
International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

22

An Adaptive Particle Swarm Optimization Applied to
Optimum Controller Design for AVR Power Systems

M. Pourmahmood Aghababa

University of Tabriz
Control Engineering Department,

Faculty of Electrical and Computer
Engineering, University of Tabriz,

Tabriz, Iran

A.M. Shotorbani
Azerbaijan University of Tarbiat Moallem

Department of Electrical Engineering,
Azerbaijan University,35 km of Tabriz-

Maraghe Rd. E.Azerbaijan, Iran

R. M. Shotorbani
University of Tabriz

Department of Mechanical
Engineering, University of Tabriz,

Tabriz, Iran

ABSTRACT
This paper describes an improved version of particle swarm

optimization (PSO) method, called adaptive particle swarm
optimization (APSO), for solving engineering optimization
problems especially in power system fields. This algorithm uses a
novel PSO algorithm to increase convergence rate and avoid
being trapped in local optimum. The APSO algorithm efficiency
is verified using some benchmark functions. Numerical simulation
results demonstrate that the APSO is fast and has much less
computational cost. Then, the proposed APSO method is used for
determining the parameters of the optimal proportional-integral-

derivative (PID) controller for an AVR power system. The
proposed approach has superior features including easy
implementation, stable and fast convergence characteristics and
good computational efficiency. Also, the proposed method is
indeed more efficient and robust in improving the step response of
the AVR system.

Keywords

Particle Swarm Optimization, Fast Convergence, Local Optimum,
PID Controller, AVR Power System.

1. INTRODUCTION
The objective of optimization is to seek values for a set of
parameters that maximize or minimize objective functions subject
to certain constraints. In recent years, many optimization
algorithms are introduced. Traditional optimization algorithms use

exact methods to find the best solution. The idea is that if a
problem can be solved, then the algorithm should find the global
best solution. As the search space increases the cost of these
algorithms increases. Therefore, when the search space
complexity increases the exact algorithms can be slow to find
global optimum. Linear and nonlinear programming, brute force
or exhaustive search and divide and conquer methods are some of
the exact optimization methods.

Calculus provides the tools and elegance for finding the optimum
of many objective functions. It quickly finds a single optimum but
requires a search scheme to find the global optimum. Continuous

functions with analytical derivatives are necessary (unless
derivatives are taken numerically, which results in even more
function evaluations plus a loss of accuracy). If there are too many
variables, then it is difficult to find all the extrema. The gradient
of the objective function serves as the compass heading pointing
to the steepest downhill path. It works well when the optimum is
nearby, but cannot deal with cliffs or boundaries, where the
gradient cannot be calculated.

Other optimization algorithms are stochastic algorithms, consisted
of intelligent, heuristic and random methods. Stochastic
algorithms have several advantages compared to other algorithms
as follows: [13]

1) Stochastic algorithms are generally easy to implement.

2) They can be used efficiently in a multiprocessor environment.

3) They do not require the problem definition function to be
continuous.

4) They generally can find optimal or near-optimal solutions.

There are several stochastic algorithms such as: Genetic
Algorithms (GA), Guided Local Search (GLS), Tabu Search (TS),

Variable Neighbourhood Search (VNS), Iterated Local Search
(ILS), Simulated Annealing (SA), Greedy Randomized Adaptive
Search Procedure (GRASP), Memetic Algorithms (MA), Scatter
Search (SS), Ant Colony Optimization (ACO), Particle Swarm
Optimization (PSO) and Shuffled Frog Leaping algorithm (SFL),
etc. Each of these algorithms has its characteristics. Especially,
particle swarm optimization (PSO) is an efficient and well known
stochastic algorithm which has found many successful
applications in engineering problems.

Particle swarm optimization is a population-based searching
technique proposed in 1995 [7] as an alternative to genetic

algorithm (GA) [5]. Its development is based on the observations
of social behavior of animals such as bird flocking, fish schooling,
and swarm theory. Compared with GA, PSO has some attractive
characteristics. First, PSO has memory, that is, the knowledge of
good solutions is retained by all particles, whereas in GA,
previous knowledge of the problem is destroyed ones the
population is changed. Second, PSO has constructive cooperation
between particles, that is, particles in the swarm share their
information.

Recently, PSO has gained attention and applications by more and
more researchers [14]. Please refer to [7, 9, 16] for recent survey

on PSO, where some improvements and applications of PSO are
provided.

