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ABSTRACT  
This paper describes an improved version of particle swarm 

optimization (PSO) method, called adaptive particle swarm 
optimization (APSO), for solving engineering optimization 
problems especially in power system fields. This algorithm uses a 
novel PSO algorithm to increase convergence rate and avoid 
being trapped in local optimum. The APSO algorithm efficiency 
is verified using some benchmark functions. Numerical simulation 
results demonstrate that the APSO is fast and has much less 
computational cost. Then, the proposed APSO method is used for 
determining the parameters of the optimal proportional-integral-

derivative (PID) controller for an AVR power system. The 
proposed approach has superior features including easy 
implementation, stable and fast convergence characteristics and 
good computational efficiency. Also, the proposed method is 
indeed more efficient and robust in improving the step response of 
the AVR system. 
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1. INTRODUCTION 
The objective of optimization is to seek values for a set of 
parameters that maximize or minimize objective functions subject 
to certain constraints. In recent years, many optimization 
algorithms are introduced. Traditional optimization algorithms use 

exact methods to find the best solution. The idea is that if a 
problem can be solved, then the algorithm should find the global 
best solution. As the search space increases the cost of these 
algorithms increases. Therefore, when the search space 
complexity increases the exact algorithms can be slow to find 
global optimum. Linear and nonlinear programming, brute force 
or exhaustive search and divide and conquer methods are some of 
the exact optimization methods. 

Calculus provides the tools and elegance for finding the optimum 
of many objective functions. It quickly finds a single optimum but 
requires a search scheme to find the global optimum. Continuous 

functions with analytical derivatives are necessary (unless 
derivatives are taken numerically, which results in even more 
function evaluations plus a loss of accuracy). If there are too many 
variables, then it is difficult to find all the extrema. The gradient 
of the objective function serves as the compass heading pointing 
to the steepest downhill path. It works well when the optimum is 
nearby, but cannot deal with cliffs or boundaries, where the 
gradient cannot be calculated. 

Other optimization algorithms are stochastic algorithms, consisted 
of intelligent, heuristic and random methods. Stochastic 
algorithms have several advantages compared to other algorithms 
as follows: [13] 

1)  Stochastic algorithms are generally easy to implement. 

2)  They can be used efficiently in a multiprocessor environment. 

3) They do not require the problem definition function to be 
continuous. 

4) They generally can find optimal or near-optimal solutions.  

There are several stochastic algorithms such as: Genetic 
Algorithms (GA), Guided Local Search (GLS), Tabu Search (TS), 

Variable Neighbourhood Search (VNS), Iterated Local Search 
(ILS), Simulated Annealing (SA), Greedy Randomized Adaptive 
Search Procedure (GRASP), Memetic Algorithms (MA), Scatter 
Search (SS), Ant Colony Optimization (ACO), Particle Swarm 
Optimization (PSO) and Shuffled Frog Leaping algorithm (SFL), 
etc. Each of these algorithms has its characteristics. Especially, 
particle swarm optimization (PSO) is an efficient and well known 
stochastic algorithm which has found many successful 
applications in engineering problems. 

Particle swarm optimization is a population-based searching 
technique proposed in 1995 [7] as an alternative to genetic 

algorithm (GA) [5]. Its development is based on the observations 
of social behavior of animals such as bird flocking, fish schooling, 
and swarm theory. Compared with GA, PSO has some attractive 
characteristics. First, PSO has memory, that is, the knowledge of 
good solutions is retained by all particles, whereas in GA, 
previous knowledge of the problem is destroyed ones the 
population is changed. Second, PSO has constructive cooperation 
between particles, that is, particles in the swarm share their 
information.  

Recently, PSO has gained attention and applications by more and 
more researchers [14]. Please refer to [7, 9, 16] for recent survey 

on PSO, where some improvements and applications of PSO are 
provided.  

In this paper, a modified PSO, named Adaptive PSO (APSO), 

with fast convergence to optimal or near optimal solution, is 
proposed. In APSO, two additional coefficients are added to the 
standard PSO velocity updating formula (equation 2). The 
coefficients will cause the APSO to move to the optimal or near 
optimal solution faster than the standard PSO. Also, a new 
procedure is proposed for escaping from local optimum traps. 

