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ABSTRACT 

In this paper, a solution procedure has been given for the 

Chance Constrained   Programming Models For Multi-Objective 

Interval Solid Transportation  Problem under stochastic 

environment (MOISTP) where the cost coefficients of the 

objective functions, the source availability, destination demand 

and conveyance capacities have been taken as stochastic 

intervals by the decision makers. The problem has been 

transformed into a classical multi-objective transportation 

problem where  the multiple  objective functions are minimized 

by using fuzzy programming approach. Numerical examples are 

provided to illustrate the approach  
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1. NTRODUCTION 

As a generalization of traditional Transportation Problem, the 

Solid Transportation Problem (STP) was stated by Shell [4] in 

1955, which he considered the three item properties in the 

constraint set instead of two items namely source and 

destination. He also suggested the situations where the STP 

would arise, and four cases of STP were discussed according to 

the data given on the item properties and developed its solution 

procedure. Basu et al. [5] developed  an algorithm for finding 

the optimum solution for the solid fixed charge linear 

transportation problem. Although STP was forgotten for long 

time, because of existing advanced solution methodologies, 

recently it is receiving the attention of  many researchers of this 

field. Models and algorithms have been developed by many 

authors [6, 12, 15-19].  

In literature, it was found that various effective algorithms were 

developed for solving transportation problems with the 

assumption that the coefficients of the objective function, source 

availability, destination demand and conveyance capacities are 

specified in a crisp manner. However, these conditions may not 

be satisfied always. Since in the present situation, the unit 

transportation costs are rarely constant. To deal  the problems 

with ambiguous coefficients in mathematical programming, 

inexact and interval programming techniques have been 

developed by many authors [13, 14, 26, 27]. 

The STP in uncertain environment becomes 

important branch of optimization and a lot of 

models and algorithms have been presented for 

different problems by different authors   [2,19]. 

A.Nagarajan and K.Jeyaraman developed a 

model for solid fixed cost bi-criterion indefinite 

quadratic transportation problem, Expected value 

goal programming model and Chance constrained 

goal programming model  for multi-objective 

interval solid transportation problem under 

stochastic environment [23, 24, 25]. S.K.Das et 

al. [11], developed the theory and methodology 

for multi-objective transportation problem with 

interval cost, source and destination parameters. 

Expected value of fuzzy variable and fuzzy 

expected value models presented by Baoding Liu 

and Yian-Kui Liu [7].  

The fuzzy set theory concept was first introduced 

by Zadeh [28]. Linear programming problems with several 

objective functions was solved by using fuzzy membership 

functions by Zimmerman [29] and he showed that the 

results obtained from fuzzy are always efficient. A special 

type of non-linear membership function was used for the 

vector maximum linear programming problem [21].  

            In this paper, the idea of stochastic environment has 

been employed for MOISTP and a method has been 

proposed to solve the MOISTP. Using chance constrained 

programming  of random variables, we have constructed an 

equivalent crisp model to the given MOISTP. To obtain the 

solution of this equivalent problem, we have used fuzzy 

programming approach. In order to illustrate the  proposed  

method,  numerical examples are provided. 

            This paper is organized as follows. In Section 2, the 

basic idea of  MOISTP has been given. In Section 3, 

formulation of crisp objective function  and related 

definitions have been given.  The formulation of crisp  

constraint and Chance Constrained Programming Problem 

[CCPM]  have been  given in the section-4 and section-5 

respectively. Crisp equivalent,   fuzzy programming 

approach and different cases of CCPM for MOISTP along 

with numerical example is given in Section-6, 7 and 8.  

 

2.MULTI-OBJECTIVE TERVAL 

SOLID TRANSPORTATION 

PROBLEM (MOISTP) 

The MOISTP is a generalization of the multi-objective 

solid transportation problem in which input data are 

expressed as stochastic variables as well as stochastic 

intervals instead of point values. These types of problems 

arise only when uncertainty occurs in data. The decision 

makers consider it as more convenient to express it as 

intervals which can be stated as follows. 
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Problem-I :  

 Minimize 

  Z
p

=

m

i 1

n

j 1

l

k 1

[c
p

Lijk
,c

p

Rijk
]xijk  ,      

                                                                 p = 1, 2, 3,...,P       

(1) 

subject to  

  

n

j 1

l

k 1

 xijk = [a Li , a Ri ] ,                                    

                                        i = 1, 2, 3,…, m.   (2) 

 

m

i 1

l

k 1

 xijk = [b Lj , b Rj ] ,            

                                       j =1, 2, 3, ..., n.       (3) 

