Edge-odd Gracefulness of $C_3 \Theta P_n$ and $C_3 \Theta 2p_n$

Dr. A. Solairaju Associate Professor of Mathematics Jamal Mohamed College, Tiruchirapalli – 620 020. Tamil Nadu, India.

> C. Vimala and A.Sasikala Assistant Professors (SG), Department of Mathematics, Periyar Maniammai University, Vallam Thanjavur – Post.. Tamil Nadu, India.

ABSTRACT

A (p, q) connected graph is edge-odd graceful graph if there exists an injective map f: E(G) \rightarrow {1, 3, ..., 2q-1} so that induced map f₊: V(G) \rightarrow {0, 1,2, 3, ..., (2k-1)}defined by f₊(x) \equiv f(x, y) (mod 2k), where the vertex x is incident with other vertex y and k = max {p, q} makes all the edges distinct and odd. In this article, the Edge-odd gracefulness of C₃ Θ P_n and C₃ Θ 2P_n is obtained.

Key words: Graceful Graph, Edge-odd graceful labeling, Edge-odd graceful graph

1. INTRODUCTION

A.Solairaju and K.Chitra [2009] obtained edge-odd graceful labeling of some graphs related to paths. A.Solairaju, C.Vimala, A.Sasikala [2008] gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n , A. Solairaju et.al. [2010] that the cartesian product of path P_2 and circuit C_n for all integer n, $S_{m,n}$, $P_m \Theta S_5$ and $C_m \Theta S_n$ for n is even, are is edge-odd graceful. Here the edge-odd graceful labeling of $C_3 \Theta P_n$ and $C_3 \Theta 2P_n$ is obtained.

Section 2: Basic Concept

In this section, the following definitions are first listed.

Definition 2.1: Graceful Graph: A function f of a graph G is called a graceful labeling with m edges, if f is an injection from the vertex set of G to the set $\{0, 1, 2, ..., m\}$ such that when each edge uv is assigned the label |f(u) - f(v)| the resulting edge labels are distinct. Then the graph G is graceful.

Definition 2.2: Edge – odd graceful graph [6]: A (p, q) connected graph is edge-odd graceful if there exists an injective map f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ so that induced map f₊: $V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ defined by f₊(x) $\equiv \Sigma f(x, y) \pmod{2k}$, where the vertex x is incident with other vertex y and $k = \max \{p, q\}$ makes all the edges distinct and odd.

Section 3: Edge-odd Gracefulness of Armed crown graph $C_3 \Theta P_n$

In this section edge-odd gracefulness of $C_3 \Theta P_n$ is obtained.

Definition 3.1: Armed crown $C_3 \Theta P_n$ is a connected graph obtained from the circuit C_3 by adding a path P_n to each vertex of C_3 . It has 3n vertices and 3n edges. This graph is given in figure 1.

Figure 1: Graph of C₃ Θ P_n

Lemma 3.2: The connected graph $C_3 \Theta P_2$ is edge – odd graceful.

The figure 2 is the armed crown $C_3 \Theta P_2$ with 6 vertices and 6 edges, with some arbitrary edge-odd graceful labeling to vertices and edges.

Figure 2: Graph of C₃ Θ P₂

Lemma 3.3: The connected graph $C_3 \Theta P_3$ is edge – odd graceful.

Figure 3: Graph of C₃ Θ P₃

The graph in figure 3 is the armed crown $C_3 \Theta P_3$ with 9 vertices and 9 edges, with some arbitrary edge-odd graceful labeling to vertices and edges.

Lemma 3.4: The connected graph $C_3 \Theta P_4$ is edge – odd graceful.

The armed crown $C_3 \Theta P_4$ with 12 vertices and 12 edges is given in figure 4 with some arbitrary edge-odd graceful labeling to vertices and edges.

Figure 4: Graph of C₃ Θ P₄

Theorem 3.5: The connected graph $C_3 \Theta P_n$ is edge – odd graceful for n > 4.

Figure 5: Graph of C₃ Θ P_n

The figure 5 is the armed crown $C_3 \Theta P_n$ with 3n vertices and 3n edges, with some arbitrary labelings to its vertices and edges.

