
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

13

 A Method of Computing with Words to Answer Queries in

Relational Database

 Smita Rajpal
Associate Professor

Department of Computer Science &
Engineering, ITM University

Gurgaon, India

ABSTRACT

In this paper we are proposing a new method of intelligent search

based on the concept of computing with words introduced by

Prof. Zadeh[1] in 1996 to find the most suitable match for the

predicates to answer any imprecise query made by the database

users. The method is based on the theory of Computing with

Words (CW). It is also to be mentioned that the proposed

method could be easily incorporated in the existing commercial

query languages of DBMS to serve the lay users better. So in this

Paper Author is suggesting a new method called as α-CW-

equality Search to answer the queries of Relational database

based on ranks.

General Terms

Relational database Management System, Fuzzy Logic

Keywords

Probabilistic database, Computing with Words (CW), α-CW-

equality Search, CW-Proximity Search, CW search

1. INTRODUCTION

 Today Databases are Deterministic. An item belongs to the

database is a probabilistic event, or a tuple is an answer to the

query is a probabilistic event, and it can be extended to all data

models. Probabilistic relational Data are defined in two ways,

 Database is deterministic and Query answers are

probabilistic or

 Database is probabilistic and Query answers are

probabilistic.

Probabilistic relational databases [2,3,4] have been studied from

the late 80‟s until today. But today Application Need to manage

imprecision‟s in data. Imprecision can be of many types: non-

matching data values, imprecise queries, inconsistent data,

misaligned schemas etc.

The quest to manage imprecision‟s is equal to major driving

force in the database community. This is the Ultimate cause for

many research areas like data mining, semi structured data,

schema matching, nearest neighbor. Processing probabilistic data

[5,6,7] is fundamentally more complex than other data models.

Some previous approaches sidestepped complexity .Now our

implementation includes Ranking query answers. Since our

Database is deterministic, the query returns a ranked list of

tuples but our user interested in top-k answers. Sometimes we

get the empty answers for the user queries in the deterministic

database. For e.g.

Try to buy a house in Seattle,

SELECT *

FROM Houses

WHERE bedrooms = 4

 AND style = „craftsman‟

 AND district = „View Ridge‟

 AND price < 400000

Here our database are unable to answer the queries because of

imprecision in the query language.

Definition1.1 Ranking

Ranking is defined as computing a similarity score between a

tuple and the query,

Consider the query

 Q = SELECT *

 FROM R

 WHERE A1=v1 AND … AND Am=vm

 Query is a vector: Q = (v1, …, vm)

 Tuple is a vector: T = (u1, …, um)

Consider the applications: personalized search engines, shopping

agents, logical user profiles, and “soft catalogs”

To answer the queries related with the above application two

approaches are given:

• Qualitative Pare to semantics (deterministic)

• Quantitative alter the query ranking

 Definition 1.2

An imprecise attribute value tm(ai)must be specified as a discrete

probability distribution

Over Di, that is tm(ai) = {(zj,Pj)\zj Diand Pj [O, 1]}

With Pj = im, 0 <= im <= 1.

 (zj,Pj) fvn(a;)

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

14

This definition covers both interpretations of null values as well

as the usual interpretation of imprecise data: If aim = 1, we

certainly know that an attribute value exists, and with a im = 0, we

represent the fact that no value exists for this attribute. In the

case of 0 < oi, < 1, oi, gives the probability that an attribute value

exists: For example, someone who is going to have a telephone

soon gave us his number, but we are not sure if this number is

valid already. With imprecise values specified this way, their

probabilistic indexing weight can be derived easily.

Definition 1.3 Probabilistic Tuples

 Let R(A) be a relation scheme and let t = (V1; : : : ; Vn) be a

tuple of cases of the relation scheme R. For each Vi, let V I
’' be

the set of the vj’ = (aj ; lj ; uj ; pj) such that (aj ; lj ; uj) Vi,

where pj is the path associated with aj . A probabilistic tuple t0 =

(v1’; : : : ; vn’) is an element of the Cartesian product V1’

….. V0’ .