 

m

i 1

n

j 1

xijk = [e Lk , e Rk  ] ,    

                                  k = 1, 2, 3, ... ,l.  (4)  with 

m

i 1

a Li ≥

n

j 1

b Lj ,

m

i 1

a Ri ≥

n

j 1

b Rj ,

l

k 1

e Lk  ≥

n

j 1

b Lj , 

l

k 1

e Rk  ≥ 

n

j 1

b Rj  

(non-balanced condition is always assumed) (5).                                                                                           

Where  [c
p

Lijk
, c

p

Rijk
]  for p = 1, 2, 3,..., P are 

intervals representing the uncertain cost for the 

transportation problem; it can represent delivery 

time, quantity of goods delivered, under used 

capacity, etc. The source parameter lies between 

left limit a Li  and right limit a Ri , similarly,  

destination parameter lies between left limit b Lj  

and right limit b Rj  and conveyance parameter 

lies between left limit e Lk  and right limit  e Rk . 

3. FORMULATION OF THE 

CRISP OBJECTIVE FUNCTION 

[1, 3] 

        In this section, the formulation of original 

interval objective function has been made as a 

crisp one. 

Definition 3.1  x
0

 S is an optimal solution of 

the problem-I iff there is no other solution x S 

which satisfies Z(x)  < LR  Z(x
0

) or Z(x) < CW  

Z(x
0

). 

Theorem 3.1 It can be proved that  

A  ≤ RC  B iff   A ≤ LR  B  or    A  ≤ CW  B,  A 

< RC  B iff A < LR B  or  A < CW  B             (6) 

where  the  order  relation  ≤ RC  is defined as A  

≤ RC  B iff    a R  ≤  b R and  a C ≤ b C ,  

 A < RC B  iff  A  ≤ RC  B   and  A  B.       

Using the theorem 3.1, Definition 3.1 is 

simplified as follows. 

Definition 3.2 x
0

 S is an optimal solution of 

the Problem-I iff there is no other solution x S 

which satisfies Z(x)  < RC  Z(x
0

). 

              The right limit Z
P

R (x) of the interval 

objective function in problem-I is  arrived  as  

  Z
p

R (x) =

m

i 1

n

j 1

l

k 1

c
p

Cijk
xijk + 

m

i 1

n

j 1

l

k 1

c
p

Wijk ijkx                        (7) 

where c
p

Cijk
 is the centre and c

p

Wijk
 is the half 

width of the coefficient of xijk   in Z
p

. In the case 

when xijk ≥ 0,  i = 1, 2, 3,…, m,  j = 1, 2, 3, ..., n,  

k = 1, 2, 3, …, l,    Z
P

R (x) is modified as:     

   Z 
p

R  (x)  =   

m

i 1

n

j 1

l

k 1

c
p

Cijk  xijk +   

     

m

i 1

n

j 1

l

k 1

c
p

Wijk
xijk.                                     

(8)                                         

           The  centre of the objective function 

Z
p

C (x) for the Problem–I  can be defined as                                                     

            Z
p

C (x)=

n

j 1

l

k 1

c
p

Cijk
xijk                     (9)                                                                                            

       

      The solution set of the Problem-I   defined 

by  Definition 3.2 is als.o  obtained as the Pareto 

optimal solution of the two multi-objective 

problem as: 
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   Minimize { Z
p

R ,  Z
p

C },  p = 1, 2, 3,…,P, 

subject to the constraints (2) – (5)      respectively 

where Z
p

R (x) and  Z
p

C (x) are as stated as in 

equations (8) and (9). 

 

4. FORMULATION OF THE 

CRISP CONSTRAINT 

         By using the theory of interval arithmetic 

[3, 23], the Problem-I is  converted into its 

equivalent form as is  as follows .  

Problem -II: Minimize 

 Z
p

 =

m

i 1

n

j 1

l

k 1

[c
p

Lijk
, c

p

Rijk
] xijk,  

                             p = 1, 2, 3,..., P               (10) 

   subject to  

n

j 1

l

k 1

xijk  a Li , i = 1, 2, 3,…,m. (11) 

n

j 1

l

k 1

xijk  a Ri ,  i  = 1,  2,  3,…,m. (12) 

m

i 1

l

k 1

xijk b Lj , j = 1, 2, 3 ,..., n. (13)   

m

i 1

l

k 1

 xijk  b Rj ,  j = 1, 2, 3 ,...,  n.  (14)                                                                                         

m

i 1

n

j 1

xijk  e Lk ,  k  = 1,  2, 3,…, l.  (15)   

m

i 1

n

j 1

xijk  e Rk , k = 1, 2, 3,…, l.      (16)    

                  xijk≥0,  for all i, j, k.    

