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ABSTRACT 

 Induction machine drive based on Direct Torque Control 

(DTC) allows high dynamic performance with very simple 

hysteresis control scheme. Conventional Direct Torque Control 

(CDTC) suffers from some drawbacks such as high current, 

flux and torque ripple, difficulties in torque as well as flux 

control at very low speed. In this paper, we propose two 

intelligent approaches to improve the direct torque control of 

induction machine; fuzzy logic control and artificial neural 

networks control. We carry out a detailed comparison study 

between direct torque fuzzy control (DTFC), direct torque 

neural networks control (DTNNC) and CDTC applied to 

switching select voltage vector. The theoretical foundation 

principle, the numerical simulation procedure and the 

performances of both methods are also presented. 

Keywords 
Direct torque control, fuzzy logic control, neural networks, 

induction motor. 

1. INTRODUCTION  
The induction machine is one of the most widely used 

machines in industrial applications due to its reliability, 

relatively low cost and modest maintenance requirement [1]. 

High performance electrical drives require decoupled torque and 
flux control. This control is offered in a dynamic fashion by the 

direct torque control. In DTC the torque and flux are directly 

controlled using the selection of the optimum voltage vector. 

The switching logic control facilitates the generation of the stator 

voltage space vector, with a suitable choice of the switching 

pattern of the inverter, on the basis of the knowledge of the 

sector and the amplitude of the stator flux and the torque [2]. The 

DTC scheme is characterized by its simple implementation and 

its fast dynamic response. Nevertheless, DTC presents some 

disadvantages such as high current, flux and torque ripple, 

difficulties in torque and flux control at very low speed, slow 
transient response to the step change in torque during start-up 

[1], [3] [4]. It is well established that these disadvantages are 

mainly due to the use of hysteresis torque and flux controllers 

[5]. For this reason, most of the methods used to overcome these 

disadvantages are based on replacing the hysteresis with the non-

hysteresis-based controllers.  

Since it was first introduced in 1986 [4], several studies have 

been proposed by researchers to overcome disadvantages of 

CDTC drive [6]-[11]. The study proposed in [6] uses multiple 

inverters in order to reduce the torque ripples, but the number of 

power devices is higher, which consequently increases costs. 

Another solution consists of using space vector modulation 
(SVM) instead of improving the DTC look-up table [8]-[10]. 

This solution needs however several motor parameters and 

increases the complexity of the DTC algorithm. Currently, 

several works use techniques from artificial intelligence (AI) like 
neural networks, fuzzy logic and genetic algorithms [1], [3], [5], 

[11]. Artificial neural networks (ANNs) are able to learn the 

mapping between system signals’ input and output without 

knowing its exact mathematical model. Some approaches use 

neural networks for parameters identification and state 
estimation of electrical machine [12]. Others use neural networks 

to emulate the switching table [2], [11], [13], without being able 

to reduce the torque and flux ripples. Fuzzy control also allows 

controlling systems without knowing the plant mathematic 

model. It uses the intuition and experience of the designer to 

build its control rule base. There are many applications using 

fuzzy controllers for induction machine control. For instance, in 

[3] and [5], DTC rules have been replaced with fuzzy rules. 

Fuzzy logic controllers based on space vector modulation have 

proven to be effective for DTC [8]. 

In this paper, two strategies of direct torque control are 

proposed and compared with respect to the CDTC strategy: a 
direct torque fuzzy control and a direct torque neural networks 

control. DTC based on AI techniques are applied to overcome 

some disadvantages of CDTC such as minimizing the torque, 

current and flux ripple. We use fuzzy logic (DTFC) and neural 

networks (DTNNC) controllers in order to replace the switching 

table and the two hysteresis controllers. The paper is organized 
as follows. In section 2, a brief layout to the motor model is 

presented. Then, we give more details on DTC in section 3. In 

sections 4 and 5 we present and discuss the DTFC and DTNNC 

approaches respectively. In section 6 we carry out a comparative 

study between all three DTC strategies: CDTC, DTFC and 

DTNNC. In the final section, we conclude the paper and draw 

the outlines of the future work. 

