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ABSTRACT 

Aiming at importance of virtual instruments in the field of Digital 

Signal Processing,  a digital IIR Filter system is developed using 

National Instruments (NI) data  LabVIEW software package. All 

the types of IIR filters like Butterworth filters, Chebyshev filters, 

inverse Chebyshev filters, and Elliptic filters are designed to 

generate their magnitude response and filter coefficients. The 

LabVIEW software is used to develop virtual instrument (VI) that 

includes a front panel and a functional diagram. The VI reads the 

desired parameters of the filters entered by the user on the front 

panel and determines its magnitude response and filter coefficients. 
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1. INTRODUCTION 
The Digital Filter Design problem involves the determination of a 

set of filter coefficients to meet a set of design specifications. 

These specifications typically consist of the width of the passband 

and the corresponding gain, the width of the stopband(s) and the 

attenuation therein; the band edge frequencies (which give an 

indication of the transition band) and the peak ripple tolerable in 

the passband and stopband(s) [7].  The LabVIEW based digital 

filter system involves the concept of Virtual Instrumentation. A 

virtual instrumentation system is computer software that a user 

would employ to develop a computerized test and measurement 

system, for controlling from a computer desktop an external 

measurement hardware device, and for displaying test or 

measurement data collected by the external device on instrument-

like panels on a computer screen.  

Two types of digital filters exist – the IIR (Infinite Impulse 

Response) and the FIR (Finite Impulse Response). IIR filter 

possess certain properties, which make them the preferred design 

choices in numerous situations over FIR filters. Most notably, 

FIR filters (all zero system function) are always stable, with a 

realization existing for each FIR filter. Another feature exclusive 

to FIR filters is that of a linear phase response [9]. 

The design of IIR filters proceeds through a vastly different set of 

steps than those followed by FIR filter design algorithms. The 

design of IIR filters is closely related to the design of analog 

filters, which is a widely studied topic. An analog filter is usually 

designed and a transformation is carried out into the digital 

domain. Two transformations exist – the impulse invariant 

transformation and the bilinear transformation. In this paper, the 

focus is on designing minimum order IIR filters to meet a set of 

specifications using LabVIEW functions. Each design is 

accompanied by a plot of its frequency response, impulse 

response and pole-zero diagrams. 

The responses of IIR filters using LabVIEW are compared with 

the responses from MATLAB with the same specifications. The 

main goal of this paper is to obtain an optimized filter response 

along with the filter coefficients. 

 

2. DIGITAL IIR FILTERS 
In signal processing, the function of a filter is to remove 

unwanted parts of the signal, such as random noise, or to extract 

useful parts of the signal, such as the components lying within a 

certain frequency range. There are two main kinds of filter, 

analog and digital. 

There are some considerable advantages of digital over analog 

filters which make digital filters unavoidable [8]. Some of these 

are as follows 

1. A digital filter is programmable, i.e. its operation is 

determined by a program stored in the processor's 

memory. This means the digital filter can easily be 

changed without affecting the circuitry (hardware). 

2. Digital filters are easily designed, tested and 

implemented on a general-purpose computer or 

workstation. 

3. Unlike their analog counterparts, digital filters can 

handle low frequency signals accurately. As the speed 

of DSP technology continues to increase, digital filters 

are being applied to high frequency signals in the RF 

(radio frequency) domain, which in the past was the 

exclusive preserve of analog technology. 

 

Further digital filters can be classified as FIR (Finite impulse 

response) filters and IIR filters. Finite impulse response (FIR) 

filter, also known as non-recursive filters (in a non-recursive filter 

the current output is calculated solely from the current and 

previous input values). Infinite impulse response (IIR) filter, also 

known as recursive filter (a recursive filter is one which in 

addition to input values also uses previous output values).  IIR 

filters have the advantages of providing the higher selectivity for 

a particular order. IIR filters can achieve the same level of 

attenuation as FIR filters but with far fewer coefficients. 

Therefore, an IIR filter can provide a significantly faster and 

more efficient filtering operation than an FIR filter. FIR filters 

provide a linear-phase response [1]. IIR filters provide a 

nonlinear-phase response. FIR filters are used for applications 

that require linear-phase responses like high quality audio 

systems. IIR filters are used for applications that do not require 

phase information, such as signal monitoring applications. 

