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ABSTRACT 
In Data mining, Clustering is one of the major tasks and aims 
at grouping the data objects into meaningful classes (clusters) 
such that the similarity of objects within clusters is 

maximized, and the similarity of objects from different 
clusters is minimized. When clustering a dataset, the right 
number k of clusters to use is often not obvious, and choosing 
k automatically is a hard algorithmic problem. We used an 
improved algorithm for learning k while clustering the 
Categorical clustering. A Clustering algorithm Gaussian 
means applied in k-means paradigm that works well for 
categorical features. For applying Categorical dataset to this 

algorithm, converting it into numeric dataset. In this paper we 
present a Heuristic novel techniques are used for conversion 
and comparing the categorical data with numeric data. The G-
means algorithm is based on a statistical test for the 
hypothesis that a subset of data follows a Gaussian 
distribution. G-means runs in k-means with increasing k in a 
hierarchical fashion until the test accepts the hypothesis that 
the data assigned to each k-means center are Gaussian. G-
means only requires one intuitive parameter, the standard 
statistical significance level α.   
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1. INTRODUCTION 
As a statistical tool, clustering analysis has been widely 
applied in a variety of scientific areas such as pattern 
recognition, image processing, information retrieval and 
biology analysis. In the literature, the k-means is a typical 
clustering algorithm, which partitions the input data set 

{Xt}Nt=1 that generally forms k¤ true clusters into k 
categories (also simply called clusters without further 
distinction) with each represented by its center. Although the 
k-means has been widely used due to its easy implementation, 
it exists a serious potential problem. That is, it needs to pre-
assign the number k of clusters. Many experiments have 
shown that it can work well only when k is equal to k*. 
However, in many practical situations, it is hard or becomes 

impossible to know the exact cluster number in advance. 
Under the circumstances, the k-means algorithm often leads 
to a poor clustering performance.  

 
                

Figure 1: Two clustering’s where k was improperly chosen for 
the dataset being clustered. Dark crosses are k-means centers. 
On the left, there are too few enters; four should be used. On the 
right, too many centers are used; one center is sufficient for 
representing the data. 

In this paper we present a simple algorithm called G-means that 
discovers an appropriate k using a statistical test for deciding 

whether to split a k-means center into two centers. We present a 
new statistic for determining whether data are sampled from a 
Gaussian distribution, which we call the G-means statistic. We 
also present a new Heuristical novel method for converting 
categorical data into numeric data. We describe examples and 
present experimental results that show that the new algorithm is 
successful [7]. This technique is useful and applicable for many 
clustering algorithms other than k-means, but here we consider 

only the k-means algorithm for simplicity. Several algorithms 
have been proposed previously to determine k automatically.  

 

2. CONVERTING CATEGORICAL DATA 
Converting Categorical data into numeric data by using these 
techniques[5]. 

 Definition 1: Let rij  for  j = 1,..., ai be an element in the 

attribute Ai. According to the statement above, rij is converted 
to a 1-by-l vector 

 V(r
i
j) = [IGR(Ai ) WCI(r

i
j ) p

i
jk ] k=1…l 

Definition 2: Let O = (c1,c2,…cm) be an object in the set D, 

where ci = ri
j for i = 1,...,m, and  j = 1,..., ai . Assume attributes 

are independent. Then from Def. 1, O is converted to a vector, 
 

                     
Definition 3 Let O and O’ are distinct objects from the set D 
Where O = ( c1 ,  c2 , …, cm )  

 



International Journal of Computer Applications (0975 – 8887) 
Volume 11– No.3, December 2010 

5 

and O’ =( c’
1 , c

’
2 , …, c’

m ). Following Def. 2, O is converted 
to V, and O’ is converted to V’. The pseudo distance between 
O and O’ is defined by using Euclidean distance: 

                      d(O, O’) = 2 ||V −V '||2 

 

So far, we have formally constructed the framework of 
dissimilarity measure between categorical data. In summary, 
the proposed clustering process involves three phases: 
 
1. Firstly, we need to estimate the information from 
interattributes and intra-attributes. This estimation can be 

obtained from a domain expert or by using a training set of 
objects. 
 
2. Secondly, we heuristically convert each attribute using the 
associated information. Therefore each object in the dataset is 
converted numerically with reasonable concept. 
 
3. Finally, traditionally clustering algorithms can be exploited 

effectively.  

 

3. G-MEANS ALGORITHM 
The Gaussian-means (G-means) algorithm starts with a small 
number of k-means centers, and grows the number of centers. 
Each iteration of the algorithm splits into two those centers 
whose data appear not to come from a Gaussian distribution. 
Between each round of splitting, we run k-means on the entire 
dataset and all the centers to refine the current solution. We 
can initialize with just k = 1, or we can choose some larger 
value of k if we have some prior knowledge about the range 

of k. G-Means algorithm gives a pseudo code description [6]. 

