
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.9, November 2010

9

Web Cache Optimization in Semantic based Web Search
Engine

 Dr.S.N.Sivanandam Dr.M.Rajaram S.Latha Shanmuga Vadivu,
 Advisor,Akshya College of Engineering, Professor & Head, Assistant Professor, ECE Department,
 Coimbatore., India. Government College of Engineering, Tamilnadu College of Engineering,
 Tirunelveli, India Coimbatore, India.

ABSTRACT
With the tremendous growth of information available to end users

through the Web, search engines come to play ever a more critical

role. Nevertheless, because of their general-purpose approach, it is

always less uncommon that obtained result sets provide a burden

of useless pages. The next-generation Web architecture,

represented by the Semantic Web, provides the layered

architecture possibly allowing overcoming this limitation. The

ontology for multiple search engines is written such that in this

search engine for single query the final result is got from multiple

search engines. After getting the user query result we can use the

clustering. In this clustering the user query results is formed in the

a to z form, the several search engines have been proposed, which

allow increasing information retrieval accuracy by exploiting a

key content of Semantic Web resources, that is, relations. We can

use web cache optimization in search engine to get fast retrieval of

user query results. In this work I have used web cache

optimization based on eviction method for semantic web search

engine. In this paper, analization of both advantages and

disadvantages of some current Web cache replacement algorithms

including lowest relative value algorithm, least weighted usage

algorithm and least unified-value algorithm is done. Based on our

analysis, we proposed a new algorithm, called least grade

replacement (LGR), which takes recency, frequency, perfect-

history, and document size into account for Web cache

optimization.

KEYWORDS:
Semantic web, multiple search engines, ontology, clustering, web

caching, LRU, LGR, LUV algorithm.

1. INTRODUCTION
The Semantic Web is known for being a web of Semantic Web

documents; however, little is known about the structure or growth

of such a web. Search engines such as Google have transformed

the way people access and use the web and have become a critical

technology for finding and delivering information [1]. Most

existing search engines, however, provide poor support to

accessing the web of result’s and make no attempt to take

advantage of the structural and semantic information encoded in

SWDs. The Semantic Web will offer the way for solving this

problem at the architecture level. In fact, in the Semantic Web,

each page possesses semantic metadata that record additional

details concerning the Web page itself. This work is designed to

serve the research activities in Semantic Web community,

especially the following:

(i) Multiple Search Engine for single user query

(ii) Apply Clustering Method

(iii) Unwanted pages in the result set would force him or her to

perform a post processing on retrieved information to discard

unneeded ones. Today, search engines constitute the most helpful

tools for organizing information and extracting knowledge from

the Web. However, it is not uncommon that even the most

renowned search engines return result sets including many pages

that are definitely useless for the user this is mainly due to the fact

that the very basic relevance criterions underlying their

information retrieval strategies rely on the presence of query

keywords within the returned pages. When a user enters a query

composed by the following keywords “hotel,” “Rome,” and

“historical center” (or “hotel,” “Roma,” and “centrostorico”) in

the Italian version of the well-known Google search engine [7].

He or she would not be astonished probably by finding that the

result set actually includes several hotels located in the historical

center of Rome, as expected small town at some distance from the

Rome city center is also included. However, two hotels located in

the historical center of other main Italian cities are also displayed.

Finally, three hotels named Roma are included among the 10 most

relevant results even if they have nothing to do with the selected

city. Only 4 out the 10 results presented to the user satisfy user
needs. (Even if they seem to satisfy the user query, based on the

strategy adopted to process it). Currently, the Semantic Web, (i.e.

online documents written in RDF or OWL), is essentially a web

universe parallel to the web of HTML documents. Semantic Web

documents (SWDs) are characterized by semantic annotation and

meaningful references to other SWDs [5]. Since conventional

search engines do not take advantage of these features, a search

engine customized for SWDs, especially for ontology’s, is needed

by human users as well as by software agents and services[3]. At

this stage, human users are expected to be semantic web

researchers and developers who are interested in accessing,

exploring and querying RDF and OWL documents found on the

web.

