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ABSTRACT 
Clustering has been recognized as an important and valuable 

capability in the data mining field. Instead of finding clusters in 

the full feature space, subspace clustering is an emergent task 

which aims at detecting clusters embedded in subspaces. Most of 

previous works in the literature are density-based approaches, 

where a cluster is regarded as a high-density region in a subspace. 

However, the identification of dense regions in previous works 

lacks of considering a critical problem, called “the density 

divergence problem” in this thesis, which refers to the 

phenomenon that the region densities vary in different subspace 

cardinalities. Without considering this problem, previous works 

utilize a density threshold to discover the dense regions in all 

subspaces, which incurs the serious loss of clustering accuracy 

(either recall or precision of the resulting clusters) in different 

subspace cardinalities. To tackle the density divergence problem, 

in this thesis, we devise a novel subspace clustering model to 

discover the clusters based on the relative region densities in the 

subspaces, where the clusters are regarded as regions whose 

densities are relatively high as compared to the region densities in 

a subspace. Based on this idea, different density thresholds are 

adaptively determined to discover the clusters in different 

subspace cardinalities. Due to the infeasibility of applying 

previous techniques in this novel clustering model, we also devise 

an innovative algorithm, referred to as DENCOS (DENsity 

Conscious Subspace clustering), to adopt a divide-and-conquer 

scheme to efficiently discover clusters satisfying different density 

thresholds in different subspace cardinalities. Another approach 

for subspace clustering in high dimensional data is proposed using 

Genetic Approach. The GAs work with a population of 

individuals representing abstract representations of feasible 

solutions. Each individual is assigned a fitness that is a measure of 

how good solution it represents. The better the solution is, the 

higher the fitness value it gets. The population evolves towards 

better solutions. The evolution starts from a population of 

completely random individuals and iterates in generations. In each 

generation, the fitness of each individual is evaluated. Individuals 

are stochastically selected from a current population (based on 

their fitness), and modified by means of operators mutation and 

crossover to form a new population. It is capable of optimizing 

the number of clusters for tasks with well formed and separated 

clusters. As validated by our extensive experiments on retail data 

set, GENETIC can discover the clusters in all subspaces with high 

quality, and the efficiency of GENETIC outperforms previous 

works using DENCOS.  
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Density Conscious Subspace Clustering For High Dimensional 
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1. INTRODUCTION 

CLUSTERING has been recognized as an important and valuable 

capability in the data mining field. For high-dimensional data, 

recent research have reported that traditional clustering techniques 

may suffer from the problem of discovering meaningful clusters 

due to the curse of dimensionality. Specifically, the curse of 

dimensionality refers to the phenomenon that as the increase of 

the dimension cardinality, the distance of a given point x to its 

nearest point will be close to the distance of x to its farthest point. 

Due to the loss of the distance discrimination in high dimensions, 

discovering meaningful, separable clusters will be very 

challenging, if not impossible. A common approach to cope with 

the curse of dimensionality problem for mining tasks is to reduce 

the data dimensionality by using the techniques of feature 

transformation and feature selection. The feature transformation 

techniques, such as principal component analysis (PCA) and 

singular value decomposition (SVD), summarize the data in a 

fewer set of dimensions derived from the combinations of the 

original data attributes. However, the transformed 

features/dimensions have no intuitive meaning anymore and thus 

the resulting clusters are hard to interpret and analyze. On the 

other hand, the feature selection methods reduce the data 

dimensionality by trying to select the most relevant attributes from 

the original data attributes. In such way, only a particular 

subspace1 is selected to discover the clusters. However, in many 

real data sets, clusters may   be embedded in varying subspaces, 

and thus in the feature selection approaches the information of 

data points clustered differently in varying subspaces is lost. 

Motivated by the fact that different groups of points may be 

clustered in different subspaces, a significant amount of research 

has been elaborated upon subspace clustering, which aims at 

discovering clusters embedded in any subspace of the original 

feature space. The applicability of subspace clustering has been 

demonstrated in various applications, including gene expression 

data analysis, E-commerce, DNA microarray analysis, and so 

forth. 

We deal with one particular task of data analysis – clustering. Its 

goal is partitioning of a given data set into subsets (called 

clusters), so that data in each subset share some common trait 

(based on some defined distance or similarity/dissimilarity 

measure). The need for clustering techniques arises in many 

fields, including machine learning, data mining, pattern 
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recognition, image analysis, and bioinformatics. Various 

clustering algorithms are available in current statistical or machine 

learning software. The most commonly used algorithms are 

represented by the k-means algorithm and several variants of 

Kohonen’s Self Organising Maps. Comparison of available 

statistical techniques and neural network based algorithms can be 

found in our previous work. Main drawbacks of the mentioned 

algorithms are their sensitivity to an initial setting (typically 

random initialisation) and necessity for the user to determine the 

number of clusters. 