      The problem proposed in this paper is 

concerned, the values of the parameters c
p

Cijk , 

c
p

Wijk , a Li , a Ri , b Lj , b Rj , e Lk  and e Rk   are in 

the form of  stochastic  variables that follow 

certain probability distributions.   Now the 

MOISTP in certain environment becomes a 

stochastic and hence  the  transportation model  

becomes a stochastic interval one.  In this 

situation, it is difficult to handle the problem by 

certain known methods, and hence the 

probability theory has been employed to solve the 

problems with randomness. To satisfy  the 

requirements of randomness, different types of 

stochastic programming models have been 

developed to suit the different purposes. Here we 

use the chance constrained programming  

developed by Charnes and Cooper [9] as a means 

of handling uncertainty by specifying a 

confidence level at which the stochastic 

constraints are desirable. Then Liu [22] 

generalized a chance constrained programming 

for stochastic constraints and  stochastic 

objectives. Usually there exists multiple events in 

a complex stochastic decision system and the 

decision makers wish to maximize the chance 

functions.  

5. CHANCE CONSTRAINED 

PROGRAMMING           MODEL 

[CCPM] 

              The most popular technique is a 

Chance Constrained Programming (CCP) 

developed by  Charnes and Cooper [8, 10], offers 

a powerful means of modeling  stochastic 

decision systems with the assumption that the 

stochastic constraints  holds at least ‘ ’  of 

time, where ‘ ’ is referred  as the confidence 

level provided as  an appropriate safety margin 

by the decision maker. The main idea of chance 

constrained programming is to optimize the 

critical value of the objective function under the 

probability constraints. 

Definition 5.1   Let ‘ ’  be a random variable, 

and (0, 1]. Then  

        inf( ) = inf { r │Pr{   r } } is 

called  -critical value of   [22]. 

The CCPM  for  the  Problem–II to seek a 

suitable transportation plan is  as follows. 

 

 Problem -III:  minimize  

Z
p

  =   

m

i 1

n

j 1

l

k 1

[c
p

Lijk , c
p

Rijk ] xijk ,    

   subject to:  

      

Pr{

n

j 1

l

k 1

 xijk  a Li  }  Li       (17),           

Pr{

n

j 1

l

k 1

 xijk  a Ri  }  Ri         (18), 
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Pr{

m

i 1

l

k 1

 xijk ≥ b Lj    }  Lj    (19),  

Pr{

m

i 1

l

k 1

xijk  b Rj   }  Rj  (20),   

Pr{

m

i 1

n

j 1

 xijk  e Lk  }   Lk  (21),         

Pr{

m

i 1

n

j 1

xijk  e Rk  }   Rk (22),   

where xijk ≥ 0 , for i = 1, 2, 3,…,m,  j = 1, 2, 3,..., 

n,  k = 1, 2, 3, …, l  and p = 1, 2, 3,…,P. 

               The models developed in the previous 

sections are constructed under stochastic 

environment. In order to find the suitable 

solution for the models, critical value or 

credibility measure must be calculated. If the 

stochastic parameters are complex, the computing 

objective values subject to the  constraints 

becomes a time consuming one. Due to this, it is 

better to convert the models into their crisp 

equivalents by using the appropriate probability 

levels defined by the decision makers. 

6. CRISP EQUIVALENTS OF 

THE CCPM FOR MOISTP 

Theorem 6.1 Suppose that ‘ ’ is a random 

variable with continuous probability distribution   

function  (x),   and  the   function  

       g(x,  )  =  h(x) - .   

             Then   for   any (0, 1], we have Pr{ 

g(x,  )   0}   if and only if h(x)  Fα , 

where   Fα = sup { F| F = -1(1- ) } [1]. 

Theorem 6.2 Suppose that ‘ ’ is a random 

variable with continuous probability distribution 

function (x), and  the  function  

                   g(x,  )  =   h(x) -  .   

             Then  for  any   (0, 1],   it becomes  

Pr{ g(x,  )  ≥ 0}   if and only if h(x) ≥ Fα 

, where   Fα = inf { F| F = -1( )}. 

Theorem 6.3    Let ‘ ’  be  a random variable 

with continuous, strictly increasing probability 

distribution function (x). The - critical 

value of  is   inf( ) = -1( ).  