In this paper, a modified PSO, named Adaptive PSO (APSO),

with fast convergence to optimal or near optimal solution, is
proposed. In APSO, two additional coefficients are added to the
standard PSO velocity updating formula (equation 2). The
coefficients will cause the APSO to move to the optimal or near
optimal solution faster than the standard PSO. Also, a new
procedure is proposed for escaping from local optimum traps.

PID (Proportional-Integral-Derivative) control is one of the
earliest control strategies. It has been widely used in the industrial
control fields. Its widespread acceptability can be recognized by:

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

23

the familiarity with which it is perceived amongst researchers and
practitioners within the control community, simple structure and
effectiveness of algorithm, relative ease and high speed of
adjustment with minimal down-time and wide range of
applications where its reliability and robustness produces

excellent control performances. However, successful applications
of PID controllers require the satisfactory tuning of three
parameters - which are proportional gain (KP), integral time
constant (KI), and derivative time constant (KD) - according to the
dynamics of the process. Unfortunately, it has been quite difficult
to tune properly the gains of PID controllers because many
industrial plants are often burdened with problems such as high
order, time delays, and nonlinearities [4].

Traditionally, these parameters are determined by a trial and error
approach. Manual tuning of PID controller is very tedious, time
consuming and laborious to implement, especially where the

performance of the controller mainly depends on the experiences
of design engineers. In recent years, many tuning methods have
been proposed to reduce the time consumption on determining the
three controller parameters. The most well known tuning method
is the Ziegler-Nichols tuning formula [22]; it determines suitable
parameters by observing a gain and a frequency on which the
plant becomes oscillatory.

Considering the limitations of the Ziegler-Nichols method and
some empirical techniques in raising the performance of PID
controller, recently artificial intelligence techniques such as fuzzy
logic [18, 21], fuzzy neural network [2, 10], and some stochastic

search and optimization algorithms such as simulated annealing
[20], genetic algorithm [11, 19], particle swarm optimization
approach [4], immune algorithm [14], and ant colony optimization
[6] have been applied to improve the performances of PID
controllers. In these studies, it has been shown that these
approaches provide good solutions in tuning the parameters of
PID controllers. However, there are several causes for developing
improved techniques to design PID controllers. One of them is the

important impact it may give because of the general use of the
controllers. The other one is the enhancing operation of PID
controllers that can be resulted from improved design techniques.
Finally, a better tuned optimal PID controller is more interested in
real world applications.

The generator excitation system maintains generator voltage and
controls the reactive power flow using an Automatic Voltage
Regulator (AVR) [4]. The role of an AVR is to hold the terminal
voltage magnitude of a synchronous generator at a specified level.
Hence, the stability of the AVR system would seriously affect the
security of the power system. In this paper, a practical high-order

AVR system with a PID controller is adopted to test the
performance of the proposed PSO-PID controller.

In this paper, the proposed APSO method is applied for

determining the optimal values of the parameters of PID
controllers. Here, we formulate the problem of designing PID
controller as an optimization problem and our goal is to design a
controller that has well performance by adjusting four
performance indexes, the maximum overshoot, the settling time,
the rise time and the integral absolute error of step response. After
designing PID controllers for some simple benchmark transfer
functions, an optimal PID controller is designed for an AVR

system using APSO algorithm. The advantages of this
methodology are that it is a simple method with less computation
burden, high-quality solution and stable and fast convergence
specifications.

2. APSO ALGOEITHM
In this section, first the procedure of the standard PSO algorithm

is briefly reviewed. Then, the proposed APSO algorithm is
introduced.

2.1. The Standard PSO Algorithm
A particle swarm optimizer is a population based stochastic
optimization algorithm modeled based on the simulation of the
social behavior of bird flocks. PSO is a population-based search
process where individuals initialized with a population of random

solutions, referred to as particles, are grouped into a swarm. Each
particle in the swarm represents a candidate solution to the
optimization problem, and if the solution is made up of a set of
variables, the particle can correspondingly be a vector of
variables. In a PSO system each particle is “flown” through the
multidimensional search space, adjusting its position in the search
space according to its own experience and that of neighboring
particles. The particle therefore makes use of the best position

encountered by itself and that of its neighbors to position itself
toward and optimal solution. The performance of each particle is
evaluated using a predefined fitness function, which encapsulates
the characteristics of the optimization problem.
Generally, a numerical optimization problem can be described as
follows:

