International Journal of Computer Applications (0975 — 8887)
Volume 11— No.11, December 2010

A Scheduling Algorithm for Asymmetric Processor
Architecture

S.Subha
School of Information Technology
and Engineering
VIT, Vellore, India

ABSTRACT

Chip multiprocessors are used widely today. The cores in a chip can
be homogeneous or heterogeneous. This paper proposes a
scheduling algorithm for heterogeneous multiprocessors wotj,
multiple functional units of varying speed in each processor.
Instructions that can be scheduled in parallel are considered. An
optimization function is developed to allocate the processes to the
processors that minimize the overall execution time. The proposed
model is simulated for a chosen example and verified to give 46%
improvement in performance.

General Terms

Process scheduling

Keywords

Chip multiprocessors, Process scheduling

1. INTRODUCTION

Chip multiprocessors can be homogeneous or heterogeneous. In
homogeneous CMP, all the processors belong to the same family.
They have the same speed. In heterogeneous CMP, processors
belong to different families. Their processing speed differs. Each
processor in CMP can have multiple functional units for the same
operation. The speed of individual functional unit may vary. Any
program segment can be visualized to start with a serial part
following by <parallel part, serial part> pairs ending with a serial
part. Scheduling the parallel part on symmetric (homogeneous)
processors can be achieved by adopting any scheduling algorithm.
Scheduling the parallel part on asymmetric (heterogeneous)
processor is a tougher task as the processing speed differs. It is
logical to schedule every type of instruction on a processor which
executes in minimum time. However, in reality this may not be
feasible based on the instruction mix.

The model in [1] describes scheduling of processes on
asymmetric processors with dependencies. This paper considers
processes that can be scheduled in parallel without data
dependencies on CMP. It is also assumed that each processor in
CMP has multiple functional units for each instruction type
with varying speed. This paper proposes an optimization
function that determines the schedule of instructions in the
parallel pat of any program segment in asymmetric CMP.
The solution to this function gives the schedule.

The rest of the paper is as follows. Section 2 gives the
motivation, section 3 the proposed model, section 4 simulation,
section 5 conclusion, section 6 references.

2. MOTIVATION

Consider asymmetric CMP system with four processors
belonging to f families. Let the parallel part of the program
segment contain four load instructions, six store instructions,
four multiply instructions, twenty floating point operations.
The following table Tablel gives the execution time in units of
time of each type of instruction on the four processors.

Table 1

Processor#/instruc 1 2 3 4
tion

Load 3 7 5
Store 2 6 3
Multiply 6 4 10
Floating point 15 20 1 30

3

From Table 1 it can be seen that it takes eight units to perform
multiply operation on processor two, thirty units of time to perform
floating point operation on processor four. The rest of the table can
be interpreted in similar way.

The following schedule in Table 2 gives optimal scheduling

Table 2
Processor#/instruction 1 2 3 4
Load 0 0 2 2
Store 6 0 0 0
Multiply 2 0 1 1
Floating point 7 6 3 4

The optimal time is 140 units of time. From Table 2 it can be seen
that three floating point instructions are scheduled on processor
three, two load instructions are scheduled on processor four etc. The
optimal time for the schedule is given as follows. It takes 3*0 time
units for Load instruction on processor one, 4*0 time units on
processor two, 7*2=14 time units on processor three, 5*2=10 units
of time on processor four for Load instruction. For Store instruction
the time taken is 12 units of time on processor one and zero units of
time on other processors. For multiply instruction, the time taken is
2*6=12 time units on processor one, zero time units on processor
two, 1*4=4 time units on processor three, 1¥10=10 time units on
processor four. For floating point operation, the execution time is
105, 120, 39, 120 units on processors 1, 2, 3, 4 respectively. The
total time taken is maximum time on any processor which is 140
time units on processor four.

The same instruction mix if allotted based on the following strategy
gives the total execution time to be 260ns. Allot to the processor

44

that has minimum execution time. According to this rule, Load is
allotted to processor-1 takes 4*5 = 20 units of time Store is allotted
to processor-1 takes 6*2=12 units of time. Multiply is allotted to
processor-3 takes 4*4 = 16 units of time. Floating point is allotted
to processor-3 takes 20*13 = 260 units of time. Store needs to
follow load on same processor.

Table 3
Processor#/instruction 1 2 3 4
Load 4 0 0 0
Store 6 0 0 0
Multiply 0 0 4 0
Floating point 0 0 20 0

A performance improvement of 46% is seen using the proposed
model. This is the motivation of this paper.

