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ABSTRACT 
Ribonucleic Acid (RNA) plays a vital role in the transcription 
process. Since the information stored in DNA is converted into 
sequences of a chemical compounds named amino acids through 
mRNA in order to produce the ultimate gene product i.e., protein. 
The importance of RNA in the transcription process gives a better 
justification to analyze it. RNA cannot exist stably in its primary 

structure, thus, to attain a stable structure, it folds back on itself to 
form secondary structure (2o RNA) and further folding of RNA 
nucleotides gives rise to the tertiary structure (3o RNA). In this 
paper, a new model using neural network for RNA secondary 
structure prediction is proposed. Our computational model 
predicts multiple secondary structures of a single RNA by 
applying a parallel algorithm for finding near maximum 
independent set in the circle graph proposed by Takefuji Y. et al 
(1990). Based on frequency density analysis of the predicted RNA 

secondary structures, we proposed an optimized secondary 
structure of RNA among all the possibilities using statistical 
probability distributions. The paper concludes by discussing the 
nature and behavior of 2o RNA predicted by our method and a 
comparison with the results of other researchers. We have shown 
that the proposed model has better accuracy as compared to the 
other researches. 
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1. INTRODUCTION 
RNA molecules are integral components of the cellular machinery 
for protein synthesis and transport, transcriptional regulation, 
chromosome replication, RNA processing and modification, and 

other fundamental biological functions [1][2][3]. This 
macromolecule is basically composed of four fundamental 
molecules i.e., Adenine (A), Cytosine (C), Gaunine (G) and Uracil 
(U). The molecules are same as that of DNA accept Uracil. DNA 
has Thymine (T) instead of Uracil (U). Another structural 
difference is that DNA is double stranded, however in most cases, 
RNA is single stranded. In the presence of salty water, RNA 
forms intrastrand base-pairs, which result in the formation of 

secondary structure. Under appropriate conditions, the secondary 
structure folds back around itself to form tertiary structure of 

RNA. This folding process usually depends on the presence of 
divalent ions like magnesium ions and on the temperature [4]. 

Most of the time, the structure of an RNA is very important in 
biological processes. Also a particular level of structure may be 
helpful in determining the possible next structure. For example, 
the secondary structure of RNA can be used to explain 
translational controls in mRNA [5][6] and replication controls in 
single-stranded RNA viruses [7] 

The base-pairs which take part in the formation of secondary 
structure of RNA are the Watson-Crick complementary bases i.e., 
C-G and A-U and Wobble base pair i.e., G-U, which occurs 
occasionally. 

A primary physical method to determine the secondary structure 
of RNA is through X-ray crystallography in which pure sample of 
RNA molecules are crystallized and then X-rayed, the data is 
collected on resulting X-ray diffraction. After this, electron 

density model is prepared and refined progressively in order to 
achieve secondary structure of that RNA sample. Due to its 
difficulty and slow speed it is not possible to perform this 
expensive procedure for several times with different samples of 
RNA, therefore, many alternate methods are used to predict the 
secondary structure of RNA. Since this method is quite complex 
and time consuming, attention diverted toward the computer-
based simulation of secondary structure of RNA. 

Until now, much progress has been made in the computational 
simulation of RNA secondary structure prediction. Dynamic 
programming is one of the old and widely accepted techniques. 

This method of secondary structure prediction was first proposed 
by waterman [8], Waterman and Smith [9] and Nussinov [10]. 
The drawback of this method of prediction is its computational 
time. The behavior of dynamic programming algorithms is found 
to be of O(n4), which is too slow to be effective,  for bigger 
sequences in particular, since the behavior is exponential. Several 
attempts to modify the dynamic programming algorithms have 
been made and are considered to be successful. Another method 

of determining the secondary structure of RNA is the comparative 
method, which works simultaneously with more than one 
sequence in order to find an identical structure. Sankoff [11] 
extended the dynamic programming approach by folding and 
aligning multiple sequences to generate a phylogenetic tree for 
secondary structure prediction. But the technique proposed by 
Sankoff couldn‟t proven itself to be excellent with more than a 
couple of sequences.  The Zuker algorithm, implemented in the 
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programs MFOLD [12] and ViennaRNA [13], is an efficient 
dynamic programming algorithm for identifying the globally 
minimal energy structure for a sequence, as defined by such a 
thermodynamic model [11][14][15]. The Zuker algorithm 
requires O(N3) time and O(N2) space for a sequence of length N.  