2. MATHEMATICAL MODEL OF 

INDUCTION MOTOR 
When the motor operates in both steady and transient states, 

the standard induction motor equivalent model can be used to 

calculate machine variables such as stator current, rotor current, 

developed torque, etc. The induction motor can be modeled with 

stator current and flux in reference (α, β) as state variables 
expressed as follows: 

BUAXX
dt

d
+=  (1) 
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These differential equations are used for the simulations 

presented in this paper. 

 3. PRINCIPLE OF THE DTC 
The diagram of CDTC for an induction motor drive is shown 

in Figure 1. Te
* and φs

* are torque and flux reference values; Te 

and φs are the estimated torque and stator flux values; ω* is the 

command speed value; ω is the real speed value and θs is the 

stator flux angle. 
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Figure 1. Diagram of the CDTC method 

A PI or PID controller is used to determine the reference 

torque, based on the difference between the reference and the 

instantaneous speed of the motor. 

The basic idea of the DTC concept is to choose the best vector 

of the voltage, which makes the flux rotate and produce the 

desired torque. During this rotation, the amplitude of the flux 

remains in a pre-defined band [14]. In order to control the 

induction motor, the supply voltage and stator current are 

sampled. Only two phase currents are needed to measure iA and 

iB, the third phase can be calculed as follow: iC=-iA-iB. The stator 

flux on the stationary reference axes αβ is estimated as follows: 
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where 
sΦ is the stator flux and Rs is the stator resistance. The 

module of the stator flux is given by equation (3), the developed 

electromagnetic torque Te of the motor can be evaluated by 

equation (4) and the angle between the referential and φs is 

presented by equation (5). 
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The estimated values of the torque and stator flux are 

compared to the command values, Te
* and φs

* respectively. It can 

be seen from figure 1 that the error between the estimated torque 

Te and the reference torque Te
* is the input of a three level 

hysteresis comparator, where the error between the estimated 

stator flux magnitude φs and the reference stator flux magnitude 

φs
* is the input of a two level hysteresis comparator.  

Finally, the outputs of the comparators with stator flux sector, 

where the stator flux space vector is located, select an 

appropriate inverter voltage vector from the switching Table 1. 

The selected voltage vector will be applied to the induction 

motor at the end of the sample time [4].  

Table 1. The switching table for basic DTC 

Eφ Ec S1 S2 S3 S4 S5 S6 

1 V2 V3 V4 V5 V6 V1 

0 V7 V0 V7 V0 V7 V0 1 

-1 V6 V1 V2 V3 V4 V5 

1 V3 V4 V5 V6 V1 V2 

0 V0 V7 V0 V7 V0 V7 0 

-1 V5 V6 V1 V2 V3 V4 
 

Vectors V1,…,V6 represent the six active vectors that can be 

generated by a voltage source inverter (VSI) where V0 and V7 

are the two zero voltage vectors. Figure 2 gives the partition of 

the complex plan in six angular sectors Si=1…6. 

 

V 1 

V 2 V 3 

V 4 

V 5 V 6 

Sector  1  

Sector 2  Sector 3  

Sector 4  

Sector  6  Sector  5  

 

Figure 2. Partition of the complex plan in six angular sectors 

When flux is in zone i, vector Vi+1 or Vi-1 is selected to 

increase the level of the flux, and Vi+2 or Vi-2 is selected to 

decrease it. At the same time, vector Vi+1 or Vi-2 is selected to 

increase the level of torque, and Vi-1 or Vi-2 is selected to 

decrease it.  

If V0 or V7 is selected, the rotation of flux is stopped and the 

torque decreases whereas the amplitude of flux remains 

unchanged. This shows that the choice of the vector tension 

depends on the sign of the error of flux and torque independently 

from its amplitude [4]. This explains why the output of the 

hysteresis comparator of flux and torque must be a Boolean 

variable. We can add a band of hysteresis around zero to avoid 

useless commutations when the error of flux is very small [4]. 
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With this type of hysteresis comparator, we can easily control 

and maintain the end of the vector flux within a circular ring. 