Theorem 6.4  Let ‘ ’ be a normally distributed 

random variable  with ~N( , 2). Then 

- critical value of  is inf( ) = -

1( ) + ,  where (x) is the probability 

distribution function of standard normal 

distribution N(0, 1). 

            By using the above theorems, the crisp 

equivalent of the Problem –III is obtained  as 

follows: 

           Suppose that c
p

Cijk
, c

p

Wijk
 are independent 

normally distributed random variables   defined  

as c
p

Cijk    ~  N ( p
CijkC

,  
2

p
CijkC

),  c
p

Wijk
  ~  N 

( p
WijkC

,  
2

p
WijkC

) and  a Li , a Ri , b Lj , b Rj , 

e Lk  and e Rk  are random variables with 

continuous probability distribution functions 

Lia
(x), 

R ia (x), 
Ljb

(x), 
Rjb

(x),  

Lkc (x)  and 
R kc (x), respectively, where  i = 

1, 2, 3,…,m,  j = 1, 2, 3,…,n,  k = 1, 2, 3, …,l. 

Then the Problem -III is converted into its 

equivalent model as follows: 

Problem -IV minimize  

Z
p

  =   

m

i 1

n

j 1

l

k 1

[c
p

Lijk
, c

p

Rijk
] xijk ,    

subject to:  

            

n

j 1

l

k 1

xijk Fα Li                              (23),   

            

n

j 1

l

k 1

xijk ≤ Fα Ri                             (24),  

           

m

i 1

l

k 1

xijk≥Fβ Lj                                   (25),                                 

          

m

i 1

l

k 1

 xijk  Fβ Rj                             (26),   

          

m

i 1

n

j 1

xijk  Fγ Lk                               (27),  

          

m

i 1

n

j 1

 xijk ≤ Fγ Rk                                  (28), 

 where xijk ≥ 0,  for i = 1, 2, 3,…,m,  j = 1, 2, 3,..., 

n,  k = 1, 2, 3, …, l  and p = 1, 2, 3,…,P. 
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      Fα Li  =  inf { F | F = 

1

Lia ( Li) },          

      Fα Ri  = sup{ F | F = 
1

Ria
(1- Ri ) },  

      Fβ Lj  =  inf { F | F = 
1

Ljb
( Lj) },        

      Fβ Rj
=  sup { F | F = 

1

Rjb
(1- Rj ) }, 

        Fγ Lk  =  inf {F | F = 
1

Lke
( Lk ) } and   

Fγ Rk   =  sup { F | F = 
1

Rke
(1- Rk ) }. 

          The crisp equivalents of six probability 

constraints in the above model can be obtained 

by using the theorems defined earlier.  Generally   

six   kinds of probability constraints in Problem-

IV are transformed   into their crisp equivalents.  

But, if the probability distribution functions 

Lia
(x), 

R ia (x), 
Ljb

(x), 
Rjb

(x), 

Lkc (x)  and 
R kc (x) are complex, it is 

difficult  to do so and hence, the following 

random simulation has been used to obtain the 

approximate values of Fα Li
, Fα Ri

,  Fβ Lj
, Fβ Rj   

Fγ Lk
and  Fγ Rk , for i=1, 2, 3,.., m., j=1, 2, 3, .., n 

and k = 1, 2, 3,.., l.     

            Compute    Fα Ri  (or Fβ Rj
 or  Fγ Rk

) by 

random simulation. 

            Step 1. Generate the numbers n 1 , n 2 , 

n 3 ,…, n N   according to the probability 

distribution  function  or  
R ia (x) ( or  

Rjb
(x) 

or  
R kc (x)).                                                                     

            Step 2. Let Fα Ri
(or Fβ Rj

or Fγ Rk
) be the 

N’th largest number in{n 1 ,n 2 ,                          

n 3 ,…, n N }, where N’ = [ iN] + 1( or [ kN] 

+1 or [ Ri N] + 1 or [ Rk N] + 1 

or [ Rj N] +1). 

            Step 3. Return   Fα Ri   ( or  Fβ Rj
 or  

Fγ Rk
). 

             Compute   Fα Li   (or  Fβ Lj   or Fγ Lk
)   by 

random simulation. 

            Step 1. Generate the numbers n 1 , n 2 , 

n 3 ,…, n N  according to the probability 

distribution   function  (or 
R ia (x) ( or 

Rjb
(x) or

R kc (x)). 

