
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

28

An Approach for Orphan Detection

Shamsudeen. E
Research Scholar, Karpagam University,

Coimbatore, India

Dr. V. Sundaram

Director, MCA, Karpagam Engg. College,
Coimbatore, India

ABSTRACT
In distributed systems, node crashes [1] and abort processes may

result orphan computations: computations are still active and its

results are no longer needed [5]. Orphans are undesirable

because they waste system resources [3] and may make

inconsistent data [4]. In this paper we present a new approach

called global log and monitor approach to cope up with orphan in

a more effective way. By this method orphans can be killed

immediately after the node crash or abort process happens. No

need to wait until the nodes get rebooted as the other methods

does. This approach deals with the problem of grand orphans [2]

as well. The grand orphans are by orphans who make further

RPCs. i.e., the grand orphans are the result of nested

transactions.

Key words
RPC (Remote procedure call), distributed systems, orphan,

Global log.

1. INTRODUCTION
In distributed system, the communication between two processes

can be implemented by RPC, sending a request by a client to

server to do some computations and waiting for the reply from

the server. Here failure may occur due to communication link

faults or due to node crash. In RPC, if the client requests

something from the server and before gets back the reply from

the server, the client crashes. It makes the computation continue

to execute at server site with no parent process waiting for it.

Such computations are called crash-orphan [1]. Another type of

orphan occurs by aborting the parent process called abort-orphan.

It is happened when a process made an RPC and before getting

back the reply of computations from the server, the parent

process aborted. i.e., the calling process no longer exists.

2. PREVIOUS APPROACHES
Nelson proposed four solutions to cope with the orphan problem

[2]. Extermination [6]: Orphan is killed by looking into log entry

which is made by a client before an RPC is made. After reboot,

the log is checked and the orphan is explicitly killed off. The

problems here are cost of logging per each RPC because of each

client keeps separate log and killing of orphan is done only after

rebooting of client. Furthermore, it may not even work, since

orphans themselves may do RPCs, thus creating grand orphans or

further descendants that are difficult or impossible to locate.

Reincarnation: the way it works is to divide time up into

sequentially numbered epochs. When a client reboots, it

broadcasts a message to all remote computations on behalf of

that the client are killed. The problem with this method is its

broadcast overhead in network and resulted traffic.

Gentle reincarnation: when an epoch broadcast comes in, each

machine checks to see if it has any remote computations, and if

so, tries to locate there owner. Only if the owner cannot be found

is the computation killed

Expiration: In this approach, a deadline shall belong to all RPC.

If the work is not completed within the specified time, then one

new deadline shall be requested. At this point calculation of

deadline is important because different RPCs need different

types of services, hence different amount of time. The problem

with this is that, suppose that orphan locks one or several

resources and a timeout occurs, the process is killed suddenly,

the locked resources are remained as locked for ever.

3. GLOBAL LOG MONITOR APPROACH
In this approach, we introduced a global log mechanism. While

an RPC is being made by a process, it should be logged in the

global log. This global entry keeps details of all RPCs made by

the processes of the distributed system. The global log keeps

updated and if a server makes an RPC, i.e., a nested transaction

[2], it also be logged in the global log. The global log also

monitors the processes which made RPCs so that node crashes

can easily be detected by sending a token message which evolves

round the network and passes through all the clients who send

RPCs. If a node crash occurs, then the global log server

immediately sends a message to corresponding processes where

the orphan process and nested orphans being run and kill them

off. Here, the orphans are killed immediately after the node

crash. No waiting until the crash node get rebooted.

4. HOW IT WORKS?
A token contained the details of process id, and its status -

whether it is alive (1) or not (0). The process id reveals the

process and on which node it runs. The status variable will have

a value „1‟ or „0‟. The value „1‟ indicates the process is very

much alive. i.e., there is neither a node crash nor process abort.

If the status variable value is „0‟, then it says that the process is

not alive. The default value of the status variable is set as „0‟ for

every process. The Global log monitor sends the token to all

processes who made RPCs and each process who made RPC

receives the token and looks for its process id in the data

structure and updates the status variable to „1‟. After this the

token is transmitted to the next process and does the same. If a

process is no more after making RPC because of node crash or

process abort, then its status variable will not be updated, i.e.,

status variable value will remain „0‟. After evolving round, the

token returns back to the monitor. The monitor checks the token

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

29

and finds the failed processes by looking into the data structure.