4. FUZZY LOGIC DTC CONTROLLER 

4.1 Principles of Fuzzy Torque Control 
Since none of the inverter switching vectors is able to generate 

the exact voltage required to produce the desired changes in 

torque and flux, torque and flux ripples compose a real problem 

in DTC induction motor drive [15]. In this section, a fuzzy 

approach is proposed to reduce torque ripple. This target is 

achieved by the fuzzy controller which determinates the desired 

inverter vector state. Figure 3 illustrates the proposed fuzzy 

version of the DTC with induction motor.  
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Figure 3. Diagram of the fuzzy logic DTC method 

Our method of DTC differs from the conventional one by 

using a fuzzy controller instead of the hysteresis and switching 

tables. The fuzzy controller is designed in such a way that it 

requires three inputs and one single output. The inputs are the 

error of torque, the error in stator and the stator flux angle. 

The fuzzy controller generally consists of three parts: 

fuzzification, fuzzy reasoning and defuzzification. The 

fuzzification is performed using a membership function. The 

performance of the fuzzy controller is based upon both the shape 

of the membership function and the fuzzy reasoning rules. 

4.2 Fuzzy Variables 
The flux error membership function is represented by three 

fuzzy sets as shown in Figure 4: a negative flux error (N), a zero 

flux error (Z) and a positive flux error (P). 
 

0 

Z N P 

1 -1 

eφ (Wb) 

µφ 

1 

 
Figure 4. The fuzzy membership functions of eφ. 

The torque error membership function is decomposed into five 

fuzzy sets as shown in Figure 5: an entitled negative large error 

(NL), a negative small error (NS), a zero error (Z), a positive 

small error (PS), and a positive large error (PL). 
 

1 

0 -0.5 1 -1 0.5 

Z NL NS PS PL 

eT (N.m) 
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Figure 5. The fuzzy membership functions of eT. 

For more accuracy of stator flux angle θs, the universe of the 

discourse of this fuzzy variable is divided into twelve fuzzy sets 

denoted θ1 to θ12 as shown in Figure 6. The associated 

membership functions are defined in the same way as for flux 

and torque errors. 
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23π
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Figure 6. The fuzzy membership functions of eφ. 

This novel stator flux locus is introduced in Figure 7  
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V6(Fli,Thd)

 

V1(Fhi,Tli)

V2 (Fli,Thi)V3(Fhd,Tli)

V4(Fhd,Tld)

V5(Fld,Thd) V6(Fhi,Tld)

 

Figure 7. Stator flux vector with twelve sectors. Fhd/Fhi: 

flux high decrease /increase. Fsd/Fsi: flux small decrease 

/increase. Thd/Thi: Torque high decrease /increase. Tld/Tli: 

Torque low decrease /increase. 

The output variable of the fuzzy controller is designed so that 

it has seven singleton subsets, one zero voltage vector and six 

non-zero voltage vectors. The membership functions of the 

output space voltage vectors are shown in Figure 8. 

 

1 2 3 4 5 6 0 

1 
V1 V2 V3 V4 V5 V6 V0 

 

Figure 8. The fuzzy membership functions of output 

4.3 Fuzzy Control Rules 
The rule base monitors the behavior of the fuzzy controller. It 

stores the expert knowledge on how to control the plant. Fuzzy 

control rules can be deduced from the diagram of voltage vector 

in Figure 7. For example, supposing the positional angle θ of 

stator’s flux is located in domain θ2, we can have the following 

decision rules: if desired control is to make torque decrease 

slowly and make flux increase rapidly, then desired 
decision is V1. 

