
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

44

A Scheduling Algorithm for Asymmetric Processor

Architecture

S.Subha
School of Information Technology

and Engineering
VIT, Vellore, India

ABSTRACT

Chip multiprocessors are used widely today. The cores in a chip can

be homogeneous or heterogeneous. This paper proposes a

scheduling algorithm for heterogeneous multiprocessors wotj,

multiple functional units of varying speed in each processor.

Instructions that can be scheduled in parallel are considered. An

optimization function is developed to allocate the processes to the

processors that minimize the overall execution time. The proposed

model is simulated for a chosen example and verified to give 46%

improvement in performance.

General Terms

Process scheduling

Keywords

Chip multiprocessors, Process scheduling

1. INTRODUCTION
Chip multiprocessors can be homogeneous or heterogeneous. In

homogeneous CMP, all the processors belong to the same family.

They have the same speed. In heterogeneous CMP, processors

belong to different families. Their processing speed differs. Each

processor in CMP can have multiple functional units for the same

operation. The speed of individual functional unit may vary. Any

program segment can be visualized to start with a serial part

following by <parallel part, serial part> pairs ending with a serial

part. Scheduling the parallel part on symmetric (homogeneous)

processors can be achieved by adopting any scheduling algorithm.

Scheduling the parallel part on asymmetric (heterogeneous)

processor is a tougher task as the processing speed differs. It is

logical to schedule every type of instruction on a processor which

executes in minimum time. However, in reality this may not be

feasible based on the instruction mix.

The model in [1] describes scheduling of processes on

asymmetric processors with dependencies. This paper considers

processes that can be scheduled in parallel without data

dependencies on CMP. It is also assumed that each processor in

CMP has multiple functional units for each instruction type

with varying speed. This paper proposes an optimization

function that determines the schedule of instructions in the

parallel part of any program segment in asymmetric CMP.

The solution to this function gives the schedule.

The rest of the paper is as follows. Section 2 gives the

motivation, section 3 the proposed model, section 4 simulation,

section 5 conclusion, section 6 references.

2. MOTIVATION
Consider asymmetric CMP system with four processors

belonging to f families. Let the parallel part of the program

segment contain four load instructions, six store instructions,

four multiply instructions, twenty floating point operations.

The following table Table1 gives the execution time in units of

time of each type of instruction on the four processors.

Table 1

Processor#/instruc

tion

1 2 3 4

Load 3 4 7 5

Store 2 3 6 3

Multiply 6 8 4 10

Floating point 15 20 1

3

30

From Table 1 it can be seen that it takes eight units to perform

multiply operation on processor two, thirty units of time to perform

floating point operation on processor four. The rest of the table can

be interpreted in similar way.

The following schedule in Table 2 gives optimal scheduling

Table 2
Processor#/instruction 1 2 3 4

Load 0 0 2 2

Store 6 0 0 0

Multiply 2 0 1 1

Floating point 7 6 3 4

The optimal time is 140 units of time. From Table 2 it can be seen

that three floating point instructions are scheduled on processor

three, two load instructions are scheduled on processor four etc. The

optimal time for the schedule is given as follows. It takes 3*0 time

units for Load instruction on processor one, 4*0 time units on

processor two, 7*2=14 time units on processor three, 5*2=10 units

of time on processor four for Load instruction. For Store instruction

the time taken is 12 units of time on processor one and zero units of

time on other processors. For multiply instruction, the time taken is

2*6=12 time units on processor one, zero time units on processor

two, 1*4=4 time units on processor three, 1*10=10 time units on

processor four. For floating point operation, the execution time is

105, 120, 39, 120 units on processors 1, 2, 3, 4 respectively. The

total time taken is maximum time on any processor which is 140

time units on processor four.

The same instruction mix if allotted based on the following strategy

gives the total execution time to be 260ns. Allot to the processor

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

45

that has minimum execution time. According to this rule, Load is

allotted to processor-1 takes 4*5 = 20 units of time Store is allotted

to processor-1 takes 6*2=12 units of time. Multiply is allotted to

processor-3 takes 4*4 = 16 units of time. Floating point is allotted

to processor-3 takes 20*13 = 260 units of time. Store needs to

follow load on same processor.

Table 3
Processor#/instruction 1 2 3 4

Load 4 0 0 0

Store 6 0 0 0

Multiply 0 0 4 0

Floating point 0 0 20 0

A performance improvement of 46% is seen using the proposed

model. This is the motivation of this paper.