            Step 2. Let  Fα Li  (or Fβ Lj  or Fγ Lk
)   be 

the N’th smallest number in{ n 1 , n 2 , n 3 ,, n N }, 

where N’=[ jN] +1( or [ Li N] +1  or [ LkN] 

+ 1 or [ LjN] + 1). 

            Step 3. Return   Fα Li   (or Fβ Lj   or Fγ Lk
).  

 After finding the crisp equivalent of the 

models developed earlier the following steps are 

used to calculate the minimum value of ‘P’ 

objective functions in each of the model as 

follows: 

7. FUZZY PROGRAMMING 

APPROACH FOR THE 

SOLUTION OF MOISTP 

   The CCPM for MOISTP can be considered as a 

vector minimum problem. The first step to solve 

the problem is to assign, for each objective, two 

values U
p

and L
p

as upper and lower bounds, 

respectively, for the p-th objective, where U
p

is 

the highest acceptable level for achievement for 

the p-th objective,  L
p

is the aspired level of 

achievement for the p-th objective and d
p

= 

U
p

- L
p

is the degradation allowance for the p-

th objective. Once the aspiration levels and 

degradation allowance for each objective have 

been specified, we have formed the fuzzy model 

and then convert the fuzzy model into a crisp 

model. The steps of the fuzzy programming 

approach may be summarized as follows. 

Algorithm:  

 Step 1. Solve the multi-objective interval solid 

transportation problem using one objective at a 

time (ignoring all others) subject to the given set 

of constraints by using any one of the suitable 

evolutionary technique. Let X
*1

= {x
1

ijk  }, X
*2

= 

{x
2

ijk }, X
*3

= {x
3

ijk } ,…, X
*P

 = {x
p

ijk  } be the 

optimum solutions for P different  single 

objective interval solid transportation problems. 

Step 2. From the results of step1, the values of all 

the objective functions  will be calculated at all 

these  ‘P’ optimal points. Then a payoff matrix is 
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formed. The diagonal of the matrix  constitutes 

individual optimum minimum values for the P 

objectives. The ‘X
*P

’’s are the individual 

optimal solutions and each of these are  used to 

determine the values of other individual 

objectives, thus the payoff matrix is developed as  

follows:                         

                X
*1

           X
*2

    …          X
*P

  

Z
1

     Z
1

( X
*1

)    Z
1

(X
*2

)  ...    Z
1

 ( X
*P

) 

Z
2

    Z
2

( X
*1

)   Z
2

( X
*2

) …   Z
2

( X
*P

)  

Z
3

    Z
3

( X
*1

)    Z
3

 ( X
*2

) …   Z
3

( X
*P

) 

Z
p

   Z
p

( X
*1

)  Z
p

( X
*2

)  …   Z
p

( X
*P

) 

        We find the upper and lower bound for each 

objective from the payoff matrix. Here L
p

= 

Z
p

(X
*P

) and U
p

=max{  Z
p

( X
*1

),  Z
p

( 

X
*2

) , …, Z
p

( X
*P

) }. 

Step 3. The initial fuzzy model is given by the 

aspiration level with each objective as 

follows.Find xijk i =1, 2, 3,…,m, j =1, 2, 3,...,n 

and k=1, 2, 3,...,l, so as to satisfy Z
p

  L
p

 

where p = 1, 2, 3,…,P, and the given constraints 

and non-negativity conditions. 

 Step 4. For the multi-objective interval solid 

transportation, a membership function 
p

(Z
p

) 

corresponding to p-th criterion is defined as  

 

                                       1      if    Z
p

  L
p

 

 
p

(Z
p

) =  
pp

pp

LU

ZU
If L

p
<Z

p
< U

p
 

                                        0    if   Z
p

  U
p

,  

Where U
p

L
p

forall p. If U
p

= L
p

 for all p 

then
p

(Z
p

) = 1 for all p. 

Step 5. Formulate a fuzzy linear programming 

problem. By using max-min operator, the 

equivalent fuzzy linear programming problem for 

the multi-objective interval solid transportation 

problem is formulated  as follows:  

   For  right limit of the objective function 

Z
P

R (x), the fuzzy linear programming problem is 

obtained as 

Maximize    subject to   

m

i 1

n

j 1

l

k 1

{c
p

Cijk
+c

p

Wijk
}xijk + ( U

p
- 

L
p

)  U
p

, p = 1, 2, 3,...,P, with the given 

constraints and    0, where = min 

{
p

(Z
p

)}. 