3. PROPOSED MODEL

Let there be n instruction types numbered from 1, 2... n. Let there be

m processors numbered as """ " _ Consider the instructions

that can be run simultaneously. Let a(i, j) be the number of

functional units for instruction type j on processor ~ ‘. The matrix
A is of dimension mxn. Let t(i, j, k) be the time taken to execute one

P X,
instruction of type j on functional unit k in processor ' . Let ik
number of instructions of type j on functional unit k where k ranges

P -
from one to a(i, j) on processor ' . Let Vi be the number of
instructions of type j scheduled on processor .

Q

/ be the number instructions in the

For any

instruction of type j let
parallel code. Then we have

Vijt Yo tety,, =0,
(M)

ie.
YtV TVt t Vo, =0
Vot Vntyntety,, =0,
VstV T Vs Tt Y, =0,

yln +y2n +y3n +"'+ymn an

From the proposed model we have for given i, j
xijl + xij2 +...+ xija(i,j) ~ ylj

@)

We have

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.11, December 2010

Y20
Yn 20

yml ZO
Y, 20
Yn 20

ym220

yZnZO

ymn 2 0
3
V.
Let ' be the maximum time to execute the instructions assigned to

P
processor ‘. The objective is given by min(total time of execution
of the parallel code)

The total time is given by the expression
, (VorVisVaseonrVyy)
Total time = max * 07 12 722" "m-l
. V. .
The calculation of ' is as follows.

! =maximum time for computation on ‘= maximum time for
executing instructions of type 1, 2, .., n =max(maximum time taken
on a(i,1) functional units, maximum time taken on a(i,2) functional
units, maximum time taken on a (i,3), ..., maximum time taken on

a(i, n))

The objective function can be written as
min(max((max(X, ; t(1,1,1), X, t(1,1,2), X;;5t(1,1,3),...,

X140 10 1 (L, 1)), max(Xy, ((1,2,1), X5, (1, 2, 2),
X193 1(1,2.3)50-.5 Xyp(2)t(1,2:0(1,2)),max(X3 (1,3,1),

X3 t(13,2), Xp33 60133y Xyz(0) H(1,3,2(1,3)),

max(X, t(1,n,1), X;,, t(1,n,2), X, 5t(1,n,3),....,

xlna(l,n) t(1,n,a(1,n)))),

45

(max(X, tG,1,1), X, 1(,1,2), X, 3 tG,1,3),...,
X1q(e1) 0> 1, 2 D)),
max(X5, t(0,2,1), X, (i, 2, 2), X;p3 1(0,2,3);...,
Xi24(i.2) 10.2,(1,2))),
max(X;3, t(1,3,1), X5, t(0,3,2), X;55t(03,3)0.,

X34(:,3) 10:3,3(1,3))),

max(X, t(i,n,1), X, , t(i,n,2), X, 5t(,n,3),....,

inl

Xina(in) t(i,n,a(i,n)))),

(max(X, t(m,1,1), X, ,t(m1,2), X 5tm,1,3),...,

mll
X ia(i,) UM, 1, a(m, 1)),

max(X, t(m,2,1), X, t(m, 2,2), X, 53 t(m,2,3),...,

X 2a(s.2) H(m,2,8(m.2))),

max(X,,5; (m,3,1), X5, t(m,3,2), X, t(m33),...,

xm3a(i,3) t(m’3’a(m’3)))’

max(X . t(mn,l), X t(mn,2), X ,t(m,n,3),....,

mnl mn2 mn3

‘xmna(i’n) t(m,n,a(m,n))))))

subject to

International Journal of Computer Applications (0975 — 8887)

Volume 11— No.11, December 2010

X, 20
X, 20

X320
X1a(L1) 20

>0

mnl —

>0

mn2 —

x
X
“4)

mna\m,n

Solving (4) for integer solutions gives the task allocation. This
allocation ensures that the speed of the processors is utilized to
the maximum extent.

4. SIMULATIONS

The proposed model allocates the tasks in the parallel segment of a
program. The allocation is done by solving the optimization
function given in (4). The optimization function can be solved using
MS-Excel Solver package. The simulation of the proposed model
does not require a system simulation as the proposed model is for
task allocation. Consider the following system. There are four
processors. There are four types of instructions namely load, store,
multiply and floating point operation. The number of functional
units for these processors for the four types of instructions is given
by matrix A.

46

2 4
3 5
1 2
1 1

N W N~
N O = W

Where a(i,j) denotes the number of functional units for instruction
type j on processor R The instructions are Load, Store, Multiply

and Floating point operation as the columns of A. Thus there are
five functional units of floating point type on processor 2. There
are nine load instructions, six store instructions, seven multiply
instructions, twenty floating point instructions to be scheduled in
parallel.

The average time of execution in cycles on the functional units is
given by the following.