SUBSPACE CLUSTERING 

We adopt the grid-based approach to discover subspace clusters, 

where the data space is partitioned into a number of non-

overlapping rectangular units by dividing each attribute into δ 

equal-length intervals. Consider the projection of the data set in a 

k-dimensional subspace. A "k-dimensional unit" u is defined as 

the intersection of one interval from each of the k attributes. Let 

count(u) denote the number of data points contained in unit u. 

Note that the units in the same subspace cardinalities have the 

same size, and therefore we can use the count values to 

approximate the densities of the units in the same subspace 

cardinalities. Thus, the k-dimensional clusters can be discovered 

by first identifying the k-dimensional dense units, and then 

grouping the connected ones into clusters. Two k-dimensional 

units u1, u2 are connected if they have a common face or if there 

exists another k-dimensional unit u3 such that both u1 and u2 are 

connected to u3. 

For identifying dense units, we propose to use different density 

thresholds for different subspace cardinalities. Let τ k denote the 

density threshold for the subspace cardinality k, and let N be the 

total number of data points. In addition, an user input parameter α, 

called the unit strength factor, is introduced for specifying how 

dense a unit would be identified as a dense one. Then, we define 

the density threshold τ k as: 

 

When the data are uniformly distributed in a k-dimensional 

subspace, the number of data points in each of the δk 

kdimensional units in this subspace will be N/δk, i.e. the average 

unit density. In this scenario, there are no clusters discovered 

because everywhere in this space is almost of the same density. As 

the data are more compacted into clusters, the units within clusters 

will be much denser and would have a larger count value than the 

average density. Thus, the input parameter α is introduced such 

that a k-dimensional unit will be identified as a dense one if its 

count value exceeds α times of the average unit density, i.e., N/δk 

. 

In addition, a user parameter, kmax, is introduced for specifying 

the maximal subspace cardinality in such a way that clusters in 

cardinality up to kmax are discovered.  

 

CLUSTERING USING GENETIC ALGORITHM 

 

Genetic algorithms (GAs), as a universal optimization technique, 

represent another tool that can be applied to clustering. Our goal 

is to study an applicability of such approach and compare it to 

standard techniques.  In this thesis we proposes the Clustering 

Genetic Algorithm, based both on techniques used in previous 

attempts at genetic clustering and our ideas. We focus on 

comparison of different genetic operators and investigate the 

possibility of optimising number of clusters. 

 

In this Paper, we devise a novel subspace clustering model, which 

is based on the relative region densities to discover the clusters. In 

our subspace clustering model, we regard the clusters in a 

subspace as the regions which have relatively high densities as 

compared to the average region density in the subspace. To 

discover such clusters, we introduce a novel density parameter for 

users to specify their expected relative rate of the densities of the 

dense regions and the average region density in a subspace. In 

earlier studies an innovative algorithm, referred to as “DENsity 

COnscious Subspace clustering”(abbreviated as DENCOS)has 

been devised, to efficiently discover the clusters satisfying 

different density thresholds in different subspace cardinalities. In 

DENCOS, the mechanism of computing the upper bounds of 

region densities to constrain the search of dense regions is 

devised, where the regions whose density upper bounds are lower 

than the density thresholds will be pruned away in identifying the 

dense regions. We compute the region density upper bounds by 

utilizing a novel data structure, DFP-tree (Density FP-tree), where 

we store the summarized information of the dense regions. Further 

we present a clustering technique based on genetic algorithms – 

Clustering Genetic Algorithm. It is capable of optimizing the 

number of clusters for tasks with well formed and separated 

clusters. 

 

Algorithm. Genetic algorithm. 

The Problem Definition 

The identification of dense regions in previous works lacks of 

considering a critical problem, called “the density divergence 

problem”, which refers to the phenomenon that the region 

densities vary in different subspace cardinalities. Without 

considering this problem, previous works utilize a density 

threshold to discover the dense regions in all subspaces, which 

incurs the serious loss of clustering accuracy (either recall or 

precision of the resulting clusters) in different subspace 

cardinalities. 

A common approach to cope with the curse of dimensionality 

problem for mining tasks is to reduce the data dimensionality by 

using the techniques of feature transformation and feature 

selection. The feature transformation techniques, such as principal 

component analysis (PCA) and singular value decomposition 
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(SVD), summarize the data in a fewer set of dimensions derived 

from the combinations of the original data attributes. However, 

the transformed features/dimensions have no intuitive meaning 

anymore and thus the resulting clusters are hard to interpret and 

analyze. On the other hand, the feature selection methods reduce 

the data dimensionality by trying to select the most relevant 

attributes from the original data attributes. In such way, only a 

particular subspace1 is selected to discover the clusters. However, 

in many real data sets, clusters may be embedded in varying 

subspaces, and thus in the feature selection approaches the 

information of data points clustered differently in varying 

subspaces is lost. 