2. WEB CACHE DESIGN
We discuss three general purpose cache distributions and lookup

enhancements that improve both the locality and latency of cache

advertisements. The system uses a form of hierarchical

aggregation to summarize the contents of cached files available in

a particular local area network. In this way the amount of indexing

information that has to be exported to other systems in a WAN

can be reduced. A common criticism of distributed hash tables is

that they lack locality. This is a side effect of the hash function

used to identify both nodes and content in the DHT network. The

hash function provides a key-to node mapping that distributes

keys uniformly at random across the address space of the DHT

[10]. As such, semantically related nodes and data items when

processed by a systems hash function will be mapped to random

locations in the network with high probability. This presents a

number of problems for cache index and lookup systems. First,

lookup requests for file content such as images and linked web

pages require a separate lookup request for each URL. This will

result in a worst-case time complexity of O (M log N) where M is

the number of embedded file references in a webpage and N is the

number of nodes in the system. Second, due to the random nature

of the hash functions used to identify files, lookup requests for

linked files are likely to be routed to nodes that are far away in the

network. This significantly adds to the latency of locating a

cached file in the network. However, many of these lookup

requests are unnecessary and can be reduced by exploiting the link

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.9, November 2010

10

structure of web pages. In a typical web browsing scenario, client

Software will make a connection to a web server and download

the HTML specification of a web document. Once this has

occurred, the client process will parse the document tree and

generate a series of HTTP get requests to download embedded file

content from the web server. As such, this content should also be

available at the same remote cache system as the main webpage

unless it has been evicted from the remote cache. To reduce these

extraneous lookup requests, cache misses and extra round-trip

delays, we have developed a combined indexing structure that

client systems can use to identify the set of related cache items

also available at a remote site. This combined index has been

implemented using a bitmap vector the contents of which are used

to determine the presence or absence of linked web content. This

effectively allows a client system to select a remote cache based

upon the number of related documents that it stores. As a result,

lookup requests for related files such as embedded images can be

downloaded from the same remote cache without having to

specifically locate the file using the DHT index. The idea here is

to extend the reach of the cache index by one link’s worth, to

enable a client system to determine ahead of time whether linked

content is available at a remote proxy. As a consequence,

communication between a client and remote cache system can be

reduced because of these cache hints. This allows a client system

to maintain a persistent connection with a remote cache, so that

file requests for linked web content can be pipelined across the

same socket. To create this combined index, the link structure of a

cached file has to be extracted using regular expressions. This

process creates an ordered set of links that can be used to create a

bitmap vector of the linked files available at a remote site. As

such, the length of a bitmap vector corresponds to the number of

out links in a given web page[12]. To encode the availability of

linked content at a remote site, the corresponding bit locations of

these out links are set in the bitmap. Therefore, the ith link is

represented by the ith bit in the bitmap vector. To illustrate this

idea, consider a web page that has five links to other files. If each

of these linked files were available at a remote cache, then each

bit location in the bitmap vector of this cached item would be set

to one. However, if only the second and third links were available

at a remote cache, then only bit locations one and two would be

set in the bitmap. The intuition here is that users will browse to a

new page through an existing hyperlink directly, instead of

jumping to a new page at random[11].Therefore, if we know

which links are available ahead of time, the number of cache

lookup messages routed across the network can be reduced. Once

a browser has downloaded a list of IP addresses and adjacency

cache bitmaps from the DHT, these are added to a fixed size in

memory cache which has a least recently used eviction strategy.

2.1 EXISTING SYSTEM
Nevertheless, because of their general-purpose approach, it is

always less uncommon that obtained result sets provide a burden

of useless pages. It is not uncommon that even the most

renowned search engines return result sets including many pages

that are definitely useless for the user this is mainly due to the fact

that the very basic relevance criterions underlying their

information retrieval strategies rely on the presence of query

keywords within the returned pages [10].

1. Lowest Relative Value Algorithm (LRV)
Luigi and Vicisano proposed a replace algorithm for

proxy cache called Lowest Relative Value (LRV). It is based on

maximizing an objective function for the whole cache. The

objective function uses a cost/benefit model to calculate the

relative value of each document in the cache. Two performance

parameters of cache are used: the HR and BHR [11,12].

2. Least Weighted Usage Algorithm (LWU)

Ying, Edward, and Ye-sho argued that model-driven simulation

was more objective than trace-driven. A web cache algorithm

called Least Weighted Usage (LWU) was proposed using model-

driven simulation [11,12].