For example, the data structure r_u_there (3, 0) says that the

process with id 3 is not alive. Then the monitor will find the

orphan process associated with the aborted processes or

processes which run on crashed nodes by looking into the log

entry and send message to kill them. In the above example all the

orphan computations will be killed which are initiated by the

process 3. The sending token, evolving the token round the

nodes, returning the token back to the monitor, and killing of

orphans goes on.

Some instances of token passing between monitor and client are

given below, figures1-3.

Client global log

Figure 1. Token passing between a client and global log

Client global log

Figure 2. Token passing between and Global log and a client

identified as 3 with status variable value set to „1‟

 Client global log

Figure 3. Token passing between Global log and a client

identified as 3 with status variable value set to „0‟.

(In the above diagrams the value of i = 0, 1, 2….n-1 and value of

j = 0 or 1).

A single run of the token is illustrated below in the figure 4. It

illustrates that the process2 and process n-1 are aborted or the

node on which the process run is crashed. Process 0, 1 and n-2

are alive. In this case the computation initiated by the processes

2 and n is to be killed by sending messages to the corresponding

servers where the orphan processes are active. The locations of

the orphans can easily be found by looking into the global log

entry where all the details about the RPC are kept.

r_u_there (0,1)

r_u_there (1,1)

r_u_there (2,0)

..

 r_u_there (n-2,1)

r_u_there (n-1,0)

Figure 4. A sample run of the token message between the global

log and clients numbered 0 to n-1.

5. BENEFITS
No inconsistency of data, because when the node crash or process

abort occurs the killing of orphan processes are done by sending

message by the global log monitor .

No wastage of resources either because killing of orphans occurs

immediately after the crash or abort of processes.

Nested transactions can be easily handled because all nested

transactions are logged when it happens at the global log. The

comparison between the previous approach and the global log

monitor approach is listed in the table1.

Table 1. Comparison between the previous approaches and

global log approach

6. CONCLUSION
In this paper we present the roll back recovery methods for

orphan and we present our method and its advantages over other

methods. By our method the data consistency can be ensured in

an effective way, because the orphans are killed immediately

after the node crash or abort orphan occurs. This method

effectively handles the problem of grand orphans. It is done by

Name of the

method

Advantages Disadvantages

Extermination No mechanism to

handle grand

orphans.

Killing of orphan

is done only after

rebooting the

client; it leads to

inconsistency of

data and wastage

of resources.

Nothing is said

about abort-

orphans.

Reincarnation Overhead due to

broadcast traffic.

Global log All orphans including

grand orphans killed

properly.

Killing is done

immediately after node

crash or abort process,

hence no inconsistency

of data and wastage of

resources.

Message is sent only to

locations where orphans

present, hence no

network traffic.

r_u_there (3,1)

r_u_there (i,j)

r_u_there (3,0)

r_u_there (i,j)

r_u_there (i,j)

r_u_there (i,j)

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

30

making entry in the global log whenever an RPC occurs. Hence

the orphans can be located and killed very easily with no matter

whether it is an orphan or a grand orphan. Since the orphans are

killed immediately after the node crash or abort process occur,

the valuable system resources cannot be wasted either.

7. REFERENCES

[1] M. Jahanshahi, K. Mostafavi, M.S. Kordafshari, M.

Ghlipour, A.T. Haghighat, “ Two new Approaches for

Orphan Detection”, Proc. IEEE 19th International

Conference on Advanced Information Networking and

Applications (ANAI‟05), 2005

[2] Andrew S. Tenenbaum, “Distributed Systems”, Prentice-

Hall, 2003.

[3] Joachim Baumann, Kurt Rothermel, “The Shadow

Approach: An Orphan Detection Protocol for Mobile

Agents”, Institute for Parallel and Distributed High-

Performance Systems, Stuttgart, Germany.

[4] Maurice P. Herlihy, Martin S. Mckendry, “ Timestamp-

Based Orphan Elimination”, IEEE transaction on Software

Engineering, Vol. 15, No.7, 1990

[5] Fabio Panzieri, Santosh K. Shrivastava, “A Remote

Procedure Call Mechanism Supporting Orphan Detection

and Killing” Proc. IEEE Transaction on Software

Engineering, Vol. 14, No. 1, 1988.

[6] Pradeep K. Sinha, “Distributed Operating Systems-

Concepts and Design”, Prentice Hall, 2008.

