
International Journal of Computer Applications (0975 – 8887) 

Volume 11– No.5, December 2010 

32 

Customer Retention using Data Mining Techniques 