3. PROPOSED MODEL
Let there be n instruction types numbered from 1, 2... n. Let there be

m processors numbered as mPP ,...,1 . Consider the instructions

that can be run simultaneously. Let a(i, j) be the number of

functional units for instruction type j on processor iP
. The matrix

A is of dimension mxn. Let t(i, j, k) be the time taken to execute one

instruction of type j on functional unit k in processor iP
 . Let ijkx

number of instructions of type j on functional unit k where k ranges

from one to a(i, j) on processor iP
 . Let ijy

 be the number of

instructions of type j scheduled on processor iP
. For any

instruction of type j let jQ
 be the number instructions in the

parallel code. Then we have

 jmjjj Qyyy ≈+++ ...21

 (1)

i.e.

nmnnnn

m

m

m

Qyyyy

Qyyyy

Qyyyy

Qyyyy

≈++++

≈++++

≈++++

≈++++

...

....

...

...

...

321

33332313

22322212

11312111

From the proposed model we have for given i, j

() ijjiijaijij yxxx ≈+++ ,21 ...

 (2)

We have

0

...

0

0

...

0

...

0

0

0

...

0

0

2

1

2

22

12

1

21

11

≥

≥

≥

≥

≥

≥

≥

≥

≥

mn

n

n

m

m

y

y

y

y

y

y

y

y

y

 (3)

Let iv
 be the maximum time to execute the instructions assigned to

processor iP
. The objective is given by min(total time of execution

of the parallel code)

The total time is given by the expression

Total time = max
()1210 ,...,,, −mvvvv

The calculation of iv
 is as follows.

iv
=maximum time for computation on iP

= maximum time for

executing instructions of type 1, 2, .., n =max(maximum time taken

on a(i,1) functional units, maximum time taken on a(i,2) functional

units, maximum time taken on a (i,3), …, maximum time taken on

a(i, n))

The objective function can be written as

min(max((max(111x t(1,1,1), 112x t(1,1,2), 113x t(1,1,3),…,

()1,111ax t(1, 1, a(1,1))), max(121x t(1,2,1), 122x t(1, 2, 2),

123x t(1,2,3),…, ()2,112ax t(1,2,a(1,2))),max(131x t(1,3,1),

132x t(1,3,2), 133x t(1,3,3),…, ()3,113ax t(1,3,a(1,3))),

 …….

 max(11nx t(1,n,1), 21nx t(1,n,2), 31nx t(1,n,3),….,

()nnax ,11 t(1,n,a(1,n)))),

 ……..

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

46

 (max(11ix t(i,1,1), 12ix t(i,1,2), 13ix t(i,1,3),…,

 ()1,1 iaix t(i, 1, a(i,1))),

 max(21ix t(i,2,1), 22ix t(i, 2, 2), 23ix t(i,2,3),…,

 ()2,2 iaix t(i,2,a(i,2))),

 max(31ix t(i,3,1), 32ix t(i,3,2), 33ix t(i,3,3),…,

 ()3,3 iaix t(i,3,a(i,3))),

 …….

 max(1inx t(i,n,1), 2inx t(i,n,2), 3inx t(i,n,3),….,

 ()niinax , t(i,n,a(i,n)))),

 …….

 (max(11mx t(m,1,1), 12mx t(m,1,2), 13mx t(m,1,3),…,

 ()1,1 iamx t(m, 1, a(m,1))),

 max(21mx t(m,2,1), 22mx t(m, 2, 2), 23mx t(m,2,3),…,

()2,2 iamx t(m,2,a(m,2))),

 max(31mx t(m,3,1), 32mx t(m,3,2), 33mx t(m,3,3),…,

()3,3 iamx t(m,3,a(m,3))),

 …….

max(1mnx t(m,n,1), 2mnx t(m,n,2), 3mnx t(m,n,3),….,

 ()nimnax , t(m,n,a(m,n))))))

subject to

()
()

()() 01,1,1,1

...

02,1,1

01,1,1

≥

≥

≥

at

t

t

()
()

()() 02,1,2,1

...

02,2,1

01,2,1

≥

≥

≥

at

t

t

…

()
()

()() 0,,,

...

02,2,

01,1,

≥

≥

≥

nmanmt

mt

mt

()
()

() 0,1

...

02,1

01,1

≥

≥

≥

na

a

a

…

()
()

() 0,

...

02,

01,

≥

≥

≥

nma

ma

ma

() 0

...

0

0

0

1,111

113

112

111

≥

≥

≥

≥

ax

x

x

x

…

() 0

...

0

0

,

2

1

≥

≥

≥

nmmna

mn

mn

x

x

x

 (4)

Solving (4) for integer solutions gives the task allocation. This

allocation ensures that the speed of the processors is utilized to

the maximum extent.

4. SIMULATIONS
The proposed model allocates the tasks in the parallel segment of a

program. The allocation is done by solving the optimization

function given in (4). The optimization function can be solved using

MS-Excel Solver package. The simulation of the proposed model

does not require a system simulation as the proposed model is for

task allocation. Consider the following system. There are four

processors. There are four types of instructions namely load, store,

multiply and floating point operation. The number of functional

units for these processors for the four types of instructions is given

by matrix A.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

47



















=

1221

2031

5123

4312

A

Where a(i,j) denotes the number of functional units for instruction

type j on processor iP . The instructions are Load, Store, Multiply

and Floating point operation as the columns of A. Thus there are

five functional units of floating point type on processor 2. There

are nine load instructions, six store instructions, seven multiply

instructions, twenty floating point instructions to be scheduled in

parallel.