3. Least Unified Value Algorithm (LUV)

Bahn et al. proposed a web cache replacement algorithm

called LUV that uses complete reference history of documents, in

terms of reference frequency and recency [11,12].

Disadvantage of Existing System
(i) Text based searching example (Google, yahoo, msn,

Wikipedia).

(ii) Without semantic relationship to give exact result.

(iii) Query only focus single search engine.

(iv) Most existing search engines however, provide poor

support to accessing the web results.

(v) No analysis of stopping keywords from the user query.

(vi) It will not give relevant or exact result.

(vii) Number of iterations is high.

(viii)A replacement policy is required for replacing a page

from web cache to make room for new page.

2.2 PROPOSED SYSTEM
The Semantic Web will offer the way for solving this problem at

the architecture level. In fact, in the Semantic Web, each page

possesses semantic metadata that record additional details

concerning the Web page itself. It will be proved that relations

among concepts embedded into semantic annotations can be

effectively exploited to define a ranking strategy for Semantic

Web search engines. A similarity score measuring the distance

between the systematic descriptions of both query and retrieved

resources is defined. They first explode an initial set of relations

(properties) by adding hidden relations, which can be inferred

from the query. Similarity is then computed as the ratio between

relation instances linking concepts specified in the user query and

actual multiplicities of relation instances in the semantic

knowledge base. This method is applied on each property

individually and requires exploring all the Semantic Web

instances. Moreover, the user is requested to specify all the

relations of interest. Thus, since it is predictable that the number

of relations will largely exceed the number of concepts, its

Applicability in real contexts is severely compromised. A similar

approach, aimed at measuring the relevance of a semantic

association (that is, a path traversing several concepts linked by

semantic relations) [3]. We provide an interesting definition of

relevance as the reciprocal of the ambiguity of the association

itself. Ontology-based lexical relations like synonyms, antonyms,

and homonyms between keywords (but not concepts) have been

used to “expand” query results which automatically associate

related concepts, and exploit the semantic knowledge base to

automatically formulate formal queries.

This work web cache (proxy server) is to develop a

utility to share internet from single connection to a large network

around 200 machines with different operating systems. The

software is developed using the Java Language. Java applet

applications are mostly used in the web pages, but we use JFC

(swing) for developing the software [10].
This work provides an intelligent environment

containing a number of ready-made options like cache, log file,

error checking, connection pooling, etc. These ready-made tools

may be any of the GUI components that are available in the Java

AWT package. By using this utility, Administrator can control

and maintain the whole network. This thesis aim is to use the

Least Recently Used document in web caches which replaces

Randomized web cache replacement algorithm. A web cache sits

between web server and a client and watches request for web

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.9, November 2010

11

pages. It caches web documents for serving previously retrieved

pages when it receives a request for them.

2.3 SEMANTIC WEB INFRASTRUCTURE

Fig 1: ArchitectureDiagram.

In Fig1.the crawler application collects annotated Web

pages from the Semantic Web (in this case, represented by the

controlled environment and its Web page collection) including

RDF metadata and originating OWL ontology. RDF metadata are

interpreted by the OWL parser and stored in the knowledge

database. A graphics user interface allows for the definition of a

query, which is passed on to the relation-based search logic. The

ordered result set generated by this latter module is finally

presented to the user. The details of the system workflow will be

provided in the following sections.

2.4 ADVANTAGE OF PROPOSED SYSTEM

The Semantic Web will offer the way for solving this problem at

the architecture level. In fact, in the Semantic Web, each page

possesses semantic metadata that record additional details

concerning the Web page itself. This method is applied on each

property individually and requires exploring all the Semantic Web

instances.

The ontology for multiple search engines is written such that

in this search engine for single query the final result is got from

multiple search engines. After getting the user query result we can

use the clustering. In this clustering the user query results is

formed in the a to z form. The Several search engines have been

proposed, which allow increasing information retrieval accuracy

by exploiting a key content of Semantic Web resources, that is,
relations reduces network traffic, reduces Latency time, to reduce

load on web servers and avoid the need for data structures.