 

 
Algorithm 1: 

Inputs to the algorithm a dataset X and a confidence 
level α.  

Output as Clustering the dataset. 

  

G-means(X, α) 
 

1. Let C be he initial set of centers (usually C← { x }). 

2. C←kmeans(C, X). 
3. Let {xi|class(xi)=j} be the set of datapointsassigned to 
center cj. 
4. Use a statistical test to detect if each {xi|class(xi)=j} follow 
a Gaussian distribution (at confidence level α). 
5. If the data look Gaussian, keep cj. Otherwise replace cj with 
two centers split from cj. 
6. Repeat from step 2until no more centers are needed. 

 

G-means repeatedly makes decisions based on a 
statistical test for the data assigned to each center. If the data 
currently assigned to a k-means center appear to be Gaussian, 
then we want to represent that data with only one center. 
However, if the same data does not appear to be Gaussian, 

then we want to use multiple centers to model it properly. The 
algorithm will run k-means multiple times (up to k times 
when finding k centers), so the time complexity is at most 
O(k) times that of k-means. An optimization we make in the 
G-means algorithm is that once we have decided not to split a 
center cj , we do not test the data belonging to that center 
again. This enables us to make k statistical tests when finding 
k centers, rather than up to O(k2) tests if every center is tested 
at every iteration of G-means(in the worst case scenario). The 

k-means algorithm implicitly assumes that the data points in 
each cluster are spherically distributed around the center. 

 

4. TESTING CLUSTERS for GAUSSIAN 

FIT 
To specify the G-means algorithm fully we need a test to detect 
whether the data assigned to a center are sampled from a 
Gaussian. The alternative hypotheses are: 

 
• H0: The data around the center are sampled from a Gaussian. 
• H1: The data around the center are not sampled from a 
Gaussian. 

If we accept the null hypothesis H0, then we believe 
that the one center is sufficient to model its data, and we should 
not split the cluster into two sub clusters. If we reject H0 and 
accept H1, then we want to split the cluster. In this work we 
have utilized two tests for normality. Both are one dimensional 
test which assumes that the data has been z-scored; that is, 
converted to mean 0 and variance 1. The first is based on a new 
statistic we call the G-means statistic [3]. This statistic comes 

from the distortion of the data, defined as 

                               

 
Where C = {c1, . . . , ck} is the set of k centers. The 

G-means statistic uses a specific formulation of r(X,C), under 
constraints of univariate data with k = 2 centers. Specifically, 
given a one-dimensional set of data and two k-means clusters 

                   

 
 

This is the minimum of the k-means objective function 
for two centers in Gaussian data (when the null hypothesis is 
true). 

The second test is based on the Anderson-Darling 
statistic. This one dimensional test has been shown empirically 
to be the most powerful normality test that is based on the 
empirical cumulative distribution function (ECDF). 

 
Given a list of values xi that have been converted to 

mean 0 and variance 1, let x(i) be the ith ordered value. Let zi = 
F(x(i)), where F is the N(0, 1) cumulative distribution function. 
Then the statistic is 

                            

 
Stephens [9] showed that for the case where μ and σ are 

estimated from the data (as in clustering), we must correct the 
statistic according to 
                          

      
 
With these two statistics, and their respective distributions, we 

will construct statistical tests for normality which will be used in 
the G-means algorithm [6]. Both these tests are one dimensional 
test. We have a high dimensional dataset; we reduce the 
dimensions using dimension reduction method, so we learning 
true dimension under PCA method. 
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5. LEARNING TRUE DIMENSION 

FROM CLUSTERING 
We now turn to the general problem of dimension reduction. 
Many real-world datasets have a high number of dimensions, 
and in order to work with them it is often beneficial to reduce 
the dimension of the data prior to using learning algorithms. 
This is effective because often the structure of the data may 

be described in far fewer dimensions, and most learning 
algorithms perform best when the dimension is low. What we 
would like is an automated way of learning the underlying 
dimension of high-dimensional data. This is a well-researched 
area; we approach it from a slightly different perspective. We 
suppose that we have a black-box algorithm which can tell us 
how much “structure” exists in a dataset. We will then use 
this black box in a generate-and-test fashion to repeatedly 

determine how much structure exists in various reduced-
dimension datasets. Starting with a small number of 
dimensions and increasing, we will look for the point at which 
no more structure can be discovered in the dataset by 
increasing the dimension. This critical point will be the true 
dimension of the data[7]. 

The intuition behind this algorithm is that when data 
is reduced to some dimension that is too small, structure that 
can be found in the original data must necessarily be 
collapsed, and unavailable. However, as the number of 
dimensions increases, more structure will unfold to be 

discovered. If there is some lower dimensional space in which 
the full structure can be represented, then we can identify that 
space using our black box. This is related to the 
reconstruction of dimension in chaotic systems by identifying 
false nearest neighbors [7] (in chaotic systems parlance, the 
dimension is actually the number of time steps into the past to 
observe). Our algorithm for learning dimension is given in 
Algorithm 2. 