Another paradigm is the use of artificial intelligence to predict the 
structure. Takefuji took the advantage of ANN‟s parallel approach 

to converge toward an optimal solution by  applying NN to 
predict the near maximum independent set of circle graph within 
several hundred iterations in his paper [16] and used near-
maximum independent set of circle graph to find the optimal 
structure of single stranded RNA. This work is further improved 
in [17] with the use of Hopfield Neural Network and by proving 
the technique by presenting a good comparison between other 
techniques and the proposed technique. A similar technique was 
proposed by Steeg [18] and he used Hopfield neural network, 

Boltzman Machine and Mean field Theory (MFT) network and 
presented results using circle graph.  

We modify the technique presented by Takefuji and we predict 
the optimal and sub-optimal secondary structures of single 
stranded RNA from its primary structure by using our new 
machine learning method. We use different probability 
distributions to converge toward the solution and discuss the 
behavior and role of these distributions in order to predict the 
secondary structure of RNA and propose a distribution which may 
help to converge to the solution most optimally.  

2. STATISTICAL REVIEW 
Nearly all of the real-world problems have some means of 
randomness in it. Likewise in human machinery there may present 
many sources of randomness. For example, there is no fix figure 
that how much cells a human body produce in a day. Most of the 
time these random figures follow a particular pattern so, this 

randomness is normally represented by a probability distributions. 
Probability distribution function is one which represents all 
possible values which a random variable can take, provided with a 
range of minimum and maximum values.  

Takefuji suggested in paper [16] to use small negative numbers in 
the start of simulati. Following the same, we only use those 
distributions which can vary in positive as well as negative 
dimension. So, in our NN simulator we use five distribution 
techniques and further analyze the behavior of results. Following 
is a brief description of these probability distributions [19]. 

a). Uniform distribution: it is a special case of beta distribution in 
which α1 = α2 = 1. It has a density function: 

 

Where a, b belongs to real numbers, a must be less than b, a is a 
location parameter and b - a is the shape parameter. Both the 
parameters are so selected that results in a negative number, 
which is the requirement of our particular scenario. Fig 1(a) 
shows general behavior of Uniform distribution. 

 
Figure 1(b) Uniform Distribution;U(0, 1) density function 

b). Normal Distribution: It is the most commonly used 
distribution. It is the system of random variables in which all the 
values of variables are distributed normally with mean µ and 
variance σ. Normal distribution can be represented as: 

 

where, µ is the location parameter and σ is the scale parameter. In 
our scenario we generated X ~ N (µ, σ2), in such a case ex has the 
lognormal distribution with parameter µ and σ denoted as LN 
(µ,σ2). We have selected both the parameters such that the 
resulting normal random variable will be a negative number. 

 
Figure 1(b). Normal Distribution; N(0, 1) density function 

c). Johnson System: Johnson [20] proposed method for generating 

distributions of random variable X supported by Q = (0, ∞) and Q 
= (0,1) by means of transformation φ : R  Q defined by: 

Y = φ-1 (X) = log X   if Q = (0, ∞) 

Y = φ-1 (X) = log   if Q = (0, 1), 

Where Y is the prototype supported by R. For our particular 

scenario, we used Johnson System which is based on the 
transformations of normal random variable. The cases we used are 
SU and SB corresponding to Logistic and hyperbolic sine 
transformation respectively. Both the transformations can be 
written in general as: 

 

Where Z~N(0,1) and  is the transformation, all other parameters 
are scale and location parameters. 