PID (Proportional-Integral-Derivative) control is one of the 
earliest control strategies. It has been widely used in the industrial 
control fields. Its widespread acceptability can be recognized by: 
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the familiarity with which it is perceived amongst researchers and 
practitioners within the control community, simple structure and 
effectiveness of algorithm, relative ease and high speed of 
adjustment with minimal down-time and wide range of 
applications where its reliability and robustness produces 

excellent control performances. However, successful applications 
of PID controllers require the satisfactory tuning of three 
parameters - which are proportional gain (KP), integral time 
constant (KI), and derivative time constant (KD) - according to the 
dynamics of the process. Unfortunately, it has been quite difficult 
to tune properly the gains of PID controllers because many 
industrial plants are often burdened with problems such as high 
order, time delays, and nonlinearities [4]. 

Traditionally, these parameters are determined by a trial and error 
approach. Manual tuning of PID controller is very tedious, time 
consuming and laborious to implement, especially where the 

performance of the controller mainly depends on the experiences 
of design engineers. In recent years, many tuning methods have 
been proposed to reduce the time consumption on determining the 
three controller parameters. The most well known tuning method 
is the Ziegler-Nichols tuning formula [22]; it determines suitable 
parameters by observing a gain and a frequency on which the 
plant becomes oscillatory. 

Considering the limitations of the Ziegler-Nichols method and 
some empirical techniques in raising the performance of PID 
controller, recently artificial intelligence techniques such as fuzzy 
logic [18, 21], fuzzy neural network [2, 10], and some stochastic 

search and optimization algorithms such as simulated annealing 
[20], genetic algorithm [11, 19], particle swarm optimization 
approach [4], immune algorithm [14], and ant colony optimization 
[6] have been applied to improve the performances of PID 
controllers. In these studies, it has been shown that these 
approaches provide good solutions in tuning the parameters of 
PID controllers. However, there are several causes for developing 
improved techniques to design PID controllers. One of them is the 

important impact it may give because of the general use of the 
controllers. The other one is the enhancing operation of PID 
controllers that can be resulted from improved design techniques. 
Finally, a better tuned optimal PID controller is more interested in 
real world applications.  

The generator excitation system maintains generator voltage and 
controls the reactive power flow using an Automatic Voltage 
Regulator (AVR) [4]. The role of an AVR is to hold the terminal 
voltage magnitude of a synchronous generator at a specified level. 
Hence, the stability of the AVR system would seriously affect the 
security of the power system. In this paper, a practical high-order 

AVR system with a PID controller is adopted to test the 
performance of the proposed PSO-PID controller. 

In this paper, the proposed APSO method is applied for 

determining the optimal values of the parameters of PID 
controllers. Here, we formulate the problem of designing PID 
controller as an optimization problem and our goal is to design a 
controller that has well performance by adjusting four 
performance indexes, the maximum overshoot, the settling time, 
the rise time and the integral absolute error of step response. After 
designing PID controllers for some simple benchmark transfer 
functions, an optimal PID controller is designed for an AVR 

system using APSO algorithm. The advantages of this 
methodology are that it is a simple method with less computation 
burden, high-quality solution and stable and fast convergence 
specifications. 

2. APSO ALGOEITHM 
In this section, first the procedure of the standard PSO algorithm 

is briefly reviewed. Then, the proposed APSO algorithm is 
introduced. 
  

2.1. The Standard PSO Algorithm 
A particle swarm optimizer is a population based stochastic 
optimization algorithm modeled based on the simulation of the 
social behavior of bird flocks. PSO is a population-based search 
process where individuals initialized with a population of random 

solutions, referred to as particles, are grouped into a swarm. Each 
particle in the swarm represents a candidate solution to the 
optimization problem, and if the solution is made up of a set of 
variables, the particle can correspondingly be a vector of 
variables. In a PSO system each particle is “flown” through the 
multidimensional search space, adjusting its position in the search 
space according to its own experience and that of neighboring 
particles. The particle therefore makes use of the best position 

encountered by itself and that of its neighbors to position itself 
toward and optimal solution. The performance of each particle is 
evaluated using a predefined fitness function, which encapsulates 
the characteristics of the optimization problem. 
Generally, a numerical optimization problem can be described as 
follows: 

,…,N.2,1 ],   i=,b[a  s.t.  x

  ],…,x,xX=[x  F(X),   min

iii

T

N21
                                         (1) 