,…,N.2,1], i=,b[a s.t. x

],…,x,xX=[x F(X), min

iii

T

N21
 (1)

The core operation of PSO is the updating formulae of the

particles, i.e. the velocity updating equation and position updating
equation. The global optimizing model proposed by Shi and
Eberhart (1999) is as follows [16]:

)x(G×crand×+) x(P×cRAND×+vw×=v
ibest2ibest1i1i+

 (2)

1i+i1i+
v+x=x (3)

where
i

v is the velocity of particle i,
i

x is the particle position,

w is the inertia weight factor,
1

c and
2

c are two positive constant

parameters called acceleration coefficients, RAND and rand are
the random functions in the range [0, 1], Pbest is the best position
of the ith particle and Gbest is the best position among all particles
in the swarm.

2.2. APSO Algorithm
Globally optimize an objective function in a given search domain
consists of finding its’ global optimum fast without being trapped
in any local optimum. Slow convergence of PSO before providing
an accurate solution is a drawback, closely related to its lack of
any adaptive accelerators in the velocity updating formulae. In
equation 2, c1 and c2 determine the step size of the particles

movements through the Pbest and Gbest, respectively. In the
original PSO, these step sizes are constant and for the all particles
are the same. For doing more sensitive and faster movements, new
step sizes can be modified, which they should accelerate the
convergence rate.

In each iteration, the value of the objective function is a criterion
that presents the relative improvement of this movement with
respect to the previous iteration movement. Thus, the difference
between the values of the objective function in the different
iterations can be selected as the accelerators. Adding two
additional coefficients to the original step sizes in equation 2, it

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

24

causes to adaptive movements. Therefore, velocity updating
formulae turns to the following form.

) x(G×))f(x) (f(G×crand×

+)x(P×)) f(x) (f(P×cRAND×+v w×=v

ibest ibest2

 ibestibest1i1i+
(4)

where
) f(P

best is the best fitness function that is found by ith

particle and
) f(G

best is the best objective function that is found
by swarm up to now and other parameters are chosen the same as
section A.

On the other hand, when strongly multi-modal problems are being
optimized, PSO algorithm usually suffers from the premature
suboptimal convergence (simply premature convergence or

stagnation) which occurs when some poor particles attract the
swarm, due to a local optimum or bad initialization, preventing
further exploration of the search space. According to [1], although
PSO finds good solutions faster than other evolutionary
algorithms, it usually can not improve the quality of the solutions
as the number of iterations is increased. The rationale behind this
problem is that particles converge to a single point, which is on
the line between the global best and personal best positions. This

point is not guaranteed to be even a local optimum. Proofs can be
found in [17]. Another reason for this problem is the high rate of
information flow between particles, resulting in the creation of
similar particles (with a loss in diversity) which increases the
possibility of being trapped in local minima [15]. This feature
prevents standard PSO from being real practical interest for lots of
applications. In general, any mechanism that can increase
diversity will help in preventing premature convergence. Inspired
with simulated annealing technique, letting worse solutions with a

probability to exist in the next population can be one way for
improving diversity property of the algorithm. Therefore, in
APSO algorithm, we name every point, which is found by

equation (5), the temporary point t
x

, (1it
xx

). If t
x

is better

than i
x

,it will be accepted and if it is worse than i
x

, we will

accept it with probability of
/TfΔe , where

)x(f)x(ff
it

and T is a decreasing function of iteration number to be
determined later. This process is performed for all particles. When
a temporary point is rejected, that we name it a deviated particle
xd, it is given back in the opposite direction of the previous
movement. These descriptions are formulated by the following
equations.

)f(x)f(x=fΔ

 v+x=x

it

iit
 (5)

d1i+itd

t1i+

x= x, v+x=x then 0fΔ If

x=x then 0<fΔ If
 (6)

where
otherwise ε-

e =y probabilit ε+
=α

/TfΔ

 and 1ε 0 is a

constant.
In general the proposed APSO algorithm works as follows. First,
the algorithm parameters such as number of particles, initial
particles and velocities, c1 and c2 constants and any other
parameters are initialized. Then the algorithm starts with the

initial swarm as initial solutions. Computing new velocities using
APSO algorithm, temporary positions are calculated. For each

particle, f is calculated, if 0f then the solution would be

accepted as a better solution, otherwise worse solution would be

accepted with probability of
/TfΔe , and deviated particle is

turned back to the opposite direction of the traveled route,
equations 5 and 6. This procedure causes diversification and
escaping from local optimum. This process is iterated for all the
particles in the swarm. Afterwards, the annealing schedule is
performed. If one of the termination conditions is satisfied then
the algorithm stops, otherwise the proposed procedure is iterated.
The general pseudo-code for APSO algorithm is given in

Appendix A.

