
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.3, November 2010

12

Mining Maximal Frequent Item Sets

Dr. S.S. Mantha
Chairman AICTE

Professor.
CAD/CAM Robotics

VJTI
Mumbai, India

Madhuri Rao
M. E .Computer
Engineering

Assistant Professor
TSEC, Bandra (w)
Mumbai-50,India

Ashwini Anil Mane
B. E. Computer

Engineering

Lecturer

TSEC, Bandra (w)

Mumbai-50,India

Anil S. Mane
B.E. EXTC Engineering

Team Leader
Patni Computers Systems

Ltd, Airoli
Navi Mumbai-400708,

India

ABSTRACT

Data mining or knowledge discovery in databases

(KDD) is a collection of exploration techniques based on

advanced analytical methods and tools for handling a large

amount of information. Mining association rule is a main content

of data mining research at present, and emphasizes particularly is

finding the relation of different items in the database. How to

generate frequent item sets is the key and core. It is an important

aspect in improving mining algorithm that how to decrease item

set candidates in order to generate frequent item set effectively.

Efficient algorithms for mining frequent items etc are

crucial for mining association rules. Most existing work focuses

on mining all frequent item sets (FI). However, since any subset

of a frequent item set also is frequent, it is sufficient to mine only

the set of maximal frequent item sets (MFI). In this paper we

study the performance of existing approach, Max-Miner, for

mining maximal frequent item sets. We have also developed an

algorithm, called M-fp. We also present experimental results

which shows that our method outperforms the existing method

Max-Miner.

Keywords

Frequent item sets, closed frequent item sets, Maximal frequent

item sets, Association rules.

1. INTRODUCTION
 Let I={i1, i2, . . . , in} be a set of items , We call

 X ⊆ I an item set, and we call X a k-item set if the cardinality of

item set X is k. Let database T be a multi set of subsets of I, and let

support(X) be the percentage of item set Y in T such that X ⊆ Y .

Informally, the support of an item set measures how often X

occurs in the database. If support(X) ≥ minSup , we say that X is a

frequent item set , and we denote the set of all frequent item sets

by FI.

A closed frequent item set is a frequent item set X such that there

exists no superset of X with the same support count as X. If X is

frequent and no superset of X is frequent, we say that X is a

maximal frequent item set, and we denote the set of all maximal

frequent item sets by MFI.

 There are basically two types of algorithms to mine

frequent item sets, breadth first algorithms and depth first

algorithms. The breadth first algorithms, such as Apriori [1],

apply a bottom-up level-wise search in the item set lattice.

Candidate item sets with k+1 items are only generated from

frequent item sets with k items. For each level, all candidate item

sets are tested for frequency by scanning the database. On the

other hand, depth first algorithms such as FP-growth [2] search

the lattice bottom-up in depth first way. From a singleton item set

{i}, successively larger candidate sets are generated by adding one

element at a time

The drawback of mining all frequent item sets is that if

there is a large frequent item set with size l, then almost all 2l

candidate subsets of the item set might be generated. However,

since frequent item sets are upward closed, it is sufficient to

discover only all maximal frequent item sets (MFI) .

 Bayardo [3] introduces Max-Miner which extends

Apriori to mine only”long” patterns (maximal frequent item sets).

To reduce the search space, Max-Miner performs not only subset

infrequency pruning such that a candidate item set that has an

infrequent subset will not be considered, but also a “look ahead”

to do superset frequency pruning. Though superset frequency

pruning reduces the search time dramatically, Max-Miner still

needs many passes to get all long patterns.

 In [4], Burdick, Calimlim, and Gehrke gave an

algorithm called MAFIA to mine maximal frequent item sets. This

method uses a bitmap representation, where the count of an item

set is based on the column in the bitmap (the bitmap is

called”vertical bitmap”). As an example, the bit vectors for items

B, C, and D are 111110, 011111, and 110110, respectively. To

get the bit vectors for any item set, we only need to apply the bit

vector and operation⊗ on the bit vectors of the items in the item

set. For above example, the bit vector for item set BC is

111110⊗011111, which equals 011110, while the bitmap for

item set BCD can be calculated from the bitmaps of BC and D,

i.e., 011110 ⊗110110, which is 010110. The count of an item set

is the number of 1’s in its bitvector. A new strategy is used, called

PEP. MAFIA is a depth first algorithm.