The JSB probability density function has the form of: 
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Figure 1(c). Johnson Bounded Distribution; JSB(α1, α2, 1) 

density function 

Thus the JSB probability density function has the domain of X 
lying between a and b, fig 1(c). In the prediction of secondary 
structure of RNA, we have assumed a, b, α1 and α2 as randomly 

selected negative variables, so that the resulting random variable 
U will be a negative number. Every X ~ JSB(α1, α2, a, b) if and 
only if: 

 

The other transformation of Johnson System, that is, the logistic 
transformation has the form: 

 

 

Where γ is the location parameter 

β is the scale parameter and  

α is the shape parameter 

In Johnson System logistic transformation of normal random 
variable the domain of X may vary between -∞ to +∞. We choose 
arbitrary values of location, shape and scale parameter which 
yields negative value.  

 
Figure 1(d). Johnson Unbounded Distribution; JSU(α1, α2, β, 

γ) density function 

 

To be eligible to be called a JSU random variable, it should have 
the following form:  

 

The behavior of Johnson Unbounded distribution is shown in fig 
1(d) by varying the values of α1 and α2, and keeping the values of 
β and γ fixed. 

d). Triangle Distribution: A triangle distribution has lower limit of 
a and upper limit of b, with mode c. Its probability density 
function is: 

 

In triangle distribution, x starts from a, then it get peaked at c, 
which is the mode and finally reached its upper limit, that is, b. In 
order to generate X that belongs to triangle distribution, it must 
satisfy the following: 

 

where u ~ U(0,1) and c is the mode, which is an arbitrary chosen 
value in our case. 

 
Figure 1(e). Triangle Distribution; triang(a, b, c) density 

function 

The Triangle distribution, fig 1(e), offers considerable flexibility 
in its shape, coupled with the intuitive nature of its defining 
parameters and speed of use. 

3. METHODOLOGY 
We used a new machine learning method to predict the secondary 

structure of RNA. Our algorithm works in three levels.  In first 
level, our proposed method finds all possible secondary structures 
from its primary sequence for all distributions discussed above. In 
second level, we refined the results by selecting an optimal 
structure from the bulk of structures achieved as an output of each 
distribution from the previous level. Finally, from these optimal 
structures of different distributions, a final structure was obtained 
using some statistical techniques in order to conclude the work. 

The optimal structure proposed in this stage may or may not be 
similar to the structures found in the previous level.  
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We extended the work of Takefuji [16] with little modifications in 
the algorithm. Beside the algorithm, we also change the type of 
neural network that has been used by Qi Liu. He used Hopfield 
nets in his paper [17]. Hopfield nets are recurrent neural networks 
which has scalar value associated with each state of the network. 

This scalar value is termed as „energy‟ (E), which can 
mathematically be defined as: 

 

where, 

wij = weight connecting unit i with unit j 

si = state of the unit i 

θi = threshold of unit i 

We haven‟t use Recurrent or Back-propagations Networks in 
order to avoid the complexity and because we didn‟t consider any 
learning process. Instead of Hopfield neural network, we 
customized a new model of Neural Network to predict the 
structure, shown in fig 2. Our model is based on the 
Kolgomorov‟s theorem, which describes the non-linear function 
approximator mathematically as: 

 

where  hji = nonlinear monovariable functions and y = continuous 
nonlinear real function 

In equation (1) if hji = wij + bi, where wij is the weight associated 
from one unit to another unit and bi is the bias associated with 
hidden layer. Let M = 2n+1 so, Kolgomorov‟s theorem can be 
modified to design a neural network as follows: 

 

The equation above shows the network of n input nodes, which 

represents the input layer. Wij+bi is the summation of weights 
coming from the units of input to the units of hidden layer and the 
bias associated with the hidden layer which contains M nodes. At 
the end, output node is the combination of the results of hidden 
nodes. This kind of neural network [21] is shown in fig 2. 