 

Steps for Clustering the Data using Genetic 

Algorithms 
 

 

• Preprocessing  Dataset  

We first transform the data set by transforming each d-

dimensional data point into a set of d one-dimensional units, 

corresponding to the intervals within the d dimensions it resides 

in. the DFP-tree is constructed to condense the transformed data 

set. In this thesis, we devise the DFP-tree by adding the extra 

feature in the FP-tree for discovering the dense units with 

different density thresholds. In this thesis, we propose to compute 

the upper bounds of unit counts for constraining the searching of 

dense units such that we add extra features into the DFP-tree for 

the computation. The DFP-tree is constructed by inserting each 

transformed data as a path in the DFP-tree with the nodes storing 

the one-dimensional units of the data. The paths with common 

prefix nodes will be merged and their node counts are 

accumulated. 

• Generate and discover  Inherent Dense 

Units 

In this discovering stage, we consider to utilize the nodes 

satisfying the thresholds to discover the dense units. For the nodes 

with node counts satisfying the thresholds for some set of 

subspace cardinalities, we will take their prefix paths to generate 

the dense units of their satisfied subspace cardinalities. However, 

a naive method to discover these dense units would require each 

node to traverse its prefix path several times to generate the dense 

units for the set of satisfied subspace cardinalities. In this thesis, 

we have explored that the set of dense units a node requires to 

discover from its prefix path can be directly generated by utilizing 

the dense units discovered by its prefix nodes, thus avoiding the 

repeated scans of the prefix paths of the nodes. Therefore, by a 

traversal of the DFP-tree, we can efficiently discover the dense 

units for all nodes satisfying the thresholds. 

 

 

• Generate and discover  Acquired Dense 

Units 

In this discovering stage, for the nodes whose node counts do not 

exceed nk, we take the nodes carrying the same one dimensional 

unit together into consideration in discovering the k-dimensional 

dense units. Note that the surplus count  is the maximal 

possible unit count of the units that can be generated from the 

prefix paths of the nodes in , which is the case when a unit can 

be derived from all these paths so that this unit has the unit count 

equal to the summation of the node counts of the nodes in 

. Clearly, if , there will be no k-

dimensional dense units that can be discovered from the prefix 

paths of the nodes in Nk u such that we need not apply the 

discovery process on Nk u to explore the k-dimensional dense 

units. 

• Implement path removal techniques  

In path removal technique, the two steps of the path 

reconstruction process, i.e., path exclusion and path 

reorganization, can correctly prepare the paths for performing the 

path removal. In the step 1, path exclusion, the paths in PathList 

cannot exist in current  conditional pattern base if they do not 

contain the set of one-dimensional units in I, i.e.,  [ B. 

Because ’s conditional pattern base is constructed by 

extracting the prefix paths of the ’s nodes in the DFP-tree 

TreeB, the paths in PathList which do not contain  cannot exist 

in ’s conditional pattern base. The step 2, “path 

reorganization,” in the reconstruction process is to reorganize the 

remaining paths in PathList to the form they should appear in 

’s conditional pattern base. 

 

• Implement Genetic Algorithm 

In this module the Genetic Algorithm is used to a particular 

optimization problem, one has to specify a representation of 

solutions in individuals (coding), fitness function, and typically 

also operators crossover and mutation. 

 

Methodology 

The methodology of DENCOS algorithm focuses on discovering 

the dense units because after the dense units are mined, the 

algorithm follows the procedure to group the connected dense 

units into clusters. In DENCOS, the dense unit discovery is 

performed by utilizing a novel data structure DFP-tree (Density 

FP-tree), which is constructed on the data set to store the 

complete information of the dense units. From the DFPtree, we 

compute the lower bounds and upper bounds of the unit counts 

for accelerating the dense unit discovery, and these informations 

are utilized in a divide-and-conquer scheme to mine the dense 

units. Therefore, DENCOS is devised as a two-phase algorithm 

comprised of the preprocessing phase and the discovering phase. 

The preprocessing phase is to construct the DFP-tree on the 

transformed data set, where the data set is transformed with the 

purpose of transforming the density conscious subspace clustering 

problem into a similar frequent itemset mining problem. Then, in 

the discovering phase, the DFP-tree is employed to discover the 

dense units by using a divide-and-conquer scheme.  