3. IMPLEMENTATION
Implementation is the stage of the project when the theoretical

design is turned out into a working system. Thus it can be

considered to be the most critical stage in achieving a successful

new system and in giving the user, confidence that the new system

will work and be effective. The implementation stage involves

careful planning, investigation of the existing system and it’s

constraints on implementation, designing of methods to achieve

changeover and evaluation of changeover methods. The

implementation of this work is done using Java and run by means

of NETBEANS IDE 6.8 platform.

3.1 Web Search Engine Design
The term "search engine" is often used generically to

describe both crawler-based search engines and human-powered

directories. These two types of search engines gather their listings

in radically different ways. Crawler-based search engines, such as

Google, create their listings automatically [2]. They "crawl" or

"spider" the web, then people search through what they have

found. A human-powered directory, such as the Open Directory,

depends on humans for its listings. When we submit a short

description to the directory for your entire site or editors write one

for sites they review. A search looks for matches only in the

descriptions submitted.

3.1.1 Web Crawler
A search engine cannot work without a proper index where

possible searched pages are stored, usually in a compressed

format. This index is created by specialized robots, which crawl

the Web for new/modified pages (the actual crawlers, or

spiders)[4]. Typical crawler architecture is depicted in the figure2

below.

Fig 2: Typical crawler Architecture

3.1.2 Multiple Search engine Design

 The most known general search engines are Google and Yahoo!

but one of the oldest search engines is AltaVista. All existing

search engines have weaknesses, even Google (link searches must

be exact, it does not support full Boolean, it only indexes a part of

the web pages or PDF files, etc.). This part represents a real

reason for building more search engine. A scalable distributed

repository is used to store the crawled collection of Web pages.

Strategies for physical organization of pages on the storage

devices, distribution of pages across machines, and mechanisms to

integrate freshly crawled pages, are important issues in the design

of this repository. The repository supports both random and

stream-based access modes. Random access allows individual

pages to be retrieved based on an internal page identifier. Stream-

based access allows all or a significant subset of pages to be

retrieved as a stream. Query-based access to the pages and the

computed features (from the feature repository) is provided via the

Web Base query engine[8].Unlike the traditional keyword-based

queries supported by existing search engines, queries to the Web

Base query engine can involve predicates on both the content and

link structure of the Web pages.

 In selection of search engines twenty five search

engines were selected to conduct our experiment. They are

AlltheWeb, AltaVista, google, yahoo, clusty, you tube, file tube,

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.9, November 2010

12

citeceer etc., to name a few. At first, the search engines were

selected and the user query is submitted to all search engines

under consideration. The queries covered a broad range of topics.

The topics are as follows: Computer science, education, Internet,

literature, music, plants, sports, travel etc. The precision of

content of these pages is compared to give the result.

3.1.3 Design of Ontology Search
As mentioned in the last section, finding ontologies to satisfy user

requirements is a very important issue, in both KB reuse and

Semantic Web areas. There is no existing tool to solve this

problem. Google does have the power, but does not seem to be

specific enough to give good results [5]. After some experiments,

we noticed that the problem arises because Google does not offer

a good visualization function for the ontology files (in different

formalisms, such as RDFs, etc.), as the user cannot view the

ontology in an intuitive graphic format; they have to look thro ugh

the ontologies as structured text files. This process takes a lot of

time and cannot guarantee a good result, as the plain text of the

ontology cannot show the internal structure of the ontology

clearly. The ontology searching steps is shown in the figure 3

below.

Fig 3: Ontology searching steps

3.1.4 Clustering the web result’s

Clustering is the act of grouping similar object into sets.

In the web search context: organizing web pages (search results)

into groups, so that different groups correspond to different user

needs. Existing search engines such as Google and Yahoo return

ranked lists of Web pages in response to a user’s query request.

Web users have to shift through the list to locate pages of interest

[9]. This is a time-consuming task when multiple sub-topics of the

given query are mixed together. A possible solution to this

problem is to cluster search results into different groups and to

enable users to identify their required group at a glance.

4. PROXY IMPLEMENTATION
We have developed a PROXY SERVER, which runs with

mentioned features, which inherently helps speeder browsing of

web pages with use of least grade page replacement algorithms.

This server is successfully implemented with a few numbers of

clients but it could be implemented for more of them. As

mentioned before it is more reliable, more advantageous than the

existing one which uses the old Data structures concept. It can

work in a larger network and also maintains load balancing so I

conclude that this system application is executable under any

platform and with any number of clients too.