Processor #1: P1

Load unit 1: 3

Load unit 2: 2

Store unit 1: 2

Multiply unit 1: 6
Multiply unit 2: 5
Multiply unit 3: 4
Floating point unit 1: 20
Floating point unit 2: 20
Floating point unit 3: 12
Floating point unit 4: 10

Processor #2: P2

Load unit 1: 3

Load unit 2: 2

Load unit 3: 4

Store unit 1: 1

Store unit 2: 2

Multiply unit 1: 5
Floating point unit 1: 15
Floating point unit 2: 20
Floating point unit 3: 14
Floating point unit 4: 10
Floating point unit 5: 10

Processor #3: P3

Load unit 1: 2

Store unit 1: 3

Store unit 2: 2

Store unit 3: 3

Floating point unit 1: 10
Floating point unit 2: 9

Processor #4: P4

Load unit 1: 2

Store unit 1: 3

Store unit 2: 3

Multiply unit 1: 6

Multiply unit 2: 8

Floating point unit 1: 12

The optimization function for the various instructions is
given next. The notation used in Section 3 is used. For
instruction type 1, the optimization function is

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.11, December 2010

*
Xy *3,

* * *
) malx(x111 3,%,, 2),max Xy, *2, |,
min .
Xy3 *4

max(xm * 2)5 max(xm * 2)

Subject to
Xipp F Xy X X5, + X545

+ X3y Xy =9

(5)
Solving (5) for integer solutions, the allocation is 2,2 on P, , 1,1,1
on P2 , 1 each on P3 and P4 giving a value of 6 cycles. For
instruction type 2 the optimization function is given by
max(xm * 2)» max(xzzl *Lxy, * 2):
min max(x321 *3,X50, ¥2,x5,;, * 3),
max(x,,, *3,%,,, *3)
Subject to
Xigp T Xgpp F Xogp T X3p; + X3y + X33

+ X Xy =6
(6)
Solving (6) for integer solutions gives 2 for P, 1,2 for P2 ,3,2,3
for P3 and 3 each for P4 with a value of 4 cycles. For instruction
type-3 the optimization function is
* * *
. max(xm 0,X13 *5, %3 4)5
min % % %
maX(xBl 5)’ max(x431 6,% 3, 8)
Subject to
Xigp + Xy + X33 + Xy + Xy + Xy, =7
@)
Solving (7) gives 1, 1, 2 instructions on Pl , one on P2 and one
each on each functional unit of P4 with a value of maximum of 8

cycles. For instruction type-4 the optimization function is
max(x,,, ¥15,x,, *20,x,,, *12,x,,, ¥10),
*
X *15,
min| max| x,,, *20,x,,; *14, |,
* *
Xy ¥10,x,,5 *10

rnax(x341 *10, x5, *9), max(x441 *12)
Subject to

Xigp T Xpgp T Xy T Xy + X + X5 + ®

Xpgy F Xogy + Xogs + X34 + Xy =20

47

Solving (8) gives 1,1,2,2 on Pl , 1,1,1,2,2 on P2 ,2,30on P3 and

2 on P4 with a value of 27 cycles. The solution to the problem is
hence max (4, 3, 8, 27) which is 27cycles.

5. CONCLUSION

An algorithm to allocate tasks in parallel segment of a program
among heterogeneous CMP is proposed in this paper. The
algorithm allocates based on the speed of computation on
each processor. An optimization function is developed to
allocate. The solution to the optimization function gives the
allocation.

6. REFERENCES

[1] Ioannis Chatzigiannakis, Georgios Giannoulis, Paul Spirakis,
Scheduling Tasks with Dependencies on Asymmetric
Multiprocessors, PODC, *08.

[2] Nagesh B. Lakshminarayana, Jaekyu Lee, Hyesoon Kim,
Age based scheduling for asymmetric —multiprocessors,
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, 2009.

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.11, December 2010

[3] Qiong Cai , José Gonzalez , Ryan Rakvic , Grigorios
Magklis , Pedro Chaparro , Antonio Gonzalez, Meeting
points: using thread criticality to adapt multicore hardware
to parallel regions, Proceedings of the 17" International
Conference on Parallel Architectures and Compilation
Techniques, 2008

[4] Saisanthosh Balakrishnan , Ravi Rajwar , Mike Upton ,
Konrad Lai, The Impact of Performance Asymmetry in
Emerging Multicore Architectures, Proceedings of the 32nd
annual international symposium on Computer Architecture,
2005, pp. 506-517

[5] S. Subha: An Algorithm for Parallel Execution of Loops in
Chip Multiprocessor Caches, ARTCom 2009: 85-89

[6] S. Subha: A Scheduling Algorithm for Network on Chip,
Advances in Computing, Control, and Telecommunication
Technologies, International Conference on, pp.289-291

48