Define f: E(G) \rightarrow {1, 3, ..., 2q-1} by For n is even

$$\begin{split} f(li) &= 2i - 1, i = 1, 2, 3; f(e_1) = q + 5\\ f(e_i) &= f(e_1) + 3i - 3, \text{ for } i = 3, 5, \dots, (n-1)\\ f(e_2) &= 7\\ f(e_i) &= f(e_2) + 3i, \text{ for } i = 4, 6, 8, \dots, (n-2);\\ f(t_i) &= f(t_1) + 3i - 3, \text{ for } i = 3, 5, \dots, (n-1);\\ f(t_2) &= 11\\ f(t_i) &= f(t_2) + 3i, \text{ for } i = 4, 6, 8, \dots, (n-2);\\ f(u_1) &= f(e_1) - 4\\ f(u_i) &= f(u_1) + 3i - 3, \text{ for } i = 3, 5, \dots, (n-1);\\ f(u_2) &= 14\\ f(u_i) &= f(u_2) + 3i, \text{ for } i = 4, 6, 8, \dots, (n-2); \end{split}$$

For n is odd

$$\begin{split} f(\ell i) &= 2i-1, \, i=1,\, 2,\, 3; \, f(e_1)=11 \\ f(e_i) &= f(e_1)+6i-6, \, i=2,\, 3,\, \ldots,\, (n\text{-}1)\, ; \\ f(t_1) &= 9 \\ f(t_i) &= f(t_1)+6i-6, \, i=2,\, 3,\, \ldots,\, (n\text{-}1)\, ; \\ f(u_1) &= 7 \\ f(u_i) &= f(u_1)+6i-6, \, i=2,\, 3\,, \ldots,\, (n\text{-}1)\, \ldots,\, (1). \end{split}$$

Define $f_+: V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma$ f(uv) mod (2k), where this sum run over all edges through v (2).

Hence the map f and the induced map f_+ provide labels as distinct odd numbers for edges and also the labeling for vertex set have distinct values in $\{1, 2, ..., (2k-1)\}$. Hence the graph $C_3 \Theta P_n$ is edge-odd graceful.

Section 4 - Bi-armed crown $C_3 \Theta 2P_n$ is edge-odd graceful

Definition 4.1: Bi-armed crown $C_3 \Theta 2P_n$ is a connected graph obtained from the circuit C_3 by adding two paths P_n to each vertex of C_3 . It has (6n - 3) vertices and (6n - 3) edges.

Figure 6: Graph of C₃ Θ 2P_n

Theorem 4.2: The connected graph $C_3 \Theta 2P_n$ is edge – odd graceful.

Proof: The figure 7 is the armed crown $C_3 \Theta P_n$ with (6n - 3) vertices and (6n - 3) edges, with some arbitrary edge-odd graceful labeling to vertices and edges paths P_n to each vertex of C_3 . It has (6n - 3) vertices and (6n - 3) edges.

Figure 7: Graph of C₃ Θ 2P_n

Define f: $E(G) \rightarrow \{1, 3, ..., 2q-1\}$ by For n is even

f(ei) = 2i - 1, i = 1, 2, 3, ..., (6n-3). (1)

Define $f_+: V(G) \rightarrow \{0, 1, 2, ..., (2k-1)\}$ by $f_+(v) \equiv \Sigma f(uv) \mod (2k)$, where this sum run over all edges

 $r_{+}(v) = 2$ r(uv) not (2u), where an sum run over an edges through v (2)

Hence the map f and the induced map f_+ provide labels as odd numbers for edges with all distinct and also the labelings for vertex set has distinct values in $\{1, 2, ..., (2k-1)\}$. Hence the graph $C_3 \Theta 2P_n$ is edge-odd graceful.

REFERENCES

- A.Solairaju, A.Sasikala, C.Vimala, Gracefulness of a spanning tree of the graph of product of P_m and C_n, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 133-136
- A.Solairaju and K.Chitra, Edge-odd graceful labeling of some graphs " Electronics Notes in Discrete Mathematics Volume 33,April 2009, Pages 15 - 20
- A.Solairaju, C.Vimala, A.Sasikala, Gracefulness of a spanning tree of the graph of Cartesian product of S_m and S_n, The Global Journal of Pure and Applied Mathematics of Mathematical Sciences, Vol. 1, No-2 (July-Dec 2008): pp 117-120
- A.Solairaju, A.Sasikala, C.Vimala, Edge-odd Gracefulness of a spanning tree of Cartesian product of P₂ and C_n ,Pacific-Asian Journal of Mathematics, Vol .3, No. 1-2. (Jan-Dec. 2009) pp:39-42
- 5. A.Solairaju, C. Vimala, A. Sasikala, Edge-Odd Gracefulness of $C_m \Theta S_n$ for n is even (communicated to Serial Publications)