The average time of execution in cycles on the functional units is

given by the following.

Processor #1: 1P

Load unit 1: 3

Load unit 2: 2

Store unit 1: 2

Multiply unit 1: 6

Multiply unit 2: 5

Multiply unit 3: 4

Floating point unit 1: 20

Floating point unit 2: 20

Floating point unit 3: 12

Floating point unit 4: 10

Processor #2: 2P

Load unit 1: 3

Load unit 2: 2

Load unit 3: 4

Store unit 1: 1

Store unit 2: 2

Multiply unit 1: 5

Floating point unit 1: 15

Floating point unit 2: 20

Floating point unit 3: 14

Floating point unit 4: 10

Floating point unit 5: 10

Processor #3: 3P

Load unit 1: 2

Store unit 1: 3

Store unit 2: 2

Store unit 3: 3

Floating point unit 1: 10

Floating point unit 2: 9

Processor #4: 4P

Load unit 1: 2

Store unit 1: 3

Store unit 2: 3

Multiply unit 1: 6

Multiply unit 2: 8

Floating point unit 1: 12

The optimization function for the various instructions is

given next. The notation used in Section 3 is used. For

instruction type 1, the optimization function is

()

() () 



































2*max,2*max

,

4*

,2*

,3*

max,2*,3*max
min

411311

213

212

211

112111

xx

x

x

x

xx

Subject to

9411311

213212211112111

=++

++++

xx

xxxxx

(5)

Solving (5) for integer solutions, the allocation is 2,2 on 1P , 1,1,1

on 2P , 1 each on 3P and 4P giving a value of 6 cycles. For

instruction type 2 the optimization function is given by

() ()
()
() 
















3*,3*max

,3*,2*,3*max

,2*,1*max,2*max

min

422421

323322321

222221121

xx

xxx

xxx

Subject to

6422421

323322321222221121

=++

+++++

xx

xxxxxx

 (6)

Solving (6) for integer solutions gives 2 for 1P , 1, 2 for 2P , 3, 2, 3

for 3P and 3 each for 4P with a value of 4 cycles. For instruction

type-3 the optimization function is

()
() ()










8*,6*max,5*max

,4*,5*,6*max
min

432431231

133132131

xxx

xxx

 Subject to

7432431231133132131 =+++++ xxxxxx

 (7)

Solving (7) gives 1, 1, 2 instructions on 1P , one on 2P and one

each on each functional unit of 4P with a value of maximum of 8

cycles. For instruction type-4 the optimization function is

()

() () 





































12*max,9*,10*max

,

10*,10*

,14*,20*

,15*

max

,10*,12*,20*,15*max

min

441342341

245244

243242

241

144143142141

xxx

xx

xx

x

xxxx

Subject to

20441341245244243

242241144143142141

=++++

++++++

xxxxx

xxxxxx
 (8)

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

48

Solving (8) gives 1,1,2,2 on 1P , 1,1,1,2,2 on 2P , 2, 3 on 3P and

2 on 4P with a value of 27 cycles. The solution to the problem is

hence max (4, 3, 8, 27) which is 27cycles.

5. CONCLUSION
An algorithm to allocate tasks in parallel segment of a program

among heterogeneous CMP is proposed in this paper. The

algorithm allocates based on the speed of computation on

each processor. An optimization function is developed to

allocate. The solution to the optimization function gives the

allocation.

6. REFERENCES
[1] Ioannis Chatzigiannakis, Georgios Giannoulis, Paul Spirakis,

Scheduling Tasks with Dependencies on Asymmetric

Multiprocessors, PODC, ’08.

[2] Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim,

Age based scheduling for asymmetric multiprocessors,

Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, 2009.

[3] Qiong Cai , José González , Ryan Rakvic , Grigorios

Magklis , Pedro Chaparro , Antonio González, Meeting

points: using thread criticality to adapt multicore hardware

to parallel regions, Proceedings of the 17th International

Conference on Parallel Architectures and Compilation

Techniques, 2008

[4] Saisanthosh Balakrishnan , Ravi Rajwar , Mike Upton ,

Konrad Lai, The Impact of Performance Asymmetry in

Emerging Multicore Architectures, Proceedings of the 32nd

annual international symposium on Computer Architecture,

2005, pp. 506-517

[5] S. Subha: An Algorithm for Parallel Execution of Loops in

Chip Multiprocessor Caches, ARTCom 2009: 85-89

[6] S. Subha: A Scheduling Algorithm for Network on Chip,

Advances in Computing, Control, and Telecommunication

Technologies, International Conference on, pp.289-291