By Ai.l, Ai.u and Ai.p we denote lj , uj and pj associated with a

generic value of Ai in a given probabilistic tuple, respectively.

Definition 1.4 Probabilistic Relations

A probabilistic relation r of the scheme R (A) is a finite set of

probabilistic tuples of R (A). By domr (Ai) we will denote the set

of all values of the attribute Ai in the relation r.

Definition 1.5 Probabilistic Databases

A probabilistic database [8,9,10] of the database scheme R

={R1(A1), : : : ;Rm(Am)} is a finite set of probabilistic relations r

= (r1,……, rm), where each ri is a relation of the scheme Ri(Ai).

In order to avoid probabilistic ambiguities we assume that in

each initial relation there cannot be identical tuples.

 So the failure of the RDBMS is due to the presence of

imprecise constraints in the query predicate .Which can not be

tackled due to the limitation of the grammar in standard query

languages which work on crisp environment only. But these

types of queries are very common in business world and in fact

more frequent than grammatical-queries, because the users are

not always expected to have knowledge of DBMS and the query

languages.

Consequently, there is a genuine necessity for the different large

size organizations, specially for the industries, companies having

world wide business, to develop such a system which should be

able to answer the users queries posed in natural language,

irrespective of the QLs and their grammar, without giving much

botheration to the users. Most of these type of queries are not

crisp in nature, and involve predicates with fuzzy (or rather

vague) data, fuzzy/vague hedges (with concentration or dilation).

Thus, these types of queries are not strictly confined within the

domains always. The corresponding predicates are not hard as in

crisp predicates. Some predicates are soft because of

vague/fuzzy nature and thus to answer a query a hard match is

not always found from the databases by search, although the

query is nice and very real, and should not be ignored or replaced

according to the business policy of the industry. To deal with

uncertainties in searching match for such queries computing with

Words will be the appropriate tool.

In this paper we propose a new type of searching techniques

called as CW search which is a combination of α-CW-equality

search and CW proximity search by using Computing with

Words theory to meet the predicates posed in natural language

in order to answer imprecise queries of the users. Thus it is a

kind of an intelligent search for match in order to answer

imprecise queries of the lay users. We call this method by CW

search that is a combination of α-CW-equality search and CW

proximity search.

 Our method, being an intelligent soft-computing method, will

support the users to make and find the answers to their queries

without iteratively refining them by trial and error which is really

boring and sometimes it seriously effects the interest (mission

and vision) of the organization, be it an industry, or a company or

a hospital or a private academic institution etc. to list a few only

out of many. Very often the innocent (having a lack of DBMS

knowledge) users go on refining their queries in order to get an

answer. The users are from different corner of the academic

world or business world or any busy world. For databases to

support imprecise queries, our intelligent system will produce

answers that closely match the queries constraints, if does not

exactly. This important issue of closeness cannot be addressed

with the crisp mathematics. That is why we have used the

Computing with Words tools.

2. THEORY OF COMPUTING WITH

WORDS (CW)

In its traditional sense, computing involves (for the most part)

manipulation of numbers and symbols. We generally employ

mostly words in computing and reasoning, but words have fuzzy

denotations. The same applies to the role played by words in

CW. Although the foundations of computing with words were

laid some time ago, its evolution into a distinct methodology in

its own right reflects many advances in our understanding of

fuzzy logic and soft computing-advances which took place within

the past few years. By Prof zadeh, a key aspect of CW is that it

involves a fusion of natural languages and computation with

fuzzy variables. It is this fusion that is likely to result in an

evolution of CW into a basic methodology in its own right, with

wide-ranging ramifications and applications. The point of

departure in CW is the concept of a granule. In essence, a

granule is a fuzzy set of points having the form of a clump of

elements drawn together by similarity. A word w is a label of a

granule g and, conversely, g is the denotation of w. A word may

be atomic (as in young) or composite (as in not very young).