 G¨osta Grahne and Jianfei Zhu [5] introduces FpMAX,

which an extension of the FP-growth method, for mining MFI

only. During the mining process, an FP-tree (Frequent Pattern

tree) is used to store the frequency information of the whole

dataset. To test if a frequent item set is maximal, another structure

called a Maximal Frequent Item set tree (MFI-tree) is utilized to

keep track of all maximal frequent item sets. This structure makes

Fp-MAX effectively reduce the search time and the number of

subset testing operations.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.3, November 2010

13

2. RELATED THEORY

2.1. FP-tree and FP-growth method

In the aforementioned FP-growth method [2], a novel data

structure, the FP-tree (Frequent Pattern tree) is used. The FP-tree

is a compact data structure for storing all necessary information

about frequent item sets in a database. Every branch of the FP-tree

represents a frequent item set, and the nodes along the branch are

ordered decreasingly by the frequency of the corresponding item,

with leaves representing the least frequent items. Each node in the

FP-tree has three fields: item-name, count and node-link, when

item-name registers which item this node represents, count

registers the number of transactions represented by the portion for

the path reaching this node, and node-link links to the next node

in the FP-tree carrying the same item-name, or null if there is

none. The FP-tree has a header table associated with it. Single

items are stored in the header table in decreasing order of

frequency. Each entry in the header table consists of two fields,

item-name and head of node-link (a pointer pointing to the first

node in the FP-tree carrying the item-name).

Compared with Apriori [1] and its variants which need several

database scans, the FP-growth method only needs two database

scans when mining all frequent item sets. In the first scan, all

frequent items are found. The second scan constructs the first FP-

tree which contains all frequency information of the original

dataset. Mining the database then becomes mining the FP-tree.

Figure 1 shows a database example. After the first scan, all

frequent items are inserted in the header table of an initial FP-tree.

Figure 2 shows the first FP-tree constructed from the second scan.

The FP-growth method relies on the following principle: if X and

Y are two item sets, the support of item set X ∪ Y in the database

is exactly that of Y in the restriction of the database to those

transactions containing X. This restriction of the database is called

the conditional pattern base of X. Given an item in the header

table, the growth method constructs a new FP-tree corresponding

to the frequency information in the sub-dataset of only those

transactions that contain the given item. Figure 3 shows the

conditional pattern base and the FP-tree for item {p}, this step is

applied recursively, and it stops when the resulting smaller FP-

tree contains only one single path. The complete set of frequent

item sets is generated from all single path FP-trees. When adding

an item i to the existing item set head, we denote the item set

head∪ i by Z, the path from the parent node of this node (node’s

item-name is i) to the root node in the head’s FP-tree is called Z’s

prefix path. Figure 4 shows the prefix paths for item {p}.

2.2. Max-Miner method

Bayardo proposed the concept of MFI (Maximal

Frequent Item sets) and the Max-Miner algorithm for mining only

MFI [3]. Max-Miner looks only the MFIs, because of that, the

search space can be reduced. Max-Miner uses a bottom up

traversal of a database. Max-Miner employs a purely breadth-first

search of the set-enumeration tree in order to limit the number of

passes made over the data.

 The key to an efficient set-enumeration search is the

pruning strategies that are applied to remove entire branches from

consideration. Without pruning, a set-enumeration tree search for

frequent item sets will consider every item set over the set of all

items. Max-Miner uses pruning based on subset infrequency, as

does Apriori [1], but it also uses pruning based on superset

frequency. In Max-Miner each node represent in the set

enumeration tree let us call it a candidate group. A candidate

group g consists of two item sets. The first, called the head and

denoted h (g), represents the item set enumerated by the node. The

second item set, called the tail and denoted t (g), is an ordered set

and contains all items not in h (g) that can potentially appear in

any sub-node. The ordering of tail items reflect how the sub-nodes

are to be expanded. In the case of a static lexical ordering without

pruning, the tail of any candidate group is trivially the set of all

items following the greatest item in the head according to the item

ordering.

 Count the support of a candidate group g, means

compute the support of item sets h(g), h(g) U t(g), and h(g) U {i}

for all i € t(g). The supports of item sets other than h (g) are used

for pruning.

Candidate group

– Head: h(g)

Item set enumerated by the node.