Remark 1. The terms)f(x) f(P
 ibest

 and) f(x) f(G
ibest

 are

named local and global adaptive coefficients, respectively. In
each iteration, the former term defines the movement step size in
the direction of best position which is found by ith particle and the
later term defines movement step size in the direction of the best
optimum point which ever had been found by the swarm,

adaptively. In other words, the adaptive coefficients decrease or
increase the movement step size relative to being close or far from
the optimum point, respectively. By means of this method,
velocity can be updated adaptively instead of being fixed or
changed linearly. Therefore, using the adaptive coefficients, the
convergence rate of the algorithm will be increased that it is
performed by the proportional large or short steps.

Remark 2. Stochastic optimization approaches have problem
dependent performance. This dependency usually results from the
parameter setting of each algorithm. Thus using different
parameter settings for APSO algorithm, which is a stochastic

optimization algorithm, result in high performance variances. In
general, no single parameter setting exists which can be applied to
all problems. Therefore, all parameters of APSO should be
determined optimally, by trial and error.

Remark 3. There are three stopping criteria. The first criterion is
related to the maximal number of iterations of the algorithm, the
second one is when no improvement has been made for a certain
number of iterations in the best solution and the third one is when
a satisfactory solution is found.

Remark 4. The adaptive version of PSO is proposed for
continuous variable functions. Moreover, the main idea of fasting
can be applied to the discrete form of the PSO [8]. It can be a

future work of the authors.

Remark 5. Increasing the value of the inertia weight, w, will

increase the speed of the particles resulting in more exploration
(global search) and less exploitation (local search). On the other
hand, decreasing the value of w will decrease the speed of the
particle resulting in more exploitation and less exploration. Thus,
an iteration-dependent weight factor often outperforms a fixed
factor. The most common functional form for this weight factor is
linear, and changes with step i as follows:

i×
N

)w(w
w=w

iter

minmax

max1i+
 (7)

where
iter

N is the maximum number of iterations and
max

w and

min
w are selected to be 0.9 and 0.1, respectively.

Remark 6. The initial value of T (denoted by T0) is set by the
following formula:

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

25

) f(G×=T
best0

 (8)

where is a positive constant and) f(G
best

is the objective value

of the best position among all particles in the initial swarm
(population). And the function T is decreased by

T(i)× =1)T(i , (T(0)=T0), where 1< <0.5 is a constant

and i represents the iteration number.

Remark 7. Stop condition typically would happen, when no
improvement has been made for a certain number of iteration or
the maximum number of iteration has been reached or when T0
get to be smaller than the smallest typical value (Tmin).

Remark 8. The proposed APSO is still a general optimization
algorithm that can be applied to any real world continuous
optimization problems.
In next section, we will apply such an approach for several
benchmark functions and compare the obtained results from
APSO with the standard PSO and GA algorithms. Then it is

employed to design optimal PID controller for AVR system.

3. LINEARIZED MODEL OF AN AVR

SYSTEM WITH PID CONTROLLER
The role of an AVR is to hold the terminal voltage magnitude of a
synchronous generator at a specified level. A simple AVR system
comprises four main components, namely amplifier, exciter,
generator, and the sensors. For mathematical modeling and
transfer function of the four components, these components must
be linearized, which takes into account the major time constant

and ignores the saturation or other nonlinearities. The reasonable
transfer function of these components may be represented,
respectively, as follows [4].
• Amplifier model.
The amplifier model is represented by a gain and a time constant;
the transfer function is

s) τ+(1

K
=

(s) V

(s) V

A

A

e

R (9)

Typical values of KA are in the range of 10 to 400. The amplifier

time constant
A

τ is very small ranging from 0.02 to 0.1 s.

• Exciter model.
The transfer function of a modern exciter may be represented by a
gain and a single time constant

s) +(1

K
=

(s) V

(s) V

E

E

F

F (10)

Typical values of KE are in the range of 10 to 400. The time

constant
E

is in the range of 0.5 to 1.0 s.