Unless stated to the contrary, a word will be assumed to be

composite. The denotation of a word may be a higher order

predicate, as in Neutrosophic/Vague grammar [9,10]. In CW, a

granule g, which is the denotation of a word w, is viewed as a

fuzzy constraint on a variable. A pivotal role in CW is played by

fuzzy constraint propagation from premises to conclusions. It

should be noted that as a basic technique, constraint propagation

plays important roles in many methodologies, especially in

mathematical programming, constraint programming, and logic

programming.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

15

Definition 2.1:

Computing with words and perceptions, or CWP for short is a

mode of computing in which the objects of computation are

words, propositions and perceptions described in a natural

language.

Definition 2.2:

Let Ω be a set of (non-ambiguous) words that are used in a

given context. The elements of Ω are considered to be pairs

(representation, meaning). Representations may be taken from

different syntactic domains, but meanings, from a single

semantic domain. Moreover, let Γ be a finite set of functions

{γ 1, γ 2, …, γ k}, with γ i : Ω n _ Ω

The functions {γ 1, γ 2, …, γ k} must be designed in such a

way, that applied to words of Ω will produce reasonable words

of Ω for the given context.

Definition 2.3:

In this paper when speaking of computing with words, the

objects of computation are specified in definition 1. The Agents

of computation are functions taken from Γ , as stated in

definition 2.

Examples: Let Ω be a subset of English.

If γ 1 is an appropriate “association” function. Then

γ 1 (teacher, student) = school

If γ 2 is a synonym function. Then

γ 2 (happy) = celebrate

If γ 3 is an antonym function. Then

γ 3 (day) = night

These examples show that since the functions in Γ represent

some “linguistic transformation”, their interpretation should be

taken take in account in the line of language precisiation.

3. A NOTE ON INTERVAL MATHEMATICS

Dealing with the Computing with Words theory, the crisp theory

of interval mathematics is sometimes useful. In this section, we

recollect some basic notions of interval mathematics. For our

purpose in this paper, we need to consider intervals of non-

negative real numbers only.

Let I1 = [a,b] and I2 = [c,d] be two intervals of non-negative real

numbers. A point valued non-negative real number r also can be

viewed, for the sake of arithmetic, as an interval [r,r].

3.1 Some Algebraic Operations

(i) Interval Addition: I1 + I2 = [a+c ,b+d]

(ii) Interval Subtraction: I1 - I2 = [a-c, b-d]

(iii) Interval Multiplication: I1 * I2 = [ac, bd]

(iv) Interval Division: I1 I2 = [a/d, b/c] , when c, d ≠ 0.

(v) Scalar Multiplication: k. I1 = [ka, kb].

3.2 Ranking Of Intervals

Intervals are not ordered. Owing to this major weakness, there is

no universal method of ranking a finite (or infinite) number of

intervals. But in real life problems dealing with intervals, we

need to have some tactic to rank them in order to arrive at some

conclusion. We will now present a method of ranking of

intervals, which we shall use in our work here in subsequent

sections. We consider a decision maker (or any intelligent agent

like a company manager, a factory supervisor, an intelligent

robot, an intelligent network, etc) who makes a pre-choice of a

decision parameter β [0,1]. The intervals are to be ranked

once the decision-parameter β is fixed. But ranking may differ if

the pre-choice β is renewed.

Definition 3.1 β-value of an interval

Let J = [a,b] be an interval. The β-value of the interval J is a

non-negative real number Jβ, given by Jβ = (1- β).a + β.b.

 Clearly, 0 ≤ Jβ ≤ 1, and for β = 0 Jβ = a which signifies that

the decision-maker is pessimistic, and also for β = 1 Jβ = b

which signifies that the decision-maker is optimistic. For β = .5

it is the arithmetic-mean to be chosen usually for a moderate

decision.

