Even Vertex Graceful of Path, Circuit, Star, Wheel, some Extension-friendship Graphs and Helm Graph

A. Solairaju¹, P. Muruganantham²

¹ Associate Professor of Mathematics, Jamal Mohamed College, Trichy, India. ²Head, Dept of Mathematics, Kurinji College of Arts and Science, Trichy, India.

ABSTRACT

Even vertex gracefulness of path, circuit, star and wheel are obtained. Also even vertex gracefulness of the connected graphs $C_n \nabla F(2nC_3)$, $C_n \nabla F(3nC_3)$ and C(4, n) are got.

INTRODUCTION

A.Solairaju, and A.Sasikala [2008] got gracefulness of a spanning tree of the graph of product of P_m and $C_n,\;$ A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A.Solairaju, and C. Vimala [2008] also got the gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n .

A.Solairaju and P.Muruganantham [2009] proved that ladder $P_2 x P_n$ is even-edge graceful (even vertex graceful). They found [2010] the connected graphs $P_n \circ nC_3$ and $P_n \circ nC_7$ are both even vertex graceful, where n is any positive integer. They also obtained [2010] that the connected graph $P_n \Delta nC_4$ is even vertex graceful, where n is any even positive integer.

Section I: Preliminaries

Definition 1.1: Let G = (V,E) be a simple graph with p vertices and q edges.

- A map f: V(G) $\rightarrow \{0,1,2,\ldots,q\}$ is called a graceful labeling if
 - (i) f is one to one
 - (ii) The edges receive all the labels (numbers) from 1 to q where the label of an edge is the absolute value of the difference between the vertex labels at its ends.

A graph having a graceful labeling is called a graceful graph.

Definition 1.2: A graph is if there exists an injective map f : E(G) $\rightarrow \{1, 2, ..., 2q\}$ so that the induced map $f^+: V(G) \rightarrow \{0, 2, 4, ..., 2k-2\}$ defined by $f^+(x) = \sum f(xy) \pmod{2k}$ where $k = \max \{p, q\}$ makes all distinct.

Definition 1.3: C_n is a circuit with n vertices. S_n is a star with n vertices. W_n is a wheel with n vertices.

Section II: Even vertex graceful of standard graphs

The following result is first started.

Theorem 2.1: A path with n vertices is even vertex graceful. **Proof:** A path P_n is a connected graph with n vertices. It has (n-1) edges as follows:

D____.

Some arbitrary labeling of edges of the path Pn is given below:

Define f: $E(P_n) \rightarrow \{1, 2, ..., (n-1)\}$ by $f(e_i) = 2i$, i varies from 1 to (n-1).

Then the induced map $f^{\scriptscriptstyle +}(u)=\sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and $f^{\scriptscriptstyle +}$ both satisfy even vertex graceful labeling. The path P_n with n vertices is even vertex graceful.

Example 2.1: The path P_{13} is even vertex graceful.

Theorem 2.2: A circuit C_n with n vertices is even vertex graceful. **Proof:** Some arbitrary labeling of edges of C_n is as follows:

Define f: $E(C_n) \rightarrow \{1, 2, ..., n\}$ by $f(e_i) = 2i$, i varies from 1 to n. Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f⁺ both satisfy even vertex graceful labeling. The path C_n with n vertices is even vertex graceful.

Example 2.2: The path C_{11} is even vertex graceful.

Theorem 2.3: A star with n vertices (S_n) is even vertex graceful. **Proof:** Some arbitrary labeling of edges of \underline{S}_n is as follows:

Define f: $E(S_n) \rightarrow \{1, 2, ..., n\}$ by $f(e_i) = 2i$, i varies from 1 to n. Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling. The path S_n with n vertices is even vertex graceful.

Example 2.3: The star S_6 is even vertex graceful.

Theorem 2.4: A star with n vertices (W_n) is even vertex graceful. **Proof:** Some arbitrary labeling of edges of W_n is as follows:

Define f: E(C_n) \rightarrow { 1,2, ..., n} by f(T_j) = (2j - 1), i varies from 1 to n;

n is even : $f(e_i) = 2q - 2(i-1)$, i varies from 1 to n.

n is odd and n \equiv 3 (mod 4); f(e_n-i) = 2i +2 , i varies from 1 to (n-1); f(e_n) = f(e_1) + 2.

n is odd and $n \equiv 1 \pmod{4}$; $f(e_{n-i}) = 2i$, i varies from 1 to (n-1); $f(e_n) = f(e_1) + 2$. Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. So f and f⁺ both satisfy even vertex graceful labeling. The path S_n with n vertices is even vertex graceful.

Example 2.4: The path W₁₄ is even vertex graceful.

Section 3 - Even vertex graceful of extensionfriendship graph

Definition 3.1: A fan graph or an extension-friendship graph $C_n \nabla F(2nC_3)$ is defined as the following connected graph such that every vertex of C_n is merged with one copy of $2C_3$.

Theorem 3.1: The connected graph $C_n \nabla F(2nC_3)$ is even vertex graceful.