   For the centre of the objective function Z
p

C (x), 

the fuzzy linear programming problem is 

obtained as  Maximize  subject to    

m

i 1

n

j 1

l

k 1

c
p

Cijk
xijk+ (U

p
- L

p
 )  

U
p

, p = 1, 2, 3,...,P, with the given constraints  

and   0,  where    = min {
p

(Z
p

)}. 

     Find out an optimal solution of the foregoing 

problem by using any existing method. 

Substituting this optimal value in each objective 

we get an optimal compromise interval of each 

objective.   

8.CASES OF CCPM FOR 

MOISTP 

     Two different cases that may arise in CCPM 

for MOISTP can be described as follows. 

8.1 Case-I. When the objective functions’ 

coefficients of c
p

ijk
 are in the form of  stochastic 

intervals, i.e., c
p

ijk = [c
p

Lijk
, c

p

Rijk
], and the  

source,  destination and conveyance parameters 

are in the form of random variables, the multi-

objective interval solid transportation problem 

can be represented as follows. 

     Z
p

=

m

i 1

n

j 1

l

k 1

[c
p

Lijk , c
p

Rijk ] xijk ,        

                     p = 1, 2, 3,..., P.                     (29)     

subject to  

                    

n

j 1

l

k 1

xijk ≤ai                  (30), 

                   

m

i 1

l

k 1

xijk≥bj                                (31),              

                   

m

i 1

n

j 1

xijk≤ek                   (32),   
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xijk ≥ 0 ,  for all i =1, 2, 3,…,m , j = 1, 2, 3, ..., n,    

k = 1, 2, 3,…,l,  Using Eqs. (8) and (9) in (29) 

and using the chance constrained programming 

technique, the corresponding equivalent classical 

MOISTP can be expressed as           

Z
p

R (x)=

m

i 1

n

j 1

l

k 1

[c
p

Cijk
+c

p

Wijk
]xijk,   

Z
p

C (x) = 

m

i 1

n

j 1

l

k 1

[c
p

Cijk
]xijk, 

where p = 1, 2, 3, …,P, subject to the constraints  

            

n

j 1

l

k 1

xijk ≤ Fα i
                    (33),  

             

m

i 1

l

k 1

xijk ≥ Fβ j
                   (34),          

              

m

i 1

n

j 1

xijk≤ Fγ k
                    (35),  

   where  xijk ≥ 0 , for any i = 1, 2, 3, …, m, j = 1, 

2, 3, …,n and k = 1, 2, 3, …,l. Now using fuzzy 

programming approach, as described in the 

earlier section, we can obtain the solution of the 

original problem which is presented in the 

following example.  

Example 1.   Minimize 

Z
1

=

3

1i

3

1j

2

1k

[c
1

Lijk
, c

1

Rijk
] xijk,    

Z
2

=

3

1i

3

1j

2

1k

[c
2

Lijk
, c

2

Rijk
] xijk,   

subject to 

3

1j

2

1k

x1jk  ≤ N(50,4), 

3

1j

2

1k

x2jk ≤ N(60,1),      

3

1j

2

1k

x3jk ≤ N(55,4), 

3

1i

2

1k

xi1k≥exp(18),      

3

1i

2

1k

xi2k ≥ exp(15),     

 

3

1i

2

1k

xi2k ≥ exp(13),    

  

3

1i

3

1j

xij1≤ U (60, 80),    

3

1i

3

1j

xij2≤ U (50, 80), 

xijk ≥ 0 for all i, j =1,2,3.and 

k = 1,2.where [c
1

Lijk
, c

1

Rijk
] and[c

2

Lijk
, c

2

Rijk
]  

are interval cost  for the criterians 1 and 2 

respectively (Table-1, 2, 3 and Table-4). Using 

the equations (8) and (9)  the equivalent 

deterministic MOISTP can be expressed  as:  

Z
1

R (x)=

3

1i

3

1j

2

1k

[c
1

Rijk
]xijk,    

  Z
2

R (x) = 

3

1i

3

1j

2

1k

[c
2

Rijk
]xijk, 

   Z
1

C (x) = 

3

1i

3

1j

2

1k

[c
1

Cijk
]xijk,          

Z
2

C (x) = 

3

1i

3

1j

2

1k

[c
2

Cijk
]xijk, 

subject to   

3

1j

2

1k

x1jk≤47.44, 

3

1j

2

1k

x2jk≤ 58.72, 

3

1j

2

1k

x3jk≤ 52.44,  

3

1i

2

1k

xi1k ≥ 41.44,  

3

1i

2

1k

xi2k ≥ 34.53,  

3

1i

2

1k

xi3k ≥ 29.9,  
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3

1i

3

1j

xij1 ≤ 62,    

3

1i

3

1j

xij2  ≤ 53,  

xijk≥0 for all i, j = 1, 2, 3 and k = 1,2.where c
1

Rijk
, 

c
2

Rijk
 c

2

Cijk
 and c

2

Cijk
 are given in Table-7.   