Infinite impulse response (IIR) filters operates on current and past 

input values and current and past output values. Theoretically, the 

impulse response of an IIR filter never reaches zero and is an 

infinite response. A recursive filter is one which in addition to 
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input values also uses previous output values [5]. The expression 

for a recursive filter therefore contains not only terms involving 

the input values  ( )L,,, 21 −− nnn xxx   but also terms involving 

the past output values
L,y,y 2n1n −− .                                                 

The following general difference equation characterizes IIR 

filters 
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where jb
the set of forward coefficients is, bN

is the number of 

forward coefficients, ka
is the set of reverse coefficients, and 

aN
is the number of reverse coefficients. Where ix

is the 

current input, jix −  is the past inputs, and kiy − is the past 

outputs. 

From this explanation, recursive filters require more calculations 

to be performed, since there are previous output terms in the filter 

expression as well as input terms. In fact, the reverse is usually 

the case: to achieve a given frequency response characteristic 

using a recursive filter generally requires a much lower order 

filter (and therefore fewer terms to be evaluated by the processor) 

than the equivalent nonrecursive filter. IIR filters might have 

ripple in the passband, the stopband, or both. IIR filters have a 

nonlinear-phase response [9]. 

 Equation 2 defines the direct-form transfer function of 

an IIR filter. 
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A filter implemented by directly using the structure defined by 

Equation 3.12. Where na and nb  are the reverse and forward 

coefficients of the IIR filter. 

Digital IIR filter designs come from the classical analog designs 

and include the following filter types: 

• Butterworth filters 

• Chebyshev filters 

• Chebyshev II filters, also known as inverse Chebyshev and 

Type II Chebyshev filters 

• Elliptic filters, also known as Cauer filters 

The IIR filter designs differ in the sharpness of the transition 

between the passband and the stopband and where they exhibit 

their various characteristics—in the passband or the stopband [9]. 

 

2.1 Butterworth Filters  
Butterworth filters have the following characteristics: 

• Smooth response at all frequencies 

• Monotonic decrease from the specified cut-off frequencies 

• Maximal flatness, with the ideal response of unity in the 

passband and zero in the stopband 

• Half-power frequency, or 3 dB down frequency, that 

corresponds to the specified cut-off frequencies. 

The transfer function for Butterworth filter is given by 
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Where n is the order of filter [6].  

Butterworth filters do not always provide a good approximation 

of the ideal filter response because of the slow rolloff between the 

passband and the stopband. 

 

2.2 Chebyshev Filters 
Chebyshev filters have the following characteristics: 

• Minimization of peak error in the passband 

• Equiripple magnitude response in the passband 

• Monotonically decreasing magnitude response in the stopband 

• Sharper rolloff than Butterworth filters 

Compared to a Butterworth filter, a Chebyshev filter can achieve 

a sharper transition between the passband and the stopband with a 

lower order filter. The sharp transition between the passband and 

the stopband of a Chebyshev filter produces smaller absolute 

errors and faster execution speeds than a Butterworth filter. The 

frequency response of the filter is given by 
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Where ε a parameter of the filter is related to ripple present in 

the passband and 
( )xTN  is the Nth- order Chebyshev 

polynomial defined as 
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2.3 Chebyshev II Filters or Inverse 

Chebyshev Filters 
Chebyshev II filters have the following characteristics: 

• Minimization of peak error in the stopband 
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• Equiripple magnitude response in the stopband 

• Monotonically decreasing magnitude response in the passband 

• Sharper rolloff than Butterworth filters 

Chebyshev II filters are similar to Chebyshev filters. However, 

Chebyshev II filters differ from Chebyshev filters in the 

following ways: 

• Chebyshev II filters minimize peak error in the stopband instead 

of the passband. Minimizing peak error in the stopband instead of 

the passband is an advantage of Chebyshev II filters over 

Chebyshev filters [9]. 

• Chebyshev II filters have an equiripple magnitude response in 

the stopband instead of the passband. 