The core operation of PSO is the updating formulae of the 

particles, i.e. the velocity updating equation and position updating 
equation. The global optimizing model proposed by Shi and 
Eberhart (1999) is as follows [16]:  

)x(G×crand×+) x(P×cRAND×+vw×=v
ibest2ibest1i1i+

 

                                                                                           (2) 

1i+i1i+
v+x=x                         (3) 

where 
i

v  is the velocity of particle i, 
i

x  is the particle position, 

w is the inertia weight factor, 
1

c  and 
2

c  are two positive constant 

parameters called acceleration coefficients, RAND and rand are 
the random functions in the range [0, 1], Pbest is the best position 
of the ith particle and Gbest is the best position among all particles 
in the swarm.   
 

2.2. APSO Algorithm 
Globally optimize an objective function in a given search domain 
consists of finding its’ global optimum fast without being trapped 
in any local optimum. Slow convergence of PSO before providing 
an accurate solution is a drawback, closely related to its lack of 
any adaptive accelerators in the velocity updating formulae. In 
equation 2, c1 and c2 determine the step size of the particles 

movements through the Pbest and Gbest, respectively. In the 
original PSO, these step sizes are constant and for the all particles 
are the same. For doing more sensitive and faster movements, new 
step sizes can be modified, which they should accelerate the 
convergence rate.  

In each iteration, the value of the objective function is a criterion 
that presents the relative improvement of this movement with 
respect to the previous iteration movement. Thus, the difference 
between the values of the objective function in the different 
iterations can be selected as the accelerators. Adding two 
additional coefficients to the original step sizes in equation 2, it 
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causes to adaptive movements. Therefore, velocity updating 
formulae turns to the following form. 

) x(G×) )f(x) (f(G×crand×

+)x(P×) ) f(x) (f(P×cRAND×+v w×=v

ibest ibest2

 ibestibest1i1i+
(4)                                     

where 
) f(P

best  is the best fitness function that is found by ith 

particle and 
) f(G

best  is the best objective function that is found 
by swarm up to now and other parameters are chosen the same as 
section A. 

On the other hand, when strongly multi-modal problems are being 
optimized, PSO algorithm usually suffers from the premature 
suboptimal convergence (simply premature convergence or 

stagnation) which occurs when some poor particles attract the 
swarm, due to a local optimum or bad initialization, preventing 
further exploration of the search space. According to [1], although 
PSO finds good solutions faster than other evolutionary 
algorithms, it usually can not improve the quality of the solutions 
as the number of iterations is increased. The rationale behind this 
problem is that particles converge to a single point, which is on 
the line between the global best and personal best positions. This 

point is not guaranteed to be even a local optimum. Proofs can be 
found in [17]. Another reason for this problem is the high rate of 
information flow between particles, resulting in the creation of 
similar particles (with a loss in diversity) which increases the 
possibility of being trapped in local minima [15]. This feature 
prevents standard PSO from being real practical interest for lots of 
applications. In general, any mechanism that can increase 
diversity will help in preventing premature convergence. Inspired 
with simulated annealing technique, letting worse solutions with a 

probability to exist in the next population can be one way for 
improving diversity property of the algorithm. Therefore, in 
APSO algorithm, we name every point, which is found by 

equation (5), the temporary point t
x

, ( 1it
xx

). If t
x

is better 

than i
x

,it will be accepted and if it is worse than i
x

, we will 

accept it with probability of 
/TfΔe , where 

)x(f)x(ff
it

and T is a decreasing function of iteration number to be 
determined later. This process is performed for all particles. When 
a temporary point is rejected, that we name it a deviated particle 
xd, it is given back in the opposite direction of the previous 
movement. These descriptions are formulated by the following 
equations. 

)f(x)f(x=fΔ

 v+x=x

it

iit
                                                                  (5) 

d1i+itd

t1i+

x=  x, v+x=x    then  0fΔ     If

x=x    then  0<fΔ     If
                         (6) 

where 
otherwise                 ε-

e =y probabilit   ε+
=α

/TfΔ

 and 1ε 0  is a 

constant. 
In general the proposed APSO algorithm works as follows. First, 
the algorithm parameters such as number of particles, initial 
particles and velocities, c1 and c2 constants and any other 
parameters are initialized. Then the algorithm starts with the 

initial swarm as initial solutions. Computing new velocities using 
APSO algorithm, temporary positions are calculated. For each 

particle, f is calculated, if 0f  then the solution would be 

accepted as a better solution, otherwise worse solution would be 

accepted with probability of 
/TfΔe , and  deviated particle is 

turned back to the opposite direction of the traveled route, 
equations 5 and 6. This procedure causes diversification and 
escaping from local optimum. This process is iterated for all the 
particles in the swarm. Afterwards, the annealing schedule is 
performed. If one of the termination conditions is satisfied then 
the algorithm stops, otherwise the proposed procedure is iterated.  
The general pseudo-code for APSO algorithm is given in 

Appendix A. 
 