We use n neurons in the hidden layer where n is the number of 
base-pairs possible in an RNA sequence, considering only 
Watson-Crick base-pairs i.e., A-U and C-G. We avoided Wobble 
base-pair in our paper; however, the system has the capabilities to 
consider this base-pair as well.  
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Figure 2. Proposed architecture of Artificial Neural Network 
(ANN) based on Kolgomorov’s theorem 

The procedure we followed in the parallel algorithm is as follows: 

1) First we find all possible base-pairs of the RNA sequence 
2) Set iterator t = 0 
3) Initialize random variable Ui(t), where i = 1, 2, … n,  with 

small negative numbers using continuous probability 
distribution.  

4) Evaluate values of Vi(t), where i = 1,2, …. ,n using the 

following binary function 

 

5) Compute the value of ∆Ui(t) using motion equation: 

 

 

6) Increment t by 1 till 8000 

We used different probability distributions to initialize Ui(t) in 
step 2 and analyzed the behavior of system. We use different 
samples of RNA sequences and tested these sequences in our 
system.  

4. RESULTS AND DISCUSSION 
The different distribution techniques we applied in the algorithm 
mentioned above show different behavior. With a number of 
sequences and five different distribution techniques for each 
sequence, we observed that on eight thousand epochs per 
distribution, the results of random variables generated by the 
hyperbolic transformation of normal random variable with its 
identity transformation is the best as compared to other 
distributions.  

 
Figure 3(a). R17 viral RNA  
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Figure 3(b). All possible Watson-Crick base-pairs for a RNA 

sequence of R17 viral RNA 

We mention here a sequence of 55 bases from R17 viral RNA, fig 
3(a). We first determine all possible base-pairing of this sequence 
by considering Watson-Crick base-pair only which is shown in fig 
3(b). Our algorithm detects 360 possible base-pairs for this 
sequence of 55 nucleotides by following the rule of Tinoco in his 
paper [22] in which he mentioned that hairpin loop with less than  

three bases is sterically unlikely to occur. In the first level of our 
method, the system find out all eligible secondary structures from 
the one shown in fig 3(b).   

Table 1 presents the number of proposed secondary structures by 
each distribution technique for the sequence of R17 viral RNA. 
The statistics shown in table 1 ignores all repetitions of possible 
secondary structures and only mutually exclusive structures are 
considered. We precede the analysis by finding the optimal 
secondary structure by statistically analyzing all eligible 
secondary structures.  

Table 1. Number of secondary structures proposed by the 
system using different distribution techniques 

Probability Distribution 

Function (PDF) 

Number of Proposed 

Secondary Structure 

Uniform 16 

Normal 83 

Johnson Bounded 228 

Johnson Unbounded 252 

Triangle 238 

The correlation coefficient of each structure, proposed by the 
system, is measured on the basis of a previously known structure. 
By considering the structure predicted by Tinoco [22] for the 

same R17 viral RNA, we calculated the correlation coefficient by 
using follwing formula [17]: 

 ; 0 < CC < 100 

Where, TP = Base pairs that area predicted and exists in the 
known structure, FP = Base pairs that are predicted but do not 
exist in the known structure, FN = Base pairs that are not 
predicted but exist in the known structure, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Correlation Coefficients of all distributions 
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CC can be defined as the sensitivity of its geometric mean. Higher 
CC means better prediction accuracy. CC of all distribution 
techniques are shown in figure 4.  

 

 

 

 

 

 

 

Figure 5. Circle and Sequence diagram of proposed secondary 
structure by our machine learning algorithm 

The machine learning method predicted the possible secondary 
structure of this RNA sequence, figure 5, which is same as that of 
Tinoco‟s [22] prediction.  

