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ABSTRACT 
In this paper, we present a novel Frobenius Norm Filter 
(FNF), which is a spatially selective noise filtration 
technique in the wavelet subband domain. We address the 
issue of denoising of images corrupted with additive, 
multiplicative, and uncorrelated noise. The proposed 
nonlinear filter is an adaptive order statistic filter 

functioning on the  space, which modulates itself 
according to the noise level. We have applied the 
comparative Frobenius Norm under a given window set and 

pixel connectivity for removal of noise. We prove the 
existence of a minimizer, and its convergence, of our 
specialized filter. We present a comparative study between 
FNF and certain standard filters, and find that our method 
is capable of reducing large noise blotches, and is an 
adequate preprocess to improving the quality of 
segmentation and facilitating the feature extraction process. 
We obtained better restoration results, especially when the 

images were highly corrupted and having a high noise 
density. 
 

Keywords: Frobenius Norm Filter, Adaptive Order 

Statistics, Class of Noises, Wavelet Subband Domain. 

 

1.   INTRODUCTION 
Wavelet transforms have been utilized effectively for 
image denoising, providing a means to exploit the 
relationships between coefficients at multiple scales [15]. A 

key feature of such denoising techniques is the ability to 
accurately estimate the local variance of the wavelet 
coefficients and the associated noise component. De-
noising of images corrupted by a class of un-correlated 
noise using wavelet techniques is very effective because of 
its ability to capture the energy of a signal in few energy 
transform values [12]. 
Our work was primarily motivated by the desire to devise a 

filtration technique based on Relational Context Spatial 
Domain Analysis for the removal of additive, uncorrelated 
and multiplicative noise. We present a comprehensive 
study of the filtering abilities of the novel Frobenius Norm 
Filter when applied to a class of noises, and compare its 
performance with that of the Adaptive Median Filter and 
the conventional Median Filter. We were especially 
interested in Biorthogonal Filters because they constitute an 

important subclass of regular, perfect reconstruction FIR 
filters that permit the analysis and synthesis filters to be 
linear phase [7]. 
Noise models can be considered as random variables 
characterised by their Probability Density Functions (PDF). 
The proposed filter modulates itself according to the PDF 
associated with each subband of the transformed noisy 

data. We have used the following Noise PDF‟s in our paper 

- Laplace noise, Rayleigh noise, Erlang noise, Poisson 
noise and Speckle noise. Poisson noise is not additive, but 
is image pixel-intensity dependent [9], therefore, it is not 
easy to establish an appropriate statistical model for the 
noise by simply examining the corrupted image. Similar is 
the case of Speckle noise, which is a „multiplicative‟ noise 
[17]. The Rayleigh Density is useful in characterizing noise 
phenomena in range imaging and the Erlang Noise model 
finds its application in laser imaging [2]. 

The data representing the image   
is corrupted individually from a class of noises. Such a 
noise severely degrades the image. In order to restore the 

image, several independent measurements for the same 
scene should be realized, thus yielding a set of data 
 

 

  
where  and  represent the additive, 

multiplicative and un-correlated noise relevant to each 
measurement k of the wavelet decomposition structure. 
Minimization of outlier effects can be accomplished by 

replacing the above mentioned linear form (1), with 

 , such that the PSNR 
value is maximum; subject to optical evaluation [14]. 
Histogram Matching is also accounted for. The Frobenius 
Norm comes from an inner product on the space of all 

matrices in K, where K denotes the field of real or complex 
numbers. The Median defined via this Norm is: 
 

. 

 

with vectors in  and symmetric matrices in , which is 

the convex optimization cone of vectors {

}, while  is the linear space of 

symmetric  real matrices [13]. Arbitration between 

the perpetuation of diagnostic information and noise 
suppression must be balanced in images, so as to reduce 
errors which will propagate in the neighborhood regions. 
 

2.   MATHEMATICAL BACKGROUND 
The Frobenius Norm can be computed from the matrix 

entries   having Eigen Values 

 as: 
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Let  denote an open bounded set of  with 

Lipschitz boundary.  is the subspace of functions 

 such that the following quantity is finite: 
 

, 

 

 
where , assesses closeness to data. 

 endowed with norm  is a 
Banach Space [16]. If , the distributional 

derivative DS is a bounded Radon Measure. Also, if 
, we have  and the given 

embedding is compact. 