       Solving this multi-objective classical solid 

transportation problem using fuzzy approach, the 

pareto optimal solution of the problem is 

obtained as follows:  

x 111 = 23.3151, x 112 = 16.1134, x 121 = 2.7465, 

x 212 = 2.0116, x 221 = 26.8084, x 232 = 29.9,  

x 322 = 4.9751, = 0.7062  and other x ijk  are 

zeros. Z
1
=[ 707.0726, 1253.433 ] and 

 Z
2

= [646.6706, 1233.307]. 

8.2 Case-II 

        When the objective function coefficients 

c
p

ijk
, source, destination and conveyance  

parameters a i , b j and e k are in the form of 

stochastic intervals, the MOISTP can be 

formulated as: 

Minimize   

Z
p

  =   

m

i 1

n

j 1

l

k 1

[c
p

Lijk
, c

p

Rijk
] xijk ,                   

p = 1, 2, 3,..., P      

subject to  

n

j 1

l

k 1

 xijk = [a Li , a Ri ] ,   

m

i 1

l

k 1

 xijk 

= [b Lj , b Rj ] , 

m

i 1

n

j 1

xijk = [e Lk , e Rk  ]. 

where xijk ≥ 0 for any  i = 1, 2, 3, …, m, j = 1, 2, 

3, …,n and k = 1, 2, 3, …,l, [c
1

Lijk , c
1

Rijk ] 

and[c
2

Lijk , c
2

Rijk ]  are interval cost for the 

criterians 1 and 2 respectively (Table-1, 2, 3 and 

Table-4).  

        Using equations  (8) and (9), the MOISTP is 

equivalent to    

minimize  

Z
p

R (x)=

m

i 1

n

j 1

l

k 1

[c
p

Cijk
+c

p

Wijk
]xijk, 

Z
p

C (x) = 

m

i 1

n

j 1

l

k 1

[c
p

Cijk
]xijk,   

p = 1, 2, 3, …,P, 

 subject to  

n

j 1

l

k 1

xijk Fα Li
,  

n

j 1

l

k 1

xijk   Fα Ri
 ,    

m

i 1

l

k 1

 xijk   Fβ Lj
,  

                

m

i 1

l

k 1

xijk   Fβ Rj
, 

m

i 1

n

j 1

xijk   Fγ Lk  ,   

m

i 1

n

j 1

 xijk  Fγ Rk  ,   

 where  xijk ≥ 0 , for any i = 1, 2, 3, …, m, j = 1, 

2, 3, …,n and k = 1, 2, 3, …,l. The following 

numerical example illustrates the solution 

procedure of the foregoing problem. 

Example 2.  

minimize Z
1

=

3

1i

3

1j

2

1k

[c
1

Lijk
, c

1

Rijk
] 

xijk,    Z
2

=

3

1i

3

1j

2

1k

[c
2

Lijk , c
2

Rijk ] xijk,    

  subject to 

3

1j

2

1k

x1jk= [N(32,5), N(90, 7)],  

3

1j

2

1k

 x2jk = [N(40,  5), N(95,7)],  

3

1j

2

1k

x3jk = [N(36,7), N(98, 4)],   

3

1i

2

1k

 xi1k = [exp(13), exp(35)], 
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3

1i

2

1k

xi2k = [exp(11), exp(43)],   

3

1i

2

1k

 xi3k = [exp(15), exp(40)], 

3

1i

3

1j

xij1 = [U(45, 65), U(123, 196)],  

3

1i

3

1j

xij2 = [U(46, 80), U(153, 237)].  