 

 

 

 

 

 

We execute the algorithm for all distributions mentioned above 
and this secondary structure is predicted by most of the 
distribution techniques applied here. Samples of other secondary 
structures predicted by the system for the same RNA sequence is 
shown in fig 6.  

On the basis of frequency of hit on each base-pair and by 
mathematical inference, we deduce an optimal secondary structure 

from the proposed structures of every distribution and calculate its 
accuracy, deletion rate and false rate. The equations we used to 
calculate these measures are as follows: 

 

 

 

Where, TP = True Positive, Base pairs that are predicted and 
exists in the known structure 

TN = True Negative, Base pairs that are predicted but do not exist 
in the known structure 

FP = False Positive, Base pairs that are not predicted but exist in 
the known structure 

Figure 6 Proposed Secondary structures by all distributions 
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FN = False Negative, Base pairs that are neither predicted nor 
exist in the known structure 

For these five distributions, table 2 shows the accuracy, deletion 
rate and false rate of the optimal structures found from proposed 
secondary structures of R17 viral RNA. 

Table 2. Accuracy calculation of all the distributions 

  Uniform Normal JSB JSU Triangle 

TP 3 14 19 19 19 

FN 15 9 3 3 3 

FP 17 6 1 1 1 

TN 323 328 335 335 335 

Accuracy 0.91 0.96 0.99 0.99 0.99 

Deletion 

Rate 
0.17 0.61 0.86 0.86 0.86 

False 

Rate (%) 
5 1.8 0.3 0.3 0.3 

The results we obtained are same as predicted by Takefuji [25], 

but our machine learning algorithm predicted the structure in 
lesser time since the algorithm we used is quadratic in nature. 
Nevertheless our system finds out the optimal secondary structure 
by using statistical methods. There is no need to run the algorithm 
for long to converge to the solution. Our method finds out all 
possible secondary structures in just few hundred epochs but we 
intentionally run the algorithm for 8000 epochs. It was observed 
that machine learning method determines all possible secondary 
structures in first few hundred epochs and it repeat to predict the 
same secondary structures in remaining iterations.  

Table 3. Impact of different distributions in the algorithm 

Seq Uniform Normal JSB JSU Triangle 

1 87.45 84.27 80.62 84.98 78.82 

2 15.81 65.28 90.58 90.58 90.58 

3 70.71 60.7 68.31 70.71 70.71 

4 83.21 78.45 83.21 83.21 83.21 

5 76.38 70.71 73.38 64.17 66.21 

6 59.63 81.41 83.91 83.91 62.62 

  65.53 73.46 80 79.59 75.35 

Table 3 shows the final result of our simulation. Results show the 
likelihood of reaching to stable structure using different 
distributions and it is evident from the table that Johnson Bounded 
and Unbounded distribution technique of random variable 
generation presents the most optimized results. It can be inferred 
that the transformation of normal distribution yields better results 
than the normal distribution itself.  

5. CONCLUSION 
We randomized the initial value of U using different probability 
distributions and the results show that transformations of normal 

random variables works far better than any other technique of 
randomization. More specifically right skewed transformation 
yields the best result as compared to left skewed transformation of 
normal random variable. The system performed even better if the 
ranges of random variable vary between short intervals of 

negative values. 
  
It is evident that working on base-pairs reduces much of the time 
and complexity in predicting the secondary structure of RNA. 
Time complexity may be reduced further by using parallel 
processing, like we present by using a very simple customized 
architecture of Neural Network. We use statistical techniques to 
obtain the most optimal secondary structure from the bulk of 

structures. This method reduces the time complexity by working 
on suboptimal structures rather than to let the system converge 
toward an optimal secondary structure, which may take a long 
time specifically with bigger sequences.  
 
The algorithm we present here can further be modified by 
applying more thermodynamic rules and by taking nature and 
behavior of participating molecules into consideration. 
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