Remark 1. The terms )f(x) f(P
 ibest

 and ) f(x) f(G
ibest

 are 

named local and global adaptive coefficients, respectively.  In 
each iteration, the former term defines the movement step size in 
the direction of best position which is found by ith particle and the 
later term defines movement step size in the direction of the best 
optimum point which ever had been found by the swarm, 

adaptively. In other words, the adaptive coefficients decrease or 
increase the movement step size relative to being close or far from 
the optimum point, respectively. By means of this method, 
velocity can be updated adaptively instead of being fixed or 
changed linearly. Therefore, using the adaptive coefficients, the 
convergence rate of the algorithm will be increased that it is 
performed by the proportional large or short steps.  
 

Remark 2. Stochastic optimization approaches have problem 
dependent performance. This dependency usually results from the 
parameter setting of each algorithm. Thus using different 
parameter settings for APSO algorithm, which is a stochastic 

optimization algorithm, result in high performance variances. In 
general, no single parameter setting exists which can be applied to 
all problems. Therefore, all parameters of APSO should be 
determined optimally, by trial and error. 
 

Remark 3. There are three stopping criteria. The first criterion is 
related to the maximal number of iterations of the algorithm, the 
second one is when no improvement has been made for a certain 
number of iterations in the best solution and the third one is when 
a satisfactory solution is found. 
 

Remark 4. The adaptive version of PSO is proposed for 
continuous variable functions. Moreover, the main idea of fasting 
can be applied to the discrete form of the PSO [8]. It can be a 

future work of the authors. 
 

Remark 5. Increasing the value of the inertia weight, w, will 

increase the speed of the particles resulting in more exploration 
(global search) and less exploitation (local search). On the other 
hand, decreasing the value of w will decrease the speed of the 
particle resulting in more exploitation and less exploration. Thus, 
an iteration-dependent weight factor often outperforms a fixed 
factor. The most common functional form for this weight factor is 
linear, and changes with step i as follows:  

i× 
N

)w(w
w=w

iter

minmax

max1i+
                                    (7)                                                                                                      

where 
iter

N  is the maximum number of iterations and 
max

w  and 

min
w are selected to be 0.9 and 0.1, respectively. 
  
Remark 6. The initial value of T (denoted by T0) is set by the 
following formula: 
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) f(G×=T
best0

                        (8)                                                                                                                           

where is a positive constant and ) f(G
best

is the objective value 

of the best position among all particles in the initial swarm 
(population). And the function T is decreased by 

T(i)× =1)T(i , (T(0)=T0), where 1<  <0.5 is a constant 

and i represents the iteration number. 
 

Remark 7. Stop condition typically would happen, when no 
improvement has been made for a certain number of iteration or 
the maximum number of iteration has been reached or when T0 
get to be smaller than the smallest typical value (Tmin). 
 

Remark 8. The proposed APSO is still a general optimization 
algorithm that can be applied to any real world continuous 
optimization problems. 
In next section, we will apply such an approach for several 
benchmark functions and compare the obtained results from 
APSO with the standard PSO and GA algorithms. Then it is 

employed to design optimal PID controller for AVR system. 
 

3. LINEARIZED MODEL OF AN AVR 

SYSTEM WITH PID CONTROLLER  
The role of an AVR is to hold the terminal voltage magnitude of a 
synchronous generator at a specified level. A simple AVR system 
comprises four main components, namely amplifier, exciter, 
generator, and the sensors. For mathematical modeling and 
transfer function of the four components, these components must 
be linearized, which takes into account the major time constant 

and ignores the saturation or other nonlinearities. The reasonable 
transfer function of these components may be represented, 
respectively, as follows [4]. 
• Amplifier model. 
The amplifier model is represented by a gain and a time constant; 
the transfer function is 

s) τ+(1

K
=

(s) V

(s) V

A

A

e

R          (9) 

Typical values of KA are in the range of 10 to 400. The amplifier 

time constant
A

τ is very small ranging from 0.02 to 0.1 s. 