Comparison of two or more intervals we will do here on the basis

of β-values of them. If the value of β is renewed, the

comparison-results may change. The following definition will

make it clear. Now Author is proposing α-Neutrosophic-equality

search.

4. α-CW EQUALITY SEARCH

Consider the STUDENTS database given below. Consider a

normal type of query like

 PROJECT (STUDENT_NAME)

 WHERE AGE = “approximately 20”.

The standard SQL is unable to provide any answer to this query,

as the search for an exact match for the predicate will fail. The

value “approximately 20” is not a precise data. Any data of type

“approximately x”, “little more than x”, “slightly less than x”,

much greater than x” etc. are not precise or crisp. Denote any

one of them, say “approximately x” by the notation I(x). Clearly

for every member a dom(AGE), there is a membership value

tI(x)(a) proposing the degree of equality of this crisp number a

with the quantity “approximately x”, and a non-membership

value fI(x)(a) proposing the degree of non-equality . Thus, in

Computing with words of Prof. Zadeh, every element of

dom(AGE) satisfies the predicate AGE = “approximately 20”

upto certain extent and does not satisfy too, upto certain extent.

But we will restrict ourselves to those members of dom(AGE)

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

16

which are α-CW-equal, the concept of which we will define

below. Any imprecise predicate of type AGE =

“approximately 20”, or of type AGE = “young” (where the

attribute value “young” is not a member of the dom(AGE)), is

to be called by CW-predicate, and a query involving CW-

predicate is called to be a CW-query.

Definition 4.1

Consider a choice-parameter α [0,1]. A member of a of dom

(AGE) is said to be α-CW-equal to the quantity “approximate

x” if a Iα(x), where Iα(x) is the α-cut of the CW number

I(x). The degree or amount of this equality is measured by the

interval mI(x)(a) = [tI(x)(a), 1-fI(x)(a)]. Denote the collection of all

such α-CW-equal members from dom (AGE) by the notation

AGEα(x), which is a subset of dom(AGE). If AGE α(x) is not a

null-set or singleton, then the members can be ranked by ranking

their corresponding degrees of equality.

Definition 4.2

Consider a choice value β [0,1]. At β level of choice, for

every element a of AGEα (x), the truth-value t (p1, p2) of the

matching of the predicate p1: given by AGE = “approximately

x” with the predicate p2: AGE = a is equal to the β-value of

the interval mI(x)(a).

5. CW- PROXIMITY SEARCH

The notion of α-CW-equality search as explained above is

appropriate while there is an CW-predicate in the query

involving Vague Numbers. But there could be a variety of vague

predicates existing in a CW query, many of them may involve

CW hedges (including concentration/dilation) like “good”, “very

good”, “excellent”, “too much tall”, “young”, “not old”, etc. In

this section we present another type of search for finding out a

suitable match to answer imprecise queries. In this search we

will use the theory of CW-proximity relation. We know that a

CW-proximity relation on a universe U is a CW relation on U,

which is both CW-reflexive and CW-symmetric.

Consider the STUDENTS database as described and a query like

 PROJECT (STUDENT_NAME)

 WHERE EYE-COLOR = “dark-brown”.

The value/data “dark-brown” is not in the set dom (EYE-

COLOR). Therefore a crisp search will fail to answer this. The

objective of this research work is to overcome this type of

drawbacks of the classical SQL. For this we notice that there

may be one or more members of the set dom (EYE-COLOR),

which may closely match the eye-color of “brown” or “dark-

brown”.

Consider a new universe given by

 W = dom (EYE-COLOR) {dark-brown}.

Propose a CW-proximity relation R over W. Choose a decision-

parameter α [0,1]. We propose that search is to be made for

the match e dom(EYE-COLOR) such that

 tR(dark-brown, e) ≥ α.

(It may be mentioned here that the condition tR(dark-brown,e) ≥

α does also imply the condition fR(dark-brown,e) ≤ 1- α).