4.1 HTTP CONTENT AND PARSING

ANALYSIS
Parsing is the process of analyzing an input sequence in order to

determine its grammatical structure with respect to a given formal

grammar [7].

PROCESS STEPS

4.1.1Lexical analysis:

The input character stream is split into meaningful

symbols (tokens) defined by a grammar of regular

expressions. Example: the lexical analyzer takes

"12*(3+4)^2" and splits it into the tokens 12, *, (, 3, +, 4,), ^

and 2.

4.1.2 Syntax analysis

It performs checking if the tokens form an legal

expression, with respect to a CF grammar. Limitations are it

cannot check (in a programming language): types or proper

declaration of identifiers

4.1.3 Semantic parsing

Works out the implications of the expression validated

and takes the appropriate actions. Examples: an interpreter

will evaluate the expression, a compiler, will generate code.

4.2 EXPERIMENTAL RESULTS

Fig 4: Result Window for the query Tajmahal

The lexical parser and syntax parser supports for forming the filter

value of the user query. The common terms are clustered based on

the user query given. The clustering concept used here is k means

clustering algorithm. The user query takes the relation of some

common terms and gives the result as shown in figure 4. For a

single user query Tajmahal the result is got from multiple search

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.9, November 2010

13

engines; such as Google, Yahoo, AltaVista, Clusty, Excite, All the

web, File tube, You tube, Amazon, Cite seer, Wikipedia, Isohunt

etc., here the answer is got from 25 search engines, searches take

place simultaneously from different search engines, the main

advantage is that searches do not have to wait for each search

engine, the results are computed simultaneously from multiple

search engines and they are displayed on the screen. The result is

therefore much faster.

Fig 5: Advanced Query Search

This is advanced window search processing. It can find the result

with all words, exact phrase and without word’s.

TABLE 1: PERFORMANCE COMPARISON

The comparison table shows search engine performance for the

user query what is java swing? That user query gets the result

from different search engines. I can measure the user query based

on normal query result, without any semantic analysis and web

cache optimization analysis. Then the same query get different

result from different search engine using web cache optimization.

Then the same user query get the different search engine result

based on semantic web result. Then I can form the bar chart using

three column values. In a similar way a line chart is formed for the

same query with three column values to analyze the performance.

5. FETCH UNITS AND RESULT PRE-

FETCHING
In many search engine architectures, the computations required

during query execution are not greatly affected by the number of

results that are to be prepared, as long as that number is relatively

small. In particular, it may be that for typical queries, the work

required to fetch several dozen results is just marginally larger

than the work required for fetching 10 results. Since fetching more

results than requested may be relatively cheap, the dilemma is

whether storing the extra results in the cache (at the expense of

evicting previously stored results) is worthwhile. Roughly

speaking, result prefetching is profitable if, with high enough

probability, those results will be requested shortly - while they are

still cached and before the evicted results are requested again. One

aspect of result prefetching was analyzed in, where the

computations required for query executions (and not cache hit

ratios) were optimized [10].

Fig 6: Web cache main GUI showing Admin Menu

The Figure 6 shows the web cache main GUI. Here java

swing is used to build the user interface. It has four menus, Admin

menu, View menu, Setup menu and Help menu.

The Admin menu is shown in figure. It has four

submenus. They are Start server to start HTTP server, Stop server

to stop the HTTP server, Clear cache clears manually all the cache

files in your cache directory, Clear image manually clears all the

images in your image directory.

The View menu has four submenus, Server response to

get the server log Information and also monitoring the connection

between server and internet you can save log file for future

reference, Client request monitors the connection between the

local server and number of clients. This process monitors every

client request response and also identifies which ask the web

URL’s and also save log information for future reference. The

picture viewer is used to view all the pictures in your cached

picture directory. The window is used to see each single image

size and dimension and also to delete the unwanted single image

from the cached image directory.

Cache view is used to view the cache file from the cached

directory and then view file and save the cached file in different

formats, for example html, jsp and asp.