The control goal is to maintain the stator flux at a level value 

while keeping the torque‘s response fast. It is easy to show that 

we can build up to 180 control rules as shown in Table 2. 
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Table 2.  Voltage vector fuzzy control table 

eφ eT θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 

PL V2 V3 V3 V4 V4 V5 V5 V6 V6 V1 V1 V2 

PS V2 V2 V3 V3 V4 V4 V5 V5 V6 V6 V1 V1 

Z V0 V7 V7 V0 V0 V7 V7 V0 V0 V7 V7 V0 

NS V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 V6 V6 

P 

NL V6 V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 V6 

PL V2 V3 V3 V4 V4 V5 V5 V6 V6 V1 V1 V2 

PS V2 V3 V3 V4 V4 V5 V5 V6 V6 V1 V1 V2 

Z V7 V0 V0 V7 V7 V0 V0 V7 V7 V0 V0 V7 

NS V7 V0 V0 V7 V7 V0 V0 V7 V7 V0 V0 V7 

Z 

NL V6 V1 V1 V2 V2 V3 V3 V4 V4 V5 V5 V6 

PL V3 V4 V4 V5 V5 V6 V6 V1 V1 V2 V2 V3 

PS V4 V4 V5 V5 V6 V6 V1 V1 V2 V2 V3 V3 

Z V7 V7 V0 V0 V7 V7 V0 V0 V7 V7 V0 V0 

NS V5 V5 V6 V6 V1 V1 V2 V2 V3 V3 V4 V4 

N 

NL V5 V6 V6 V1 V1 V2 V2 V3 V3 V4 V4 V5 

 

  Each control rule from table 2 can be described using the 

input variables torque error ec, flux error eφ, flux angle θ and the 

output variable v as shown in equation 6: 

Ri : if eφ is Ai and eT is Bi and θ is Ci then v is Vi. (6) 

where Ai, Bi and Ci denote the fuzzy set of the variable eφ, eT 

and θ respectively. Vi and Ri are the fuzzy singleton and control 

of rule number i. 

4.4 Fuzzy Inferences 
 The inference method used in this paper is Mamdani’s 

procedure based on min-max decision. The membership 

functions of variables A, B, C and V are given by µA, µB, µC and 

µV respectively. The weighting factor αi for the ith rule is 

computed using the min operator: 

αi = min (µAi(eφ), µBi(eT), µCi(θ)). (7) 

µ'Vi(v)= min (αi , µVi(v)) (8) 

In this case, the outputs are crisp values. 

The maximum criterion method is used for defuzzification. By 

this method, the value of fuzzy output which has the maximum 

possibility distribution is used as the control output. 

Μ'Vout(v)= 
180

1
max

=i

( µ'Vi(v)) (9) 

The concrete reasoning of fuzzy logic system is shown in the 

flowchart of Figure 9. For each combination of inputs, usually 

more than one rule is validated. Each rule generates a significant 

control action depending on the input values of the variables. 

Then defuzzification is applied to generate the control output. 
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Figure 9. Flowchart of fuzzy logic system 

 

5. NEURAL NETWORKS DTC 

CONTROLLER 

5.1 Principles of Artificial Neural Networks 
One of the most important features of Artificial Neural 

Networks (ANN) is their ability to learn and improve their 

operation using a training data [16]. The basic element of an 

ANN is the neuron which has a summer and an activation 

function as shown in Figure 10. The mathematical model of a 

neuron is given by:  

)(
1

∑
=

+∗=
N

i

ii bxwy ϕ  (10) 

where (x1, x2… xN) are the input signals of the neuron, (w1, 

w2,… wN) are their corresponding weights and b a bias 

parameter. Φ is a tangent sigmoid function and y is the output 

signal of the neuron. 

 

X1 

X2 

XN
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φ(a) 
a y 

w1 

W2 

WN 

∑

 

Figure 10. Representation of the artificial neuron 

The ANN shown in Figure 11 can be trained by a learning 

algorithm which performs the adaptation of weights of the 

network iteratively until the error between target vectors and the 

output of the ANN is less than a predefined threshold [17]. 

Nevertheless, it is possible that the learning algorithm did not 

produce any acceptable solution for all input–output association 

problems. Anyway, results depend on several factors [16]-[18]: 

− Network architecture (number of layers, number of 

neurons in each layer, etc.). 

− Initial parameter values w (0). 