• Exciter model. 
The transfer function of a modern exciter may be represented by a 
gain and a single time constant 

s) +(1

K
=

(s) V

(s) V

E

E

F

F                                                           (10)                                                            

Typical values of KE are in the range of 10 to 400. The time 

constant
E

is in the range of 0.5 to 1.0 s. 

• Generator model. 
In the linearized model, the transfer function relating the generator 
terminal voltage to its field voltage can be represented by a gain 
and a time constant 

s) +(1

K
=

(s) V

(s) V

G

G

F

t        (11)                                                               

These constants are load dependent. KG may vary between 0.7 to 

1.0, and
G

 may vary between 1.0 and 2.0 sec. 

• Sensor model. 
The sensor is modeled by a simple first-order transfer function, 
given by 

s) +(1

K
=

(s) V

(s) V

R

R

t

S        (12)                                                                                                                               

R
is very small, ranging from of 0.001 to 0.06 sec. 

The above models provide an AVR system compensated with a 
PID controller block diagram, which is shown in Figure 1. 
 
 

4. OBJECTIVE FUNCTION DEFINITION 
In the design of a PID controller, the performance criterion or 
objective function is first defined based on some desired 
specifications and constraints under input testing signal. Some 
typical output specifications in the time domain are overshoot, rise 

time, settling time, and steady-state error. In general, three kinds 
of performance criteria, the integrated absolute error (IAE), the 
integral of squared-error (ISE), and the integrated of time-
weighted-squared-error (ITSE) are usually considered in the 
control design under step input testing, as they can be evaluated 
analytically in the frequency domain. It is worthy to notice that 
using different performance indices probably makes different 
solutions for PID controllers. The three integral performance 

criteria in the frequency domain have their own advantages and 
disadvantages. For example, a disadvantage of the IAE and ISE 
criteria is that their minimization can result in a response with 
relatively small overshoot but a long settling time. Although the 
ITSE performance criterion can overcome the disadvantage of the 
ISE criterion, the derivation processes of the analytical formula 
are complex and time-consuming [4]. The IAE, ISE, and ITSE 
performance criteria formulas are as follows: 

00

|e(t)| dt=y(t)|  dt|r(t)IAE=                                         (13)                                                                                   

0

2(t) dteISE                                          (14)                                                                                                                        

0

2(t) dtteISTE                         (15)                                                                                                                    

In this paper, another new time domain performance criterion is 
defined by: 

)E+)).(Me+/(1(e

+) T+(T×))e+/(1(1= W(K)min

ssp

αα

r

α-

K s

                          (16)  

and it is used for evaluating the PID controller. 

where K = [KP, KI, KD], and 5,5][α  is the weighting factor. 

The optimum selection of α depends on the designer’s 
requirement and the characteristics of the plant under control. One 
can set α to be smaller than 0 to reduce the overshoot and steady-

state error. On the other hand, one other can set α to be larger than 
0 to reduce the rise time and settling time. If α is set to be 0, then 
all performance criteria (i.e. overshoot, rise time, settling time, 
and steady-state error) will have the same worth. 
 

5. EXPERIMENTS AND RESULTS OF 

SIMULATIONS 
In this section, the efficiency and effectiveness of the introduced 
APSO is validated using a set of test functions. Afterwards, the 
APSO is applied to design an optimum PID controller for an AVR 

system. 
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5.1. Testing Using Benchmark Functions 
The efficiency of APSO is verified using a set of test functions. 
To avoid any misinterpretation of the optimization results, related 

to the choice of any particular initial populations, we performed 
each test 100 times, starting from various randomly selected 
solutions, inside the hyper rectangular search domain specified in 
the usual litterateur. 
The results of APSO tests performed on 15 functions listed in 
Appendix B are shown in Table 1. To evaluate the efficiency of 
the proposed APSO algorithm, we retained the following criteria 
summarizing results from 100 minimizations per function: the rate 

of successful minimizations (RATESM), the average of the 
objective function evaluation numbers (AVERAGEOBJEN) and the 
average error (AVERAGEERROR). These criteria are defined 
precisely in the following. 
When at least one of the termination tests is verified, APSO stops 
and provides the coordinates of a located solution, and the 

objective function value “
FPSO

OBJ ” at this solution. We 

compared this result with the known analytical minimum” 