• Chebyshev II filters have a monotonically decreasing magnitude 

response in the passband instead of the stopband. 

2.4 Elliptic Filters 
Elliptic filters have the following characteristics: 

• Minimization of peak error in the passband and the stopband 

• Equiripples in the passband and the stopband 

Compared with the same order Butterworth or Chebyshev filters, 

the elliptic filters provide the sharpest transition between the 

passband and the stopband, which accounts for their widespread 

use [9]. 

The transfer function is given by                                          
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Where 
)x(U N the Jacobian is elliptic function of order N and 

ε  is a constant related to passband ripple. They provide a 

realization with the lowest order for a particular set of conditions.       

Selection of a Digital filters for any particular application among 

all can be done by considering following points: 

• Does the analysis require a linear-phase response? 

• Can the analysis tolerate ripples? 

• Does the analysis require a narrow transition band? 

 

3. DESIGN OF DIGITAL IIR FILTER 

WITH LABVIEW 
LabVIEW empowers to build own solutions for scientific and 

engineering systems. It gives the flexibility and performance of a 

powerful programming language without the associated difficulty 

and complexity. It gives thousands of successful users a faster 

way to program instrumentation, data acquisition, and digital 

signal processing [2].  By using LabVIEW to prototype, design, 

test, and implement your instrument systems, system 

development time can be reduced and productivity increases by a 

factor of 4 to 10 [10]. 

We design IIR filters by approximating the desired magnitude 

response of a discrete-time system. 

3.1 Designing Butterworth Filter 
Figure 1 shows the block diagram of a VI that returns the 

magnitude response of a butterworth IIR filter. 

 

Figure 1 Butterworth.vi 

The VI in Figure 1 completes the following steps to compute the 

magnitude response, filter coefficients and pole-zero plots to find 

the stability of the filter.  

1. Pass all the parameters (cutoff frequency, stop 

frequency, passband attenuation, stopband attenuation, 

sample rate) with filer type—lowpass, highpass, 



International Journal of Computer Applications (0975 – 8887) 

Volume 10– No.6, November 2010 

26 

bandpass, or bandstop to the Case Structure to calculate 

the order of filter [3]. 

2. Apply these parameters to the Butterworth Coefficient 

Function to generate the coefficients [3]. 

3. Divides these coefficient arrays into two separate parts 

named as forward and reverse coefficients. 

4. Display these forward and reverse coefficients with 

coefficient size. 

5. Pass these coefficients to Complex Polynomial Roots 

VI and apply its output to Complex to Re/Im Function 

to display the pole-zero plots. 

6. Compare the output of Complex to Re/Im Function 

(only for reverse coefficients) with -1 to find out the 

stability. This is shown with the help of LED. If LED is 

red then the system is unstable otherwise stable. 

7. Pass an impulse signal through the butterworth filter 

function. 

8. Apply all the parameters and filter type—lowpass, 

highpass, bandpass, or bandstop to the butterworth filter 

function [3]. 

9. The signal passed out from this function is the impulse 

response of the filter. 

10. Pass the filtered signal to the FFT VI. Use the FFT VI 

to perform a Fourier transform on the impulse response 

and to compute the frequency response of the filter, 

such that the impulse response and the frequency 

response comprise the Fourier transform pair

)f(H)t(h ⇔
. h (t) is the impulse response. H(f) is 

the frequency response [3]. 

11. Use the Array Subset function to reduce the data 

returned by the FFT VI. Half of the real FFT result is 

redundant so the VI needs to process only half of the 

data returned by the FFT VI [4]. 

12. Use the Complex To Polar function to obtain the 

magnitude-and-phase form of the data returned by the 

FFT VI. The magnitude-and-phase form of the complex 

output from the FFT VI is easier to interpret than the 

rectangular component of the FFT [4]. 

13. Convert the magnitude to decibels. 

14. Display the magnitude response with the help of 

waveform graph. 

 

3.2 Designing Chebyshev Filter, Inverse 

Chebyshev Filter and Elliptic Filter 
Because the same mathematical theory applies to design other 

type of IIR filters, the block diagram in Figure 2, 3, and 4 of VI 

return the magnitude response of chebyshev, inverse chebyshev 

and elliptic IIR filter respectively [4]. 