− The details of the input–output mapping. 

− Selected training data set (pairs of inputs and their 

corresponding desired outputs). 

− The learning-rate constant. 
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Figure 11. Structure of neural network 
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5.2 Learning Algorithms in Neural 

Networks 
The most popular supervised learning algorithm is back-

propagation [16], which consists of a forward and backward 

action. In the forward step, the free parameters of the network 

are fixed, and the input signals are propagated throughout the 

network from the first layer to the last layer. In the forward 

phase, we compute a mean square error. 

( )∑
=

−=
N

i

ii kykd
N

kE
1

2
)()(

1
)(  (11) 

where di is the desired response, yi is the actual output 

produced by the network in response to the input xi, k is the 

iteration number and N is the number of input-output training 

data.  

The second step of the backward phase, the error signal E(k) is 

propagated throughout the network of Figure 11 in the backward 

direction in order to perform adjustments upon the free 

parameters of the network in order to decrease the error E(k) in a 

statistical sense [17]. The weights associated with the output 

layer of the network are therefore updated using the following 

formula [12]:   

)(

)(
)()1(

kw

kE
kwkw

ji

jiji ∂
∂

−=+ η  (12) 

where wji is the weight connecting the jth neuron of the output 

layer to the ith neuron of the previous layer, η is the constant 

learning rate. Large values of η may accelerate the ANN 

learning and consequently fasters convergence but may cause 

oscillations in the network output, whereas low values will cause 

slow convergence. Therefore, the value of η has to be chosen 

carefully to avoid instability. 

Get input-output example data patterns 

from experimental or simulation results 

Select ANN topology with number of layer, 

nodes and activation function 

Initialize with random 

weights, define Emax, Kmax 

Select all input-output 

patterns 

Calculate ANN output 

and compute error 

E<=Emax No

Yes

Calculate new weights 

by training algorithm 

K<=Kmax 

K=k+1 

Yes

No

Network is ready 

for use 

Change number of 

neurons in hidden layer 

or number of layer 

 

Figure12. Flowchart for training back propagation networks 

To ensure fast convergence, we change the formula of 

equation (12) as shown in equation (13) where α is a positive 

constant called momentum constant. 

)(
)(

)(
)()1( kw

kw

kE
kwkw ji

ji

jiji ∆+
∂
∂

−=+ αη  (13) 

The concrete back propagation training process is shown in 

the flowchart of Figure 12. Once the ANN is trained properly, it 

should be adequately tested using data which is different from 

the training set in order to test the validity of the model. 

5.3 ANN structure for DTC 
The basic structure of Direct Torque Neural Network Control 

(DTNNC) method for induction machine is presented in Figure 

13. The artificial neural network replaces the switching table 

selector block and the two hysteresis controllers. After several 

tests, we choose an architecture 3-10-10-3, i.e. with two hidden 

layer, with a number of epochs of 3000 and an error of 10-3.  

The ANN inputs are the error between the estimated flux 

value and its reference value, the difference between the 

estimated electromagnetic torque and the torque reference and 

the position of flux stator vector represented by the number of 

corresponding sector. The ANN output layer is composed of 

three neurons. Each neuron represents the state of one of the 

three pairs of the vector that will be applied to the induction 

motor. The rest of the whole system is the same like the classical 

structure of DTC presented in Figure 1.  
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Figure 13. Structure of DTC using ANN strategy 

6. SIMULATION AND 

INTERPRETATION OF RESULTS 
To test the performances of the fuzzy logic and neural 

networks control with direct torque control, the simulation of the 

system was conducted using the MATLAB tool. Motor’s 

parameters for simulation are given in Table 3. Figures 14-17 

show a comparison between the CDTC, DTFC and DTNNC.   

The torque and flux references used in the simulation results 

of the Fuzzy direct torque control strategy are 10 N.m and 0.91 

wb respectively. The machine is running at 100 rad/sec. The 

sampling period of the system is 50 µs. All four figures are the 

responses to step change torque command from zero to 10 N.M, 

which is applied at 0 sec. 