ANAL
OBJ ”; we considered this result to be “successful” if the 

following inequality held: 

absINITrelANALFPSO
 |+ε |OBJ |<εOBJ|OBJ                             (17) 

where 
2

rel
10ε , 

4

abs
10ε  and 

INIT
OBJ  is an empirical 

average of the objective function value, calculated over typically 
100 solutions, randomly selected inside the search domain, before 
running the algorithm. The average of the objective function 
evaluation numbers is evaluated in relation to only the successful 
minimizations and it shows the convergence rate of the algorithm. 
In fact, this criterion measures the speed of the algorithm and 
shows that if it is fast or slow. The average error is defined as the 
average of OBJ gaps between the best successful solution found 

and the known global optimum. This criterion shows the accuracy 
of the algorithm in finding the global optimum. 
As shown in Table 1, when the search space is more complicated 
the rate of successful minimization is decreased. Hence, APSO 
can escape from local minima trap because of its stochastic and 
intelligent nature. For all functions, the average of the objective 
function evaluation numbers does not exceed 100 with a suitable 
accuracy. This shows that the algorithm is fast in convergence. 

For all functions, average of the OBJ gaps between the best 
successful solution found and the known global optimum is less 
than 0.01. This accuracy is acceptable for many real world 
optimization problems. 
A typical convergence diagram for Z10 function is depicted in 
Figure 2. One can see that the convergence rate is superior. 
 

 

Table 1. Results of APSO for 15 benchmark functions 

Benchmark 

function 

RATESM 

(%) 

AVERAGEOBJEN AVERAGEERROR 

RC 100 35 0.001 

ES 100 38 0.003 

GP 100 34 0.005 

B2 100 29 0.001 

SH 100 41 0.002 

R2 100 31 0.003 

Z2 100 33 0.005 

DJ 100 25 0.002 

H3,4 99 28 0.005 

S4,5 99 36 0.0009 

S4,7 100 40 0.004 

S4,10 100 44 0.004 

R5 99 45 0.0043 

H6,4 98 42 0.006 

Z10 99 46 0.005 

 

5.2. APSO Based PID Controller for AVR 

System 
For designing an optimal PID controller, determination of vector 
K with regards to the minimization of performance index is the 
main issue. Here, the minimization process is performed using the 

proposed APSO algorithm. For this purpose, step response of the 
plant is used to compute four performance criteria overshoot (Mp), 
steady-state error (Ess), rise time (Tr) and settling time (Ts) in the 
time domain. At first, the lower and upper bounds of the 
controller parameters should be specified. 0 and 1 are selected as 
these bounds. Then a population of particles is initialized, 
randomly in the specified range. Each particle represents a 
solution (i.e. controller parameters K) that its performance index 

should be evaluated. This work is performed by computing Mp, 
Ess, Tr, and Ts using the step response of the plant, iteratively. 
Then, by using the four computed parameters, the performance 
index is evaluated for each particle according to these 
performance criteria. Now the main procedure of APSO algorithm 
performs the optimization procedure. The process is repeated until 

 

 

 

 

Figure 1. Block diagram of an AVR system with a PID controller 
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a stopping criterion is satisfied. In this stage, the best particle is 
the optimal vector K. 

 
Figure 3 shows AVR system step response without PID controller 
while Figure 4 demonstrates step response of AVR system with 

APSO based optimal PID controller. As the figures shows, step 
response of APSO based controller is smooth and has less 
overshoot. APSO found KP, KI and KD equal to 0.6570, 0.4189 
and 0.2458, respectively. 
 

6. CONCLUSIONS 
The problem of optimization is the active subject between 
researchers and many different algorithms introduced yet. Particle 
swarm optimization (PSO) is an effective and well-known 
intelligent optimization method. However, PSO suffers from two 
major drawbacks: low speed of convergence toward optimum and 
trapping in local optimum. In this paper, with introducing two 
modifications on traditional PSO algorithm, we generated an 

improved adaptive version of PSO algorithm and named it 
Adaptive PSO (APSO). APSO has two  important  advantages:  

 

 
Figure 2. Typical convergence rate diagram of APSO for Z10 

 

 
Figure 3. Terminal voltage step response of AVR system 

without PID controller. 