• Generator model.
In the linearized model, the transfer function relating the generator
terminal voltage to its field voltage can be represented by a gain
and a time constant

s) +(1

K
=

(s) V

(s) V

G

G

F

t (11)

These constants are load dependent. KG may vary between 0.7 to

1.0, and
G

 may vary between 1.0 and 2.0 sec.

• Sensor model.
The sensor is modeled by a simple first-order transfer function,
given by

s) +(1

K
=

(s) V

(s) V

R

R

t

S (12)

R
is very small, ranging from of 0.001 to 0.06 sec.

The above models provide an AVR system compensated with a
PID controller block diagram, which is shown in Figure 1.

4. OBJECTIVE FUNCTION DEFINITION
In the design of a PID controller, the performance criterion or
objective function is first defined based on some desired
specifications and constraints under input testing signal. Some
typical output specifications in the time domain are overshoot, rise

time, settling time, and steady-state error. In general, three kinds
of performance criteria, the integrated absolute error (IAE), the
integral of squared-error (ISE), and the integrated of time-
weighted-squared-error (ITSE) are usually considered in the
control design under step input testing, as they can be evaluated
analytically in the frequency domain. It is worthy to notice that
using different performance indices probably makes different
solutions for PID controllers. The three integral performance

criteria in the frequency domain have their own advantages and
disadvantages. For example, a disadvantage of the IAE and ISE
criteria is that their minimization can result in a response with
relatively small overshoot but a long settling time. Although the
ITSE performance criterion can overcome the disadvantage of the
ISE criterion, the derivation processes of the analytical formula
are complex and time-consuming [4]. The IAE, ISE, and ITSE
performance criteria formulas are as follows:

00

|e(t)| dt=y(t)| dt|r(t)IAE= (13)

0

2(t) dteISE (14)

0

2(t) dtteISTE (15)

In this paper, another new time domain performance criterion is
defined by:

)E+)).(Me+/(1(e

+) T+(T×))e+/(1(1= W(K)min

ssp

αα

r

α-

K s

 (16)

and it is used for evaluating the PID controller.

where K = [KP, KI, KD], and 5,5][α is the weighting factor.

The optimum selection of α depends on the designer’s
requirement and the characteristics of the plant under control. One
can set α to be smaller than 0 to reduce the overshoot and steady-

state error. On the other hand, one other can set α to be larger than
0 to reduce the rise time and settling time. If α is set to be 0, then
all performance criteria (i.e. overshoot, rise time, settling time,
and steady-state error) will have the same worth.

5. EXPERIMENTS AND RESULTS OF

SIMULATIONS
In this section, the efficiency and effectiveness of the introduced
APSO is validated using a set of test functions. Afterwards, the
APSO is applied to design an optimum PID controller for an AVR

system.

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

26

5.1. Testing Using Benchmark Functions
The efficiency of APSO is verified using a set of test functions.
To avoid any misinterpretation of the optimization results, related

to the choice of any particular initial populations, we performed
each test 100 times, starting from various randomly selected
solutions, inside the hyper rectangular search domain specified in
the usual litterateur.
The results of APSO tests performed on 15 functions listed in
Appendix B are shown in Table 1. To evaluate the efficiency of
the proposed APSO algorithm, we retained the following criteria
summarizing results from 100 minimizations per function: the rate

of successful minimizations (RATESM), the average of the
objective function evaluation numbers (AVERAGEOBJEN) and the
average error (AVERAGEERROR). These criteria are defined
precisely in the following.
When at least one of the termination tests is verified, APSO stops
and provides the coordinates of a located solution, and the

objective function value “
FPSO

OBJ ” at this solution. We

compared this result with the known analytical minimum”

ANAL
OBJ ”; we considered this result to be “successful” if the

following inequality held:

absINITrelANALFPSO
 |+ε |OBJ |<εOBJ|OBJ (17)

where
2

rel
10ε ,

4

abs
10ε and

INIT
OBJ is an empirical

average of the objective function value, calculated over typically
100 solutions, randomly selected inside the search domain, before
running the algorithm. The average of the objective function
evaluation numbers is evaluated in relation to only the successful
minimizations and it shows the convergence rate of the algorithm.
In fact, this criterion measures the speed of the algorithm and
shows that if it is fast or slow. The average error is defined as the
average of OBJ gaps between the best successful solution found

and the known global optimum. This criterion shows the accuracy
of the algorithm in finding the global optimum.
As shown in Table 1, when the search space is more complicated
the rate of successful minimization is decreased. Hence, APSO
can escape from local minima trap because of its stochastic and
intelligent nature. For all functions, the average of the objective
function evaluation numbers does not exceed 100 with a suitable
accuracy. This shows that the algorithm is fast in convergence.