where  xijk ≥ 0 , for i , j = 1, 2, 3, k = 1, 2. The 

equivalent deterministic MOISTP can be 

expressed as:  

minimize 

Z
1

R (x) = 

3

1i

3

1j

2

1k

[c
1

Rijk
]xijk,    

Z
2

R (x)=

3

1i

3

1j

2

1k

[c
2

Rijk
]xijk,                

Z
1

C (x) = 

3

1i

3

1j

2

1k

[c
1

Cijk
]xijk,     

Z
2

C (x) = 

3

1i

3

1j

2

1k

[c
2

Cijk
]xijk, 

subject to 

3

1j

2

1k

x1jk 29.13,

3

1j

2

1k

x1jk 86.61

3

1j

2

1k

x2jk 37.13,

3

1j

2

1k

x2jk 91.61 

3

1j

2

1k

x3jk 32.61,

3

1j

2

1k

x3jk 95.44

3

1i

2

1k

xi1k 29.93,

3

1i

2

1k

xi1k 80.58

3

1i

2

1k

xi2k 25.32,

3

1i

2

1k

xi2k 99.00 

3

1i

2

1k

xi3k 34.53, 

3

1i

2

1k

xi3k 92.1, 

3

1i

3

1j

xij1 47,   

3

1i

3

1j

xij1 130.3,   

3

1i

3

1j

xij2 49.4,

3

1i

3

1j

xij2  161.4.  

where  xijk ≥ 0 , for i , j = 1, 2, 3, k = 1, 2,  c
1

Rijk
, 

c
2

Rijk
 c

2

Cijk
 and c

2

Cijk
 are given in Table-7.  

     Using fuzzy approach, the  pareto  optimal 

solution of the problem is obtained as 

x 111 = 27.2273, x 131 = 1.9027, x 211 = 2.7027, 

x 221 = 4.9175, x 232 = 29.5098, x 322 = 22.3602,  

x 331 = 10.2498, = 0.1131 and other x ijk  are 

zeros.  Z
1
 = [608.5475, 1215.7473]   and  

Z
2

= [580.5412, 1155.5979].                     

 

 

Table–1. The  unit direct  interval cost for the first criterion by conveyance 1  

    S/D                       1                                          2                                             3  

 Table-2. The  unit direct  interval cost  for the first criterion by conveyance 2  

   S/D                               1                                          2                                            3     

      1          [N(9, 4), N(12, 1)]                 [N(7, 2), N(22, 1)]                  [N(9, 4),  N(14, 2)]  

      2          [N(9, 3), N(12, 4)]                 [N(5, 1), N(25, 4)]                  [N(5, 1),    N(9, 2)] 

  1            [N(7,  2),  N(15,1)]              [N(5, 1),  N(13, 4)]                [N(7, 1 ), N(12, 2)]                                         

  2            [N(10, 2), N(14, 3)]              [N(7, 2 ), N(12, 3)]               [N(7, 2 ), N(17, 1)]  

  3            [N(9, 2 ), N(24, 2 )]              [N(6, 3 ), N(15, 4)]               [N(6, 2 ),  N(15, 3)] 
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      3          [N(5, 2), N(25, 4)]                 [N(6, 3), N(12, 3)]                  [N(5, 4),  N(23, 2)]  

                  

 

Table–3. The  unit direct  interval cost for the second criterion by conveyance 1 

  S/D                       1                                       2                                      3  

      1                 [N(6, 2), N(14, 1)]                  [N(4, 1), N(14, 4)]                 [N(8, 1),  N(13, 2)]  

      2                 [N(9, 2), N(15, 4)]                  [N(7, 3), N(11, 3)]                 [N(5, 1),  N(16, 2)]  

      3                 [N(8, 1), N(22, 4)]                  [N(5, 1), N(14, 2)]                 [N(6, 1),  N(14, 2)]  

 

Table–4. The  unit direct  interval cost for the second criterion by conveyance 2 

  S/D                      1                                        2                                      3  

      1                   [N(7, 2), N(14, 3)]                  [N(6, 1), N(20, 2)]                 [N(9, 2), N(15, 

3)] 

      2                   [N(8, 2), N(12, 3)]                  [N(6, 1), N(23, 2)]                 [N(5, 1),   N(9, 

2)] 

      3                   [N(5, 2), N(24, 2)]                  [N(6, 2), N(11, 3)]                 [N(7, 1), N(21, 

3)] 

 

9. CONCLUSION 

         This paper proposes a solution procedure for solving 

chance constrained programming problem for multi-objective 

interval solid transportation problem under stochastic 

environment using fuzzy programming approach. All source 

availability, destination demand and conveyance capacities 

have been taken as stochastic intervals for each criterion. 

Chance constrained programming technique has been used to 

transform the problem into a classical multi-objective 

transportation problem. The main advantage of fuzzy 

programming is that, for a MOISTP with ‘p’ objective 

functions, this approach leads to p non-dominated solutions and 

one optimal compromise solution, whereas other algorithms 

leads to more than p non-dominated and dominated solutions 

from which the decision maker can choose a compromise 

solution.  
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