Figure 4. Terminal voltage step response of an AVR system 

with the APSO based PID controller. 
 

high convergence rate and escaping from local optimum, 

illustrated by simulation results of some benchmark functions. As 
a practical application of the proposed method, APSO is used to 
optimal tuning of PID controllers. Through the simulation of a 
practical AVR system, the results show that the proposed 
controller can perform an efficient search for the optimal PID 
controller parameters. 

 
 

7. APPENDIXES  

7.1 Appendix A.  
The pseudocode for APSO algorithm: 
Initialize APSO parameters. 
Loop: 

REPEAT 
For each particle i; 
Evaluate the objective function of the particle i, i.e. f(xi); 
Update the global and local best positions and their objective 
function values; 
Calculate the velocity by equation (4); 
Calculate the temporary position xt by equation (5); 
Using the equation (6) calculate the new position; 

Decrease the function T; 
END of Loop 
If stop condition is true then stop else go to Loop; 
 

7.2 Appendix B.  
Some well-known benchmark functions of optimization problems: 

 

7.2.1 Branin RCOS (RC) (2 variables): 

10+)cos(x ) π)8/1(10(1

+6) x/ππ5(+ x)π4/5((x=) x,RC(x
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221  

Search domain: 15<x<0 10,<x<-5
21

 

no local minimum 
3 global minima: 
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7.2.2 B2 (2 variables): 

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

140

160

iterations

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)



International Journal of Computer Applications (0975 – 8887) 
Volume 11– No.10, December 2010 

28 

0.7+)πxcos(4 0.4)πxcos(3 0.3x2+x=)x,2(xB
21

2

2

2

121
 

Search domain: 1,2=j100,<x<-100
j

 

several local minima (exact number unspecified in usual 

literature) 

1 global minimum: (0,0)=)*x,(x
21

 

0=)*)x,B2((x
21

 

 

7.2.3 Easom (ES) (2 variables): 

))π)(x+π)((xexp()cos(x)cos(x=)x,ES(x 2

212121
 

Search domain: 1,2=j100,<x<100
j

 

several local minima (exact number unspecified in usual 

literature) 

1 global minimum: ),(=)*x,(x
21

 

-1=)*)x,B2((x
21

 
 

7.2.4 Goldstein and Price (GP) (2 variables): 

)] x27+xx36

x48+x12+x32(18×) x3x(2+[30

×)] x3+xx6+x14x3+x14(19

×1)+x+(x+[1=) x,GP(x

2

221

2

2

11

2

21

2

2212

2

11

2

2121

 

Search domain: 1,2=j2,<x<2
j

 

4 local minima 

1 global minimum: 1),0(=)*x,(x
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7.2.7 Shubert (SH) (2 variables): 

}j]+ x1)+jcos[(j{

×}j]+ x1)+jcos[(j{=) x,SH(x

5

1j 2

5

1j 121

 

Search domain: 1,2=j10,<x<10
j

 

760 local minima 
18 global minimum 

186.7309=)*) x,SH((x
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7.2.7 Hartmann (H3,4) (3 variables): 

])p-(x aexp[ c=)x,x,(xH
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6
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2

ijjiji3213,4
  

Search domain: 1,2,3=j1,<x<0
j

 

4 local minima: ),p,p=(pP
3i2i1ii

 

ii3,4
c)P(H  

1 global minimum: 5,0.855)(0.11,0.55*X  
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7.2.8 Hartmann (H6,4) (6 variables): 
4
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6 local minima: ),p...,=(pP
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1 global minimum 
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7.2.9 De Joung (DJ) (3 variables): 
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1 single minimum (local and global) 
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7.2.10 Shekel (S4,n) (3 variables): 
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3 functions were considered: S4,5, S4,7 and S4,10 

Search domain: 1,2,3,4=j10,<x<0
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n local minima: 
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a : ith local minimum approximation  
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1 global minimum for each function 
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7.2.11 Rosenbrock (Rn) (n variables): 
n

1j

2

j

2

1j

2

jn
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Search domain: n,...,1j,10x5
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several local minima (exact number unspecified in usual 
literature) 

1 global minimum: )1,...,1(*X ; 
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7.2.12 Zakharov (Zn) (n variables): 
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several local minima (exact number unspecified in usual 
literature); 
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