The Genetic Algorithm is used to a particular optimization 

problem, one has to specify a representation of solutions in 
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individuals (coding), fitness function, and typically also operators 

crossover and mutation. 

Crossover 

We have designed two types of crossover operators –one-point 

crossover and combining crossover. The one-point crossover 

works in the same way as the binary one-point crossover, except 

the crosspoint is always generated on the boundary of the blocks. 

This ensures that always the whole centres are exchanged between 

individuals. The combining crossover combines the two solutions. 

It builds the new offsprings centre by centre. For each centre from 

the parent individual it finds the nearest centres from the second 

parent and generates two new centres randomly on the line joining 

the two parent centres. 

Mutation 

The CGA allows five kinds of mutation operators. The first two of 

them – one-point mutation and biased one-point mutation change 

the value of a centre randomly picked. In the former, the selected 

centre is replaced by point chosen at random. The latter moves 

slightly the centre in random direction. The third operator – K-

means mutation – performs several (i.e. typically 2 to 5) steps of 

k-means algorithm. The other two operators – cluster addition and 

cluster removal – modify the number of clusters. The cluster 

addition adds one centre chosen randomly from the data set S, the 

cluster removal deletes one centre chosen at random.  

The former in fact realises adding one cluster, while the latter 

removes one cluster. When these operators are used, the algorithm 

works with individuals of variable length and so not only the 

positions of cluster centres, but also their number (i.e. the number 

of clusters) is optimised. However, the fitness function has to 

reflect it and penalise the individuals with higher number of 

centres. 

Fitness 

The fitness function reflects a quality of individuals, so it should 

correspond to an objective function of an underlying optimisation 

problem. The goal of the CGA is to optimize the clusters quality, 

so the fitness of the individual I = {c1, . . . ,cK} is evaluated as 

 

The fitness function is intended for applications, where the 

number of clusters is given in advance. Otherwise, one had to add 

a term penalising long individuals. Such penalisation is always 

problem dependent and requires user’s assistance. Other cluster 

quality measures may be used as well. In the fitness function 

based on the silhouette is used. To define it, let us consider a 

vector x belonging to a cluster A. Then we define a(x) as the 

average distance between x and other vectors from A. Formally 

 

In addition, the average distance between x and vectors from the 

cluster C (C 6= A) we denote d(x,C). Now, we can define 

 

The silhouette of vector ~x is then given by 

 

It easy to see that s(x) ∈ h−1, 1i and the higher the silhouette the 

better the assignment of x to the cluster A. The fitness function 

based on the silhouette is given by 

 

 It is shown that such fitness function may be capable also of 

determining the right number of clusters. However, the evaluation 

of the silhouette fitness function is quite time expensive and 

requires to store the matrix of distances between all data points. 

To reduce the time and space complexity the mean distances 

between the given point and all points from the particular clusters 

are replaces by the distances between the given point and centres 

of clusters. 

Normalisation 

In the CGA, the algorithm is enhanced by a normalisation step. 

The fitness evaluation of individual I = {c1, . . . , cK} consists of 

two sub steps: 

 

2. Fitness evaluation 
 

The normalisation step improves the convergence of the 

algorithm. Note that it is in fact one iteration of the k-means 

algorithm. 
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Fig. 1 Procedures to discover the inherent dense units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Procedures to discover the acquired dense units. 
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Fig.3. Procedures to Mine dense units. 

 

 

 

 

 

1. Genetic Algorithm implementation pseudocode 

 

  

 

 

 

 

Performance Comparison 

Here we compare the DENCOS with respect to the GENETIC 

approach for the Density Conscious Subspace Clustering for 

High-Dimensional Data. We compare the two algorithms with two 

constraints (i.e) Execution Time and Clustering Accuracy. 

 

The results are tabulated below: 
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(i) Table for execution time of DENCOS and GENETIC 

Algorithm 

 

 

 

 

 

 

 

 

 

 

(ii) Table for Clustering Accuracy of DENCOS and 

GENETIC Algorithm 

No.of. Data 

DENCOS 

(%) Genetic (%) 

1000 15 20 

2000 30 30 

3000 40 35 

4000 45 35 

5000 55 35 

6000 59 35 

7000 58 40 

 

 

As validated by our extensive experiments on retail data set, 

GENETIC can discover the clusters in all subspaces with high 

quality, and the efficiency of GENETIC outperforms previous 

works using DENCOS.  

Time Graph 

 

 

 

 

 

Accuracy Graph 
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DATASET 

SIZE (*1000)  

DENCOS 

(sec) 

GENETIC 

(sec) 

2 500 150 

4 520 175 

6 530 185 

8 560 195 

10 580 200 

12 600 205 

14 640 210 