For all functions, average of the OBJ gaps between the best
successful solution found and the known global optimum is less
than 0.01. This accuracy is acceptable for many real world
optimization problems.
A typical convergence diagram for Z10 function is depicted in
Figure 2. One can see that the convergence rate is superior.

Table 1. Results of APSO for 15 benchmark functions

Benchmark

function

RATESM

(%)

AVERAGEOBJEN AVERAGEERROR

RC 100 35 0.001

ES 100 38 0.003

GP 100 34 0.005

B2 100 29 0.001

SH 100 41 0.002

R2 100 31 0.003

Z2 100 33 0.005

DJ 100 25 0.002

H3,4 99 28 0.005

S4,5 99 36 0.0009

S4,7 100 40 0.004

S4,10 100 44 0.004

R5 99 45 0.0043

H6,4 98 42 0.006

Z10 99 46 0.005

5.2. APSO Based PID Controller for AVR

System
For designing an optimal PID controller, determination of vector
K with regards to the minimization of performance index is the
main issue. Here, the minimization process is performed using the

proposed APSO algorithm. For this purpose, step response of the
plant is used to compute four performance criteria overshoot (Mp),
steady-state error (Ess), rise time (Tr) and settling time (Ts) in the
time domain. At first, the lower and upper bounds of the
controller parameters should be specified. 0 and 1 are selected as
these bounds. Then a population of particles is initialized,
randomly in the specified range. Each particle represents a
solution (i.e. controller parameters K) that its performance index

should be evaluated. This work is performed by computing Mp,
Ess, Tr, and Ts using the step response of the plant, iteratively.
Then, by using the four computed parameters, the performance
index is evaluated for each particle according to these
performance criteria. Now the main procedure of APSO algorithm
performs the optimization procedure. The process is repeated until

Figure 1. Block diagram of an AVR system with a PID controller

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

27

a stopping criterion is satisfied. In this stage, the best particle is
the optimal vector K.

Figure 3 shows AVR system step response without PID controller
while Figure 4 demonstrates step response of AVR system with

APSO based optimal PID controller. As the figures shows, step
response of APSO based controller is smooth and has less
overshoot. APSO found KP, KI and KD equal to 0.6570, 0.4189
and 0.2458, respectively.

6. CONCLUSIONS
The problem of optimization is the active subject between
researchers and many different algorithms introduced yet. Particle
swarm optimization (PSO) is an effective and well-known
intelligent optimization method. However, PSO suffers from two
major drawbacks: low speed of convergence toward optimum and
trapping in local optimum. In this paper, with introducing two
modifications on traditional PSO algorithm, we generated an

improved adaptive version of PSO algorithm and named it
Adaptive PSO (APSO). APSO has two important advantages:

Figure 2. Typical convergence rate diagram of APSO for Z10

Figure 3. Terminal voltage step response of AVR system

without PID controller.

Figure 4. Terminal voltage step response of an AVR system

with the APSO based PID controller.

high convergence rate and escaping from local optimum,

illustrated by simulation results of some benchmark functions. As
a practical application of the proposed method, APSO is used to
optimal tuning of PID controllers. Through the simulation of a
practical AVR system, the results show that the proposed
controller can perform an efficient search for the optimal PID
controller parameters.

7. APPENDIXES

7.1 Appendix A.
The pseudocode for APSO algorithm:
Initialize APSO parameters.
Loop:

REPEAT
For each particle i;
Evaluate the objective function of the particle i, i.e. f(xi);
Update the global and local best positions and their objective
function values;
Calculate the velocity by equation (4);
Calculate the temporary position xt by equation (5);
Using the equation (6) calculate the new position;

Decrease the function T;
END of Loop
If stop condition is true then stop else go to Loop;

7.2 Appendix B.
Some well-known benchmark functions of optimization problems:

7.2.1 Branin RCOS (RC) (2 variables):

10+)cos(x) π)8/1(10(1

+6) x/ππ5(+ x)π4/5((x=) x,RC(x

1

2

1

2

1

2

221

Search domain: 15<x<0 10,<x<-5
21

no local minimum
3 global minima:

75)(9.424,2.42.275),(ππ,12.275),(=)*,x(x
21

0.397887=) *),xRC((x
21

7.2.2 B2 (2 variables):

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

80

100

120

140

160

iterations

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

28

0.7+)πxcos(4 0.4)πxcos(3 0.3x2+x=)x,2(xB
21

2

2

2

121

Search domain: 1,2=j100,<x<-100
j

several local minima (exact number unspecified in usual

literature)

1 global minimum: (0,0)=)*x,(x
21

0=)*)x,B2((x
21

7.2.3 Easom (ES) (2 variables):

))π)(x+π)((xexp()cos(x)cos(x=)x,ES(x 2

212121

Search domain: 1,2=j100,<x<100
j

several local minima (exact number unspecified in usual

literature)

1 global minimum:),(=)*x,(x
21

-1=)*)x,B2((x
21

7.2.4 Goldstein and Price (GP) (2 variables):

)] x27+xx36

x48+x12+x32(18×) x3x(2+[30

×)] x3+xx6+x14x3+x14(19

×1)+x+(x+[1=) x,GP(x

2

221

2

2

11

2

21

2

2212

2

11

2

2121

Search domain: 1,2=j2,<x<2
j

4 local minima

1 global minimum: 1),0(=)*x,(x
21

3=)*)x,GP((x
21

7.2.7 Shubert (SH) (2 variables):

}j]+ x1)+jcos[(j{

×}j]+ x1)+jcos[(j{=) x,SH(x

5

1j 2

5

1j 121

Search domain: 1,2=j10,<x<10
j

760 local minima
18 global minimum

186.7309=)*) x,SH((x
21

7.2.7 Hartmann (H3,4) (3 variables):

])p-(x aexp[c=)x,x,(xH
4

1i

6

1j

2

ijjiji3213,4

Search domain: 1,2,3=j1,<x<0
j

4 local minima:),p,p=(pP
3i2i1ii

ii3,4
c)P(H

1 global minimum: 5,0.855)(0.11,0.55*X

.862783=)*)x,x,((xH
3213,4

7.2.8 Hartmann (H6,4) (6 variables):
4

1i

6

1j

2

ijiiji616,4
])p(xaexp[c)x,...,(xH

Search domain: 6,...,1j,1x0
j

6 local minima:),p...,=(pP
6i1ii

ii6,4
c)P(H

1 global minimum

)657.0,311.0,275.0,476,0.150,0.201(0.*X

3223.3)X(H *

6,4

7.2.9 De Joung (DJ) (3 variables):
2

3

2

2

2

1321
x+x+x=) x,x,DJ(x

Search domain: 1,2,3=j5.12,<x<5.12
j

1 single minimum (local and global)

(0,0,0)=)* x,x,(x
321

0=)*)x,x,DJ((x
321

7.2.10 Shekel (S4,n) (3 variables):

] c+) a(X) a[(X =(X)S
n

1j

1

ii

T

i n)(4,

T

4321
),x,x,xX=(x

T4

i

3

i

2

i

1

ii
)a,a,a,a(a

3 functions were considered: S4,5, S4,7 and S4,10

Search domain: 1,2,3,4=j10,<x<0
j

n local minima:
i

a : ith local minimum approximation

i

T

in,4
c/1)a(S

1 global minimum for each function

53.10(X)=S,40.10(X)=S,15.10(X)=S
) 10,4() 7,4(5,4

7.2.11 Rosenbrock (Rn) (n variables):
n

1j

2

j

2

1j

2

jn
])1x()xx(100[(X)=R

Search domain: n,...,1j,10x5
j

several local minima (exact number unspecified in usual
literature)

1 global minimum:)1,...,1(*X ;

0)=* (XR
n

7.2.12 Zakharov (Zn) (n variables):
4

n

1j j

2
n

1j j

n

1j

2

jn
)jx0.5()jx0.5()x((X)Z

Search domain: ,...,n1,j10x5
j

several local minima (exact number unspecified in usual
literature);

1 global minimum:)0,...,0(*X ;

0)=* (XZ
n

8. REFRENCES
[1] Angeline, P. 1998. Using Selection to Improve Particle Swarm

Optimization, In Optimization Conference on Evolutionary
Computation, Piscataway, New Jersey, USA, pp. 84-89,
IEEE service center.