The Setup menu gives information about the server

configuration which has two Submenus, The network input

configuration window were we can set the proxy input and port

number and the connection properties can be set like receive

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.9, November 2010

14

timeout, send time out number log of threads, cached url’s and

cache expires (hrs) time. It is used for refreshing the server every

one hour using N-M algorithm in LRU method.The logging

window gives the access log and error log information. The access

log caches the errors based on pages got from URL. The error log

shows connection error between client and server. The logging

level is based on minimal normal and detail information about the

error. The Help menu shows the information about the server.

6. CONCLUSION
The next-generation Web architecture represented by the

Semantic Web will provide adequate instruments for improving

search strategies and enhance the probability of seeing the user

query satisfied without requiring tiresome manual refinement.

Nevertheless, they mainly use page relevance criteria based on

information that has to be derived from the whole knowledge

base, making their application often unfeasible in huge semantic

environments. By neglecting the contribution of the remaining

annotated resources, a reduction in the cost of the query answering

phase could be expected. Despite the promising results in terms of

both time complexity and accuracy, further efforts will be

requested to foster scalability into future Semantic Web

repositories based on multiple ontology, characterized by billions

of pages, and possibly altered through next generation “semantic”

spam techniques. It has been designed and partially implemented

to capture more metadata on classes and properties and to support

millions of documents. We have also built an ontology dictionary

based on the ontologies discovered by our research, which we

continue to refine. We have described a prototype crawler-based

indexing and retrieval system for Semantic Web documents. The

traditional browsing cache systems can not address both non

stationary and stationary browsing behaviors at the same time.

The response time for an interactive browsing system can be

greatly increased.

 7. REFERENCES
[1] B.Aleman-Meza, C. Halaschek, I. Arpinar, and A. Sheth,

“A Context-Aware Semantic Association Ranking,” Proc.

First Int’l Workshop Semantic Web and Databases (SWDB

’03), pp. 33-50, 2003.

[2] K. Anyanwu, A. Maduko, and A. Sheth, “SemRank: Ranking

Complex Relation Search Results on the Semantic Web,”

Proc. 14th Int’l Conf. World Wide Web (WWW ’05), pp.

117-127, 2005.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic

Web,” scientific Am., 2001.

[4] S. Brin and L. Page, “The Anatomy of a Large-Scale

Hypertextual Web Search Engine,” Proc. Seventh Int’l Conf.

World Wide Web (WWW ’98), pp. 107-117, 1998.

[5] Seda Cakiroglu, Erdal Arikan, “Replace Problem in Web

Caching”, in Proceedings of IEEE Symposium on Computers

and Communications, June, 2003.

[6] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “XSEarch: A

Semantic Search Engine for XML,” Proc. 29th Int’l Conf.

Very Large Data Bases, pp. 45-56, 2003.

[7] Berners-lee, t., Hendler, j., and lassila, o. (2001) "The

Semantic Web". Scientific American, May

http://www.sciam.com/2001/0501issue/0501berners-lee.html

[8] L. Ding, T. Finin, A. Joshi, R. Pan, R.S. Cost, Y. Peng, P.

Reddivari, V. Doshi, and J. Sachs, “Swoogle: A Search and

Metadata Engine for the Semantic Web,” Proc. 13th ACM

Int’l Conf. Information and Knowledge Management (CIKM

’04), pp. 652-659, 2004.

[9] L. Ding, T. Finin, A. Joshi, Y. Peng, R. Pan, and P.

Reddivari, “Search on the Semantic Web,” Computer, vol.

38, no. 10, pp. 62-69, Oct. 2005.

[10] H. Bahn, S. Noh, S. L. Min, and K. Koh, “Using Full

Reference History for Efficient Document Replacement in

Web Caches”, in Proceedings of the 2nd USENIX

Symposium on Internet Technologies & Systems, October,

1999.

[11] Ying Shi, Edward Watson, and Ye-sho Chen, “Model-

Driven Simulation of World-Wide-Web Cache Policies”, In

Proceeding of the 1997 Winter Simulation Conference, June,

1997.

[12] Ganesh, Santhanakrishnan, Ahmed, Amer, Panos K.

Chrysanthis and Dan Li, “GDGhOST: A Goal Oriented Self

Tuning Caching Algorithm”, in Proceeding of the 19th ACM

Symposium on AppliedComputing.March, 2005.

W

eb

Pa

ge

Cr

a

wl

er

We

b

Da

tab

ase