Proof: The graph $C_n \nabla F(2nC_3)$ is chosen with some arbitrary labeling of edges as in definition (1.5).

Define a map f: $E[C_n \nabla F(2nC_3)] \rightarrow \{0, 1, 2, \dots, 2q\}$ by

i = 1, 2, 2n
i = 1, 2, 2n
$i = 2, \dots n$
i = 3, 4, n

Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling as well as edge–odd graceful labeling. Thus the connected graph $C_n \nabla F(2nC_3 \text{ is both even vertex graceful and odd-edge graceful.}$

Definition 3.2: A fan graph or an extension-friendship graph $C_n \nabla F(3nC_3)$ is defined as the following connected graph such that every vertex of C_n is merged with one copy of $3C_3$.

Theorem 3.2: The connected graph $C_n \nabla F(3nC_3)$ is even vertex graceful.

Proof: The graph $C_n \nabla$ F(3nC₃) is chosen with some arbitrary labeling of edges as in definition (1.6).

Define a map f: $E[C_n \nabla F(3nC_3)] \rightarrow \{0, 1, 2, \dots, 2q\}$ by

$f(e_i) = 2i-1,$	i=1,2,,3n	
$f(t_i) = f(e_{2n}) + 2i,$	i=1,2,,2n	
$f(u_1) = (2q-4)$		
$f(u_2) = (2q-6)$		
$f(u_i) = f(u_1) - 4(i-1);$	i=3,5,7,,2n-1	
$f(u_i) = f(u_2) - 4(i-2),$	i=4,6,2n	
$f(c_1) = f(u_{2n}) - 2; f(c_2) = f(c_1)$	(1) - 2;	
$f(c_i) = f(c_1) - 3(i-1)$ where i	varies 3,5,7,,n if n is odd; i	varies
3,5,7,,n-1 if n is even.		
$f(c_n) = f(c_{n-1}) - 4$ if n is even;		
$f(c_i) = f(c_2) - 3(i-2)$ where i v	varies 2,4,6,,n if n is even; i	varies
2,4,6,,n-1 if n is odd;		
$f(c_n) = f(c_{n-1}) - 4 \text{ if } n \text{ is odd}$		

Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f^+ both satisfy even vertex graceful labeling Thus the connected graph $C_n \nabla F(3nC_3)$ is even vertex graceful **Definition 3.3:** The graph C(4, n) is a connected graph defined by merging C_4 and C_n as follows:

Theorem 3.3: The connected C(4, n) is even vertex graceful. **Proof:** The graph $C_n \nabla$ F(3nC₃) is chosen with some arbitrary labeling of edges as in definition (1.7).

Define a map f: E [C(4, n)] $\rightarrow \{0, 1, 2, \dots, 2q\}$ by

 $\begin{array}{ll} f\left(e_{i}\right)=2i\text{-}1, & i=1,2,\ldots,\,(n+3);\\ f\left(T_{i}\right)=2q-2(i\text{-}1), & i=1,2,\ldots,\,(n+3);\\ f\left(e_{0}\right)=(q\text{-}15)=(2n\text{-}8) \end{array}$

Then the induced map $f^+(u) = \sum f(uv) \pmod{2q}$ where the sum runs over all edges uv through v. Now, f and f⁺ both satisfy even vertex graceful labeling Thus the connected graph C(4, n) is even vertex graceful.

CONCLUSION

Even vertex graceful of friendship graphs $F(nC_3)$, $F(nC_5)$, and $F(2nC_3)$ are obtained in [7]. For further investigations. Path, circuit, star and wheel are all even vertex graceful. Also the connected graphs $C_n \nabla F(2nC_3)$, $C_n \nabla F(3nC_3)$ and C(4, n) are all even vertex graceful..

REFERENCES

 A. Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs, Electronics Notes in Discrete Mathematics Volume 33, April 2009, pp. 15

<u>International Journal of Computer Applications (0975 – 8887)</u> Volume 10– No.**6**, November 2010

- A. Solairaju and P.Muruganantham, even-edge gracefulness of ladder, The Global Journal of Applied Mathematics & Mathematical Sciences (GJ-AMMS). Vol.1.No.2, (July-December, 2008), pp.149-153.
- A. Solairaju and P.Muruganantham, Even vertex gracefulness of path merging circuits, Indian Journal of Mathematics and Mathematical Sciences, Vol. 6, No.1, (June, 2010), pp.27 – 31.
- 4. A. Solairaju and P.Muruganantham, Even vertex gracefulness of even number of copies of C₄, accepted for publication in Serials Publications, New Delhi, India.
- A.Solairaju, and A.Sasikala, Gracefulness of a spanning tree of the graph of product of Pm and Cn, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136.
- 6. A.Solairaju, and C.Vimala, Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n . The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp117-120.
- 7. A. Solairaju and P.Muruganantham, Even vertex gracefulness of fan graph, International Journal of Computer Applications (0975-8887), Vol. 8, No.8, (October, 2010)..