 

search of the set-enumeration tree in order to limit the number of 

passes made over the data.  

 The key to an efficient set-enumeration search is the 

pruning strategies that are applied to remove entire branches from 

consideration. Without pruning, a set-enumeration tree search for 

frequent item sets will consider every item set over the set of all 

items. Max-Miner uses pruning based on subset infrequency, as 

does Apriori [1], but it also uses pruning based on superset 

frequency. In Max-Miner each node represent in the set 

enumeration tree let us call it a candidate group. A candidate 

group g consists of two item sets. The first, called the head and 

denoted h (g), represents the item set enumerated by the node. The 

second item set, called the tail and denoted t (g), is an ordered set 

and contains all items not in h (g) that can potentially appear in 

any sub-node. The ordering of tail items reflect how the sub-nodes 

are to be expanded. In the case of a static lexical ordering without 

pruning, the tail of any candidate group is trivially the set of all 

items following the greatest item in the head according to the item 

ordering.  

 Count the support of a candidate group g, means 

compute the support of item sets h(g), h(g) U t(g), and h(g) U {i} 

for all i € t(g). The supports of item sets other than h (g) are used 

for pruning.  

 

 

Candidate group 

– Head: h(g) 

Item set enumerated by the node. 

– Tail: t(g) 

An ordered set and contains all 

items not in h (g) 

    Steps to follow: 

1. Count the support of a candidate group g, and 

also compute the support for h(g), h(g) U t(g) 

and h(g) U {i} for each i in t(g). 

2. If h (g) U t (g) is frequent, then stop 

expanding the node g and report the union as 

frequent item set. 
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3. If h(g) U {i} is infrequent, then remove i from 

all sub nodes (just remove i from any tail of a 

group after g). 

4. Expand the node g by one and repeat the 

same. 

3 . MINING MFI BY M-fp 

Figure 5 shows steps for finding the maximal frequent item sets 

using M-fp method  

 

Figure 5 M-fp Algorithm  

4. EXPERIMENTAL RESULTS 

The experiments are conducted on a Pentium® Dual-core CPU 

E5400 @ 270 GHz with 1.96 GB of RAM running Microsoft 

Windows XP Professional. All code is compiled using Microsoft 

Visual C# 3.5. 

The two algorithms are compared for datasets Market-

basket-data, Stationary-data, Computer shopping data. Figure 6 

and 7 illustrate the running time results of comparing M-fp, 

Max-Miner. 

 

 
Figure 6 Dataset Market-basket-data 

 

 We can see that the M-fp method outperforms the  

Max-Miner method. In the graph shown in Figure 6 x-axis is the 

user-specified minimum support in percent, while the y-axis is the 

algorithms running time in milliseconds. Figure 6 shows the 

running time results of comparing M-fp, Max-Miner on Market-

basket-data. Figure 7 shows the running time results of comparing 

M-fp, Max-Miner on shopping data. 

 

 

Figure 7 Dataset shopping data 

 

Figure 8 shows the running time results of comparing M-fp, Max-

Miner on Stationary-data. 

 

Figure 8 Computer Stationary-data 
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5. CONCLUSIONS 

In this paper we present the two methods for finding 

Maximal frequent item sets, first is Max-Miner method and 

second is FP-tree method. The Max-Miner algorithm for 

mining maximal frequent item set (MFI) looks only for the MFI 

and because of that search space can be reduced.  

The Max-Miner performs not only subset infrequency 

pruning, where a candidate item sets with an infrequent subset 

will not be considered, but also a “look ahead” to do superset 

frequency pruning. But Max-Miner needs several passes of the 

database to find the maximal frequent item sets. 

For FP-tree and the M-fp algorithm method superset 

checking not needed. The FP-tree data structure is used for 

storing frequency information of the original database in a 

compressed form. The FP-tree method finds frequent item sets 

with two database scans. Candidate generation is not required 

for FP-tree method.  
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