The simulation results in Figure 14 (a, b and c) show the 

response of electromagnetic torque of the CDTC, fuzzy DTC 
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and neural network respectively. It can be seen that the torque's 

ripples with fuzzy direct torque control in steady state is 

significantly reduced compared to conventional and neural 

networks DTC. It is obvious from Figure 14.d that in fuzzy 

direct torque control, the torque trajectory is established quickly 

than in the conventional or the neural network DTC. The torque 

trajectories with conventional and neural networks DTC in start-

up are almost similar. 

 

a b 

DTFC

DTNNC

DTC 

d c  

(a).CDTC. (b). DTFC. (c). DTNNC. (d) Conventional, Fuzzy 

and neural DTC plots 

Figure 14. Electromagnetic torque response 

Figure 15 (a, b and c) illustrates the response of stator flux 

magnitude of the CDTC, fuzzy DTC and neural network 

respectively. Compared with the CDTC, ripple of stator flux 

with fuzzy and neural network DTC is reduced significantly. The 

stator flux of the fuzzy DTC has the fast response time in 

transient state as shown in Figure 15.d. 

a b 

c 

DTFC

DTNNC

DTC 

d 

 

(a).CDTC. (b). DTFC. (c). DTNNC. (d) Conventional, Fuzzy 

and neural DTC 

Figure 15. The stator flux magnitude 

The simulation results in Figure16 (a, b and c) show that the 

current's stator ripples with direct torque neural networks control 

in steady state is significantly reduced compared to CDTC. 

Compared to the neural DTC, ripple of stator current with fuzzy 

DTC is almost similar. 

 

a 

 

b 

 

c  

(a). Fuzzy DTC. (b).Neural network DTC. (c). CDTC. 

Figure 16. The stator current magnitude 

Figure 17 (a, b and c) describes the stator flux vector 

trajectory which is almost circular. In this figure it can be 

noticed that fuzzy controller offers the fast transient responses 

and has better performance than the CDTC method. Compared 

to the CDTC, ripple of stator flux trajectory of neural network is 

significantly reduced. 

 

a 

 

b 

 

c  

(a). Fuzzy DTC. (b). Neural network DTC. (c). CDTC. 

Figure 17. The stator flux vector trajectory 

In all the simulations presented here, we can easealy observe 

that our methods reaches better performances than the CDTC 

method with respect to reducing the torque, flux and current 

ripple and maintaining a good torque response. 

 

Table 3. Induction Motor parameters 

Voltage 220/380 v 

Pair pole 2 

Stator resistance Rs 5.717 Ω 

Rotor resistance Rr 4.282 Ω 

Stator inductance Ls 0.464 H 

Rotor inductance Lr 0.464 H 

Mutual inductance M 0.441 H 

Moment of inertia J 0.0049 Kg.m
2 

 
 

7. CONCLUSION AND FUTURE WORK 
In this paper, an improvement for direct torque control 

algorithm of induction machine is proposed using two intelligent 

approaches which consists of replacing the switching table 
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selector block and the two hysteresis controllers. Simulations 

have shown that the two proposed strategies have better 

performances than the CDTC. In fact, they alloaw a significant 

reduced torque and stator flux ripples and a good starting 

behavior. Using the intelligent techniques, the selection of the 

voltage vector becomes much convenient and the switching state 

can be obtained when the error of the torque and stator flux is 

attained. The validity of the proposed control is confirmed by the 

simulative results. None of the known advantages of the CDTC 

are impacted by the proposed methods. It has been found that the 

direct torque fuzzy control strategy allows a higher dynamic 

behavior than the conventional and neural network DTC. 

In the future research, the simulative results will be brought 

into the experimental system to prove the proposed neural 

network and fuzzy logic control. A digital implementation of 

these intelligent controls may be performed using different 

devices such as custom design, programmable logic, etc. In a 

Field Programmable Gate Array (FPGA), which is a family of 

programmable devices, multiple operations can be executed in 

parallel so that algorithms can run faster, which is required for 

control systems. 
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