[2] Chu, S.Y., and Teng, C.C. 1999. “Tuning of PID controllers
based on gain and phase margin specifications using fuzzy
neural network,” Fuzzy Sets and Systems, 101(1), pp. 21-30.

[3] Fogel, L. 1994. Evolutionary Programming in Perspective:
Top-Down View. Computational Intelligence: Imitating Life,
Piscataway, New Jersey, USA, IEEE.

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.10, December 2010

29

[4] Gaing, Z. L. 2004. “A Particle Swarm Optimization Approach
For Optimum Design of PID controller in AVR system,”
IEEE Transactions on Energy Conversion, 9(2):384-391.

[5] Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor, MI,
Internal Report.

[6] Hsiao, Y. T., Chuang, C. L., and Chien, C. C. 2004. “Ant

colony optimization for designing of PID controllers,” in
proceedings of the 2004 IEEE Conference on Control
Applications/International Symposium on Intelligent
Control/International Symposium on Computer Aided
Control Systems Design, Taipei, Taiwan.

[7] Kennedy, J., and Eberhart, R. 1995. Particle Swarm
Optimization. In Proceedings of IEEE International
Conference on Neural Networks, Perth, Australia, vol.4,
pp.1942-1948.

[8] Kennedi, J., and Eberhart, R. 1997. A Discrete Binary Version
of the Particle Swarm Algorithm. In Proceedings of the

Conference on Systems, Man, and Cybernetics, pp. 4104-
4109.

[9] Kennedy, J. Eberhart, R. C., and Shi, Y. 2001. Swarm
Intelligence, Morgan Kaufmann Publishers, San Francisco.

[10] Kim, D. H. 2001. “Tuning of a PID controller using a
artificial immune network model and local fuzzy set”, in
Proceedings of the Joint 9th IFSA World Congress and 20th
NAFIPS International Conference, vol.5, pp. 2698 – 2703.

[11] Krohling, R. A., and Rey, J. P. 2001. “Design of optimal
disturbance rejection PID controllers using genetic
algorithm,” IEEE Trans. Evol. Comput., vol. 5, pp. 78–82.

[12] Li, L. L., Wang, L., and Liu, L. H. 2005. An effective hybrid
PSOSA strategy for optimization and its application to
parameter estimation, Applied Mathematics and
Computation.

[13] Lovberg, M., and Krink, T. 2002. Extending Particle Swarm

 Optimizers with Self-Organized Criticality. In Proceeding of
Forth Congress on Evolutionary Computation, vol. 2,
pp.1588- 1593.

[14] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller A.,
and Teller, E. 1953, Journal of Chemical Physics, vol. 21, pp.
1087–1092.

[15] Riget, J., and Vesterstrom, J. 2002. A Diversity-Guided

Particle Swarm Optimizer- The ARPSO, EVALife Technical
Report, no 2002-2.

[16] Shi, Y., and Eberhart, R. 1998. A modified particle swarm
optimizer. Proceedings of the IEEE international conference
on evolutionary computation. Piscataway, NJ: IEEE Press; p.
69–73.

[17] Van den Bergh, F. and Engelbrecht, A. P. 2002. A New
Locally Convergent Particle Swarm Optimization, In
Proceedings of the IEEE Conference on Systems, Man, and
Cybernetics, Hammamet, Tunisia.

[18] Visioli, A. 1999. “Fuzzy logic based set-point weight tuning
of PID controllers”, IEEE Trans. System, Man, and
Cybernetics – Part A: System and Humans, vol. 29, no. 6, pp.
587-592.

[19] Wang, P., and Kwok, D.P. 1994. “Optimal design of PID
process controllers based on genetic algorithms”, Control
Engineer Practice, vol. 2, no. 4, pp.641-648.

 VII: Proc. EP98, New York, pp. 591–600.

[20] Zhou, G., and Birdwell, J. D. 1994. “Fuzzy logic-based PID
autotuner design using simulated annealing, in Proceedings
of the IEEE/IFAC Joint Symposium on Computer-Aided
Control System Design, 7-9, pp. 67 – 72.

[21] Zhao, Z.Y., Tomizuka, M. and Isaka, S. 1993. “Fuzzy gain
scheduling of PID controllers”, IEEE Trans. System, Man,
and Cybernetics, vol. 23, no. 5, pp. 1392-1398.

[22] Ziegler, J.G., and Nichols, N.B. 1942. “Optimum settlings for
automatic controllers”, Trans. On ASME., vol. 64, pp.759-
768.