– Tail: t(g)

An ordered set and contains all

items not in h (g)

 Steps to follow:

1. Count the support of a candidate group g, and

also compute the support for h(g), h(g) U t(g)

and h(g) U {i} for each i in t(g).

2. If h (g) U t (g) is frequent, then stop

expanding the node g and report the union as

frequent item set.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.3, November 2010

14

3. If h(g) U {i} is infrequent, then remove i from

all sub nodes (just remove i from any tail of a

group after g).

4. Expand the node g by one and repeat the

same.

3 . MINING MFI BY M-fp

Figure 5 shows steps for finding the maximal frequent item sets

using M-fp method

Figure 5 M-fp Algorithm

4. EXPERIMENTAL RESULTS

The experiments are conducted on a Pentium® Dual-core CPU

E5400 @ 270 GHz with 1.96 GB of RAM running Microsoft

Windows XP Professional. All code is compiled using Microsoft

Visual C# 3.5.

The two algorithms are compared for datasets Market-

basket-data, Stationary-data, Computer shopping data. Figure 6

and 7 illustrate the running time results of comparing M-fp,

Max-Miner.

Figure 6 Dataset Market-basket-data

 We can see that the M-fp method outperforms the

Max-Miner method. In the graph shown in Figure 6 x-axis is the

user-specified minimum support in percent, while the y-axis is the

algorithms running time in milliseconds. Figure 6 shows the

running time results of comparing M-fp, Max-Miner on Market-

basket-data. Figure 7 shows the running time results of comparing

M-fp, Max-Miner on shopping data.

Figure 7 Dataset shopping data

Figure 8 shows the running time results of comparing M-fp, Max-

Miner on Stationary-data.

Figure 8 Computer Stationary-data

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.3, November 2010

15

5. CONCLUSIONS

In this paper we present the two methods for finding

Maximal frequent item sets, first is Max-Miner method and

second is FP-tree method. The Max-Miner algorithm for

mining maximal frequent item set (MFI) looks only for the MFI

and because of that search space can be reduced.

The Max-Miner performs not only subset infrequency

pruning, where a candidate item sets with an infrequent subset

will not be considered, but also a “look ahead” to do superset

frequency pruning. But Max-Miner needs several passes of the

database to find the maximal frequent item sets.

For FP-tree and the M-fp algorithm method superset

checking not needed. The FP-tree data structure is used for

storing frequency information of the original database in a

compressed form. The FP-tree method finds frequent item sets

with two database scans. Candidate generation is not required

for FP-tree method.

6. REFERENCES

[1] R. Agarwal, T. Imielinski, and A. Swami, “Mining Association

rules between Sets of Items in Large Databases”, Proc. ACM

SIGMOD International Conference on Management of Data

(SIGMOD’93), Washington, D.C.,USA, pp. 2007.

[2] G. Grahne, and J.F. Zhu, “Fast Algorithms for Frequent Item set

Mining Using FP-Trees,” IEEE Transactions on Knowledge and

Data Engineering, pp. 1347-1362, Oct 2005.

[3] R.J. Bayardo, “Efficiently Mining Long Patterns from

Databases,” Proc. ACM-SIGMOD Int’l Conf. Management of

Data, pp. 85-93, 1998.

[4] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu,

“MAFIA: a maximal frequent itemset algorithm,” IEEE

Transactions on Knowledge and Data Engineering, pp. 1490–

1504, Nov 2005.

[5] G. Grahne and J.F. Zhu, “High Performance Mining of Maximal

Frequent Item sets”, Proc. SIAM Int’l Conf. High Performance

Data Mining, pp. 135−143, 2003.

[6] Lisheng Ma, Huiwen Deng, “Fast Algorithm for mining Maximal

frequent Item sets”, First International symposium on Data,

Privacy and E-Commerce, pp. 86– 91, Nov 2007.

[7] Bo Liu, Jiuhui Pan “Graph-based Algorithm For mining Maximal

Frequent Item sets”, Forth International conference on Fuzzy

Systems and Knowledge discovery (FSKD2007).

[8] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without

Candidate Generation,” Proc. ACM-SIGMOD Int’l Conf.

Management of Data, pp. 1-12, May 2000.

[9] G. Grahne and J.F. Zhu, “High Performance Mining of Maximal

Frequent Item sets”, Proc. SIAM Int’l Conf. High Performance

Data Mining, pp. 135−143, 2003.