Since , we can extend the functional  over 

, hence we have: 

 

 

 
We can then define the sub-differential  as 

 iff for all , we have 

 where  denotes the inner product. What is 

important to us is that one can determine whether a 

function is in  simply by examining its wavelet 

coefficients [13]. For  at the boundary, Neumann‟s 

condition is used. 
Considering the convex optimisation problem and 

introducing n additional variables , we 

rewrite the Frobenius Median (defined earlier) as:  
 

 

 

where e denotes the vector  and each 

constraint is convex because  varies in the convex 

cone  [2]. If the corresponding convex constraint sets 

are , Frobenius Median problem becomes: 

 

 

 

This optimization problem is convex, since the objective 
function is linear, and since the intersection of convex sets 
is convex, too. Since a matrix, X, outside the convex 
assembly is not the minimiser of the Norm, therefore, the 
Frobenius Median of a positive semi-definite symmetric 
matrix is also positive semi-definite. Since the Frobenius 

Norm works on the space, as do the Wavelets [4]; we 

combine both to propose a De-noising algorithm. 
 

3.   DISCUSSION & DESCRIPTION 
The Frobenius Norm works on Eigen values, Eigen vectors, 
and the Matrix Space, which are unique to a given system. 
When applied to a neighbourhood of pixels, the 
connectivity is preserved even when the image is highly 
corrupted. This gives good results even when the window 
size is large. The Frobenius Norm is a sub-multiplicative 
measure, i.e.,  , and is useful for 

adaptive optimization of a denoising algorithm where the 

noise model‟s PDF can be measured within the  

Norm. If the PDF satisfies the Frobenius  norm, i.e., 
the calculated values lie in the closed disc corresponding to 
the Frobenius Theorem, then the FNF replaces the 

corrupted pixel with the value returned by Frobenius Norm. 
This comparative approach lends flexibility to the 
Frobenius Norm Filter and it is successful in tackling 
different class of noises. Most set of noises are compatible 

with the FNF as they are measured either in the  or 

  space. For those that are not, the FNF algorithm 
assumes that the image edges are joined to form a virtual 
surface. Our algorithm essentially involves operations 

between neighbouring pixels. Propriety methods such as 4-
connectivity and 8-connectivity are not used as they lead to 
undesirable topological anomalies [10]. It uses connectivity 
in the spatial domain and exploits the group behaviour of 
the pixel neighbourhood. This Norm is often easier to 
compute than Induced Norms [7]. 
A Matrix acts on certain Vectors, called Eigenvectors, by 
changing only their magnitude, and leaving their direction 

unchanged. It does so by multiplying the magnitude of the 
Eigenvector with a factor, which is either positive or 
negative, called Eigenvalue. The Eigen values of some 

matrices are sensitive to perturbations. Every  space 

consists of equivalence classes of functions and we can 

think of an  function as a density function. A Noise 

Model‟s PDF, measured either in the  or L2 (Ω) 

space, is compatible with the Frobenius (Rn) Norm. 

The central pixel‟s output value is dependent on the local 
statistical information [9]. Frobenius Norm filter adapts 
itself to the local properties, information surrounding a 
central pixel in order to calculate a new pixel value. 
Frobenius Norm filter is much better in preservation of the 
image sharpness, details and edges (sharp contrast 
variation), while suppressing Noise [16]. 

 

3.1   Proposed Algorithm 
Let i,j , for , be the gray 

level of  a true M-by-N image  at the pixel location  , 

and  be the dynamic range of , i.e  

i,j    for all  Denote by  a noisy image. Let 

 be a window of size  centered at , i.e  

 

 

 
and let  be the maximum window size. The 

algorithm tries to identify the noisy pixels  , and then 

replace each  by the Frobenius Norm of the pixels in 

. 

 
Algorithm (FNF): For each pixel location (i, j), do  
 
1. Initialize w=3. 

2. Compute  which are the 

minimum, Frobenius Norm and maximum of the pixel 

values in   , respectively. 