To completely define this algorithm, we must fill in 
a dimension reduction method as well as the black box for 
measuring structure. To experiment with this technique, we 

will use single dimension reduction techniques: principal 
components analysis (PCA), and random linear projection. To 
measure the structure of the data, we will use the G-means 
algorithm to find clusters in the data. The number of clusters 
that it estimates are in the data will be the metric of structure. 

We performed several synthetic and real-world 
experiments to test our dimension reduction algorithm. We 
generate two datasets: a random dataset with 20 true spherical 
clusters in 20 dimensions, and a second dataset in the same 
way, but we add 20 dimensions (for a total of 40) which have 
uniform noise. We then apply our algorithm, using PCA or 

random linear projection to reduce the dimension, and using 
this algorithm. 

 

Algorithm 2: Input of the Algorithm is X as high dimensional 
dataset. 

                       Output as Single Dimension result. 
 

Learn dimension(X) 
1. Let d be the original dimension of X 
2. for c € {1,…,d}do 
3.     Y←reduce-dimension(X,c)  
4.      Sc←compute-structure(Y) 

5. end for 
6. return min{c│sc=max(s)} 

 

G-means is to rank the structure of each reduced-dimension 
dataset. We used the Anderson-Darling test for Normality[1]  

 

6. CLUSTERING CATEGORICAL DATA 
For Clustering Categorical attribute, there are many algorithms 
used for clustering such as ROCK, BRICH, CATCUS etc. These 
algorithms are clustered on link based method[10]. In this paper 

we present G-Means algorithm applied in K-means for 
categorical attribute. The categorical attribute is converted into 
numeric data by using Heuristic novel method. Then the 
converted data is applied in Gaussian distribution as sampled 
data. Then it is applied in G-Means. Under G-means using 
dimensionality reduction method to reduce the dimension and 
testing using Anderson Darling Normality test. It under goes the 
condition H0 or H1.Finally we can estimate accurate value of K 
for clustering the categorical data. 

We take various categorical dataset such as 
Congressional votes, Soybeans, Balance scale, and Car 

evaluation dataset [3]. Congressional Votes data set is the 
United States Congressional voting records in 1984. Total 
number of records is 435. Each row corresponds to one 
Congress mans votes on 16 different issues (e.g., education 
spending, crime etc.). The data set contains records for 168 
Republicans and 267 Democrats. Balance-Scale is a weight and 
distance Database. The Balance-Scale data set contains 625 data 
points. Each data point has 4 categorical attributes. The 

clustering the information about the attribute of this data set is 
Left-Weight, Left-Distance, Right-Weight and Right-Distance. 
Attributes are given in numerical from such as 1 to 5. The 
Soybean data set contains 47 data points on diseases in 
soybeans. Each data point has 35 categorical attributes and is 
classified as one of the four diseases. Car Evaluation dataset 
consists of 1728 instances. All instances completely cover the 
attribute space. Out of these 7 features last one is a class 

identifier. Others are corresponding to the Buying ( vhigh, high, 
med, low.), Maintenance (vhigh, high, med, low.), Doors ( 2, 3, 
4, 5 more.), Persons ( 2, 4, more.), Lug boot ( small, med, big.), 
Safety ( low, med, high.). Class identifier has four distinct 
members, those are unacc, acc, good and very good. 

 
            Dataset Data 

points 

K found Elapsed time 

(sec) 

Congressional votes 435 2+1.70 0.0378 

Balance scale 625 3+0.03 0.0527 

Soya beans 47 4+0.00 0.0523 

Car Evaluation 1728 4+0.01 0.0529 

 
Table 1 Result of Categorical Data Clustering 

    
7. COMPARISON WITH CATEGORICAL 

and NUMERIC DATASET 
In K-means algorithm only the numeric dataset is applicable. 
Here we convert the categorical data into numeric data and 
apply in K-means using the K-value learned from G-means. 

 The numeric dataset Pendigit is applied and 
the result shows with elapsed time. Comparison based on 
elapsed time of both categorical and numeric dataset. 
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Figure 2. Performance analysis based on Elapsed Time 

 

8. CONCLUSION 
The new G-means algorithm is for learning k based on a 
statistical test for determining whether data points are a 
random sample from a Gaussian distribution with arbitrary 
dimension and covariance matrix. We conclude that the G-
means algorithm is applied in k-means algorithm for 
estimating the K value accurately for both numeric value and 

also a categorical value. By comparing the performance of 
elapsed time between numeric data and categorical data, 
categorical data produces the best result. Our future intention 
is to clustering the mixed numerical dataset and categorical 
dataset using this technique. 
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