We say that e is a close match with “dark-brown” with the

degree or amount of closeness being the interval mdark-brown(e)

given by

 mdark-brown(e)=[tR(dark-brown,e), 1- fR(dark-brown,e)].

At β level of choice, the truth-value t(p1,p2) of the matching of

the predicate p1: given by EYE-COLOR = “dark-brown”

with the predicate p2: AGE = e is equal to the β-value of

the interval mdark-brown(e).

6. CW-SEARCH

In this section we will now present the most generalized method

of search called by CW-search. The CW-search of matching is

actually a combined concept of α-CW-equality search, CW-

proximity search and crisp search.

For example, consider a query like

 PROJECT (STUDENT_NAME)

 WHERE (SEX = “M”, EYE-COLOR = “dark-brown”,

AGE= “approximately 20”) .

This is a CW-query.

To answer such a query, matching is to be searched for the three

predicates p1, p2 and p3 given by

(i) p1: SEX = “M”,

(ii) p2: EYE-COLOR = “dark-brown” and

(iii) p3 : AGE = “approximately 20”,

where p1 is crisp and p2, p3 are CW(imprecise).

Clearly, to answer this query the proposed CW search method is

to be applied, because in addition to crisp search, both of α-CW-

equality search and CW-proximity search will be used to answer

this query. The truth-value of the matching of the conjunction p

of p1, p2 and p3 will be the product of the individual truth-values,

(where it is needless to mention that for crisp match the truth-

value will be exactly 1). There could be a multiple number of

answers to this query, and the system will display all the results

ordered or ranked according to the truth-values of p.

7. CONCLUSION

In this paper, we have introduced a new method to answer

imprecise queries of the lay users from the databases (details of

the databases may not be known to the lay (users). We have

adopted computing with words tools to solve the problem of

searching an exact match or a close match (if an exact match is

not available) of the predicates so that we will be able to get the

answer of „evidence for you‟(i.e. exact/ truth match) and

„evidence against you‟(i.e false match) and the

„undecidability‟(i.e. indeterminacy) This is a complete new

Method of Answering Queries based on the concept of

Computing with Words.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.11, December 2010

17

REFERENCES
[1] L.A. Zadeh, from computing with numbers to computing with

words. From manipulation of measurements to manipulation

of perceptions. IEEE Trans. Circuits and Systems 45 (1):

105-119, 1999

[2] D. Barbara, H. Garcia-Molina and D. Porter (1992). ”The

management of probabilistic data”. IEEE Trans. Knwl. Data

Eng. 4,(5), 487-502.

[3] V. Biazzo and A. Gilio (1999), ”A generalization of the

fundamental theorem of de Finetti for imprecise conditional

probability assessments”. International Journal of

Approximate Reasoning .

[4] Biazzo V., Gilio A., and Sanfilippo G., Efficient Coherence

Checking and Propagation of Imprecise Probability

Assessments (working paper), 1999.

[5] R. Cavallo and M. Pittarelli (1987). ”The theory of

probabilistic database”. In Proceedings of the 13th VLBDB

Conference. brighton, Eng., 71-78.

[6] D. Dey and S. Sarkar (1996). ”A probabilistic relational

model”. ACM Trans. Database Systems,21, (3), 394-405.

[7]. C. R´e, N. Dalvi, and D. Suciu. Efficient top-k query

evaluation on probabilistic data. In Proceedings of ICDE,

2007.

[8]. C. R´e and D. Suciu. Efficient evaluation of having queries

on a probabilistic database. Technical Report TR2007-06-

01, University of Washington, Seattle, Washington, June

2007

[9] Smita Rajpal, M.N.Doja and Ranjit Biswas, A Method of

Neutrosophic Logic to Answer Queries in Relational

Database, JCS, Vol.4(4): 309-314 ,USA, 2008.

[10] Smita Rajpal, M.N.Doja and Ranjit Biswas, A Method of

Imprecise Query Solving, IJCSNS, Vol. 8 No. 6 pp. 133-

139,South Korea,June2008.