3. Compute . 

4. If   then go to step 5, 

otherwise set i= i+1. 
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5. If  , then  is not a noisy 

candidate, else we replace  by  

 
We denote as x(n,m) a neighborhood of coefficients 
clustered around this reference coefficient. In general, the 

neighborhood may include coefficients from other 
subbands (i.e., corresponding to basis functions at nearby 
scales and orientations), as well as from the same subband. 
In our case, we use a neighborhood of coefficients drawn 
from two subbands at adjacent scales, thus taking 
advantage of the strong statistical coupling observed 
through scale in multiscale representations which are innate 
to the Wavelet Transform [15]. 

 

4.   EXPERIMENTAL RESULTS 
The standard image (N = ) is corrupted with a 

class of different noises ranging from additive, 
multiplicative and impulsive noise. The noisy images were 
then processed by the FNF with the parameter settings 
shown in Table 2. To assess the performance of Frobenius 
Norm Filtering method, it is compared with the Adaptive 
Median Filtering (AMF) method and the conventional 

Median filtering method. See Table 1. for the results, with 
d=0.05 at various level of decompositions (n). To 
benchmark against the best possible performance of the 
filtering method, these parameters have been taken into 
consideration: the PSNR values and the visual quality of 
the image. Refer to Fig. 1 and 2 for illustrations. We also 
used a varying degree of noise density (d) in Fig. 3 to 
showcase the generic results. 

The calculation of the square root of the summation of 
squared distance between the image‟s neighbouring pixels 
is the most computationally intensive procedure in the 
algorithm, but it is unique to an image and is lesser than 
AMF‟s temporal complexity [1] of . The 

conventional median filter and its variants are essentially 
two-phase processes which are difficult to treat analytically 
[3].  
One property of medians, which causes quite an 
inconvenience, is that it is independent of the norm, thereby 

increasing the computationally complexity [6]. Another 
observation is that the performance of the algorithm was 
consistent across the whole test data set. Wavelet 
Transform is applied to smoothen the de-noised image. The 
filter adopted was the „bior6.8‟ filter and the „db2‟ filter 
(see MATLAB), [11]. 
 
 

 

 
Figure 1. (Row-1: From L to R) (a) Original Image (b) 

Image corrupted with Impulse Noise, d=0.1. 
(Row-2: From L to R) (c) Frobenius Norm Filtered (FNF) 

Image (d) Median Filtered Image. 
 

 

 
Figure 2. (Row-1: From L to R) (a) Original Image (b) 

Image corrupted with Impulse Noise, d=0.4. 
(Row-2: From L to R) (c) Frobenius Norm Filtered (FNF) 

Image (d) Median Filtered Image. 
 
 
The experimental evaluation showed that the proposed 
Frobenius Norm Filtering method showed better results 
than the conventional Median Filtering & Adaptive Median 
Filtering methods when the images were highly corrupted 

and having noise density , as can be seen from 

Figure 3. This Filter has been evaluated with several 
standard images, generating successful denoising results. 
Our results show that the novel Frobenius Norm Filter 
yields modest but consistent improvements over all 
competing methods. 
 

Table 1. Comparative performance study of Denoising 
algorithms, in terms of PSNR (dB), for various filtering 

techniques, at d=0.05. 

 

Wavelet  
Type 

                 n 

 
bior6.8 

 
db2 

MEDIAN FILTERING   

n=2 26.57 26.48 

n=3 26.81 26.79 
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n=4 25.67 25.58 

ADAPTIVE MEDIAN 
FILTERING (AMF) 

  

n=2 29.7 29.92 

n=3 29.56 29.77 

n=4 28.32 28.11 

FROBENIUS NORM 
FILTERING (FNF) 

  

n=2 28.56 28.42 

n=3 28.64 28.6 

n=4 27.56 27.59 

 

        
Figure 3. Graphical Plot of AMF and FNF at different 

values of d for bior6.8 
 

It was observed, without any loss of generality and 
independent of the noise model, that the FNF was 
exceptionally good at filtering objects / patches in the 
image whose respective dimensions were approximately 7 
times or more than the dimension of the window size, w. 
Refer Fig. 4 and 5. Compatibility, in terms of de-noising, 

with noises having PDF‟s measurable in the  norm is 

evident from the results. The filter performs well both with 
lower noise levels and higher noise levels. 
 