 

 

 

Figure 2 Chebyshev.vi 

The design procedure is same for all type of filter as described for 

butterworth filter. The main difference between these VIs is that 

the chebyshev, inverse chebyshev and elliptic coefficient 

functions are used in step 2 in place of butterworth coefficient 

function and the chebyshev, inverse chebyshev and elliptic filter 

function in place of butterworth filter function in step 7 and step 8 

[11] . 
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Figure 3 Inverse Chebyshev.vi 

 

 

 

 

Figure 4 Elliptic.vi 

4. RESULTS AND DISCUSSIONS 
Figure 5 shows the  response of  5th order butterworth lowpass 

filter. The specifications for this filter are given as: 

  cutoff frequency – 500 Hz 

 stop frequency– 1000Hz 

 passband attenuation- 15 dB  

 stopband attenuation- 100 dB  

 sample rate- 10000 Hz  
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Figure 5  Response of Butterworth Lowpass Filter for 5th order 

 

Figure 6 Response of Chebyshev Lowpass Filter for 3rd order 

Figure 6 shows the  response of 3rd order Chebyshev lowpass 

filter while all other specifications are kept same as above. 

Chebyshev filters are analog or digital filters having a steeper 

roll-off and more passband ripple (type I) or stopband ripple (type 

II) than Butterworth filters. Chebyshev filters have the property 

that they minimize the error between the idealized and the actual 

filter characteristic over the range of the filter, but with ripples in 

the passband. The pole-zero plot of Chebyshev lowpass filter for 

above specification is also shown in figure 6. If we increase the 

order of the filter keeping the same specifications, the magnitude 

response plot slope becomes steep. 

Figure 7 shows the response of 3rd order Inverse Chebyshev 

lowpass filter while all other specifications are kept same as 

above. If we increase the order of the filter keeping the same 

specifications, the magnitude response plot slope becomes steep. 
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Figure 8 shows the  response of 3rd order Elliptic lowpass filter 

while all other specifications are kept same as above.  If we 

increase the order of the filter keeping the same specifications, 

the magnitude response plot slope becomes steep. 

From the above results we analyze that the transition band 

become sharper between passband and stopband on increasing the 

order of filter with other parameters having same value. 

Compared to a Butterworth filter as shown in figure 5, Chebyshev 

filter as shown in figure 6, Inverse Chebyshev of figure 7 can 

achieve a sharper transition between the passband and the 

stopband with a lower order filter. The sharp transition between 

the passband and the stopband of these filter produces smaller 

absolute errors and faster execution speeds than a Butterworth 

filter.  

Compared with the same order Butterworth or Chebyshev filters, 

the elliptic filters figure 8 provide the sharpest transition between 

the passband and the stopband, which accounts for their 

widespread use. 

5. CONCLUSIONS 
In this paper, the design of IIR filters was considered. Several 

results from theory were verified in the design. The 

characteristics of a number of important approximations 

Butterworth, Chebyshev, and Elliptic were affirmed from the 

results obtained. Experimental results are very enthusiastic. In 

LabVIEW the parameters can be changed at the time of execution 

of the program but in case of MATLAB it is not possible. There 

is smooth Transition Band in LabVIEW Design and Least Square 

error in case of LabVIEW is also less than MATLAB Design. 

LabVIEW Design is based on G-Programming so that the 

analysis of the performance can be done very easily. In LabVIEW 

analysis of all types of Filters (LP, HP, BP, and BS) is possible in 

single program. In MATLAB all have separate programs. Design 

Constraints are more accurate in case of LabVIEW because we 

can take good approximation on LabVIEW but in MATLAB all 

real things are implemented there is no approximation in 

programming if requiring than added on program (there is no 

need of user definition on approximation). It is also verified that 

on increasing the order of any filter the transition band decreases 

for the same parameters. 

 

Figure 7  Response of Inverse Chebyshev Lowpass Filter for 3rd order 
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Figure 8  Response of Elliptic Lowpass Filter for 3rd order 
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