Table 2. Parameter setting for the Simulations. 
 

Parameters 
 

Noise Type 

 
Mean  

 

Variance  

Laplace Noise 0 0.01 

Erlang Noise 0.50 0.25 

Rayleigh Noise 0.30 0.0215 

Speckle Noise 0 0.04 

Salt & Pepper     d (Noise Density) = 0.5 

 
 

 
Figure 4. (Row-1: From L to R) (a) Original Image (b) 

Image corrupted with Poisson Noise. (Row-2: L to R) (c) 
Frobenius Norm Filtered (d) Median Filtered. 

 

 

 
Figure 5. (Row-1: From L to R) (a) Original Image (b) 

Image corrupted with Rayleigh Noise. (Row-2: L to R) (c) 
Frobenius Norm Filtered (d) Median Filtered. 

 
 
Overall our results confirm that the portrayal of salient 

image features such as edges and contours is consistently 
improved while no perceivable artifacts are introduced. 
Frobenius Norm is based on the analysis of the statistical 
properties of the noise model and does not involve 
calculations more than unlike the AMF. Thus it is 

computationally more efficient than Adaptive Median Filter 
[14]. It gives good results even when the window size is 
large. It is observed that they provide an adaptive edge-
preserving regularity as well. There is no over-smoothing 

of edges or smudging within the periphery of the image. 
Refer Table 3 and 4 for results with a class of noises. 
 
Table 3. Denoising Results (PSNR - dB) for various Noise 

Models at different decomposition levels. 
 

 

PSNR                           
                       

Filter 

PSNR 

Values(dB) 
for n = 2 

PSNR 

Values(dB) 
for n = 3 

PSNR 

Values(dB) 
for n =4 

Salt & Pepper 

Median 17.29 16.99 17.14 

ADP Med. 17.45 17.21 17.34 

Frobenius 17.81 17.99 17.96 
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Erlang Noise 

Median 15.93 15.09 15.01 

ADP Med. 15.54 15.27 15.19 

Frobenius 16.61 16.44 16.31 

Rayleigh Noise 

Median 15.49 15.47 15.46 

ADP Med. 15.59 15.56 15.54 

Frobenius 15.67 15.63 15.57 

 

5.   CONCLUSION 
A comparative performance evaluation has been presented 
between the novel Frobenius Norm Filter and its 
counterparts. A standard image is corrupted with different 

types of Noises, and the denoising effect of the filter is 
measured. The main elements of the algorithm were its 
spatial selectivity, adaptive order statistic nature and 
comparative approach. The FNF‟s reduction in Gibbs‟s 
ringing; rectification to alleviate blurring and the 
unnoticeable loss in spatial resolution render it a strong 
contender among the conventional denoising filters. The 
FNF is a refined approach that shows much promise as a 
pre-filter for reducing noise before performing image 

analysis and feature detection. 
It is further suggested that the Frobenius Norm Filtering 
method be extended to a class of images like SAR, 
Medical, Laser, etc to check the denoising performance, as 
the obtained numerical results in this paper, both in 
objective and subjective terms, are really encouraging and 
the FNF outperform the most recent methods in this field. 
FNF‟s good Localization Characteristic and Protection of 

Sharp Edges will allow the Wavelet Filters to be very 
competitive in Edge Detection, Pattern Recognition, and 
Computer Vision. 
 
Table 4. Denoising Results (PSNR - dB) for various Noise 

Models at different decomposition levels. 
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PSNR                           
                    

Filter 

PSNR 

Values(dB) 
for n = 2 

PSNR 

Values(dB) 
for n = 3 

PSNR 

Values(dB) 
for n =4 

Laplace Noise 

Median 11.48 11.45 11.44 

ADP Med. 11.55 11.53 11.51 

Frobenius 11.59 11.56 11.54 

Speckle Noise 

Median 23.38 23.71 22.99 

ADP Med. 23.15 22.65 22.28 

Frobenius 23.67 23.91 23.39 

Poisson Noise 

Median 26.20 26.41 25.48 

ADP Med. 27.99 27.67 27.09 

Frobenius 28.26 28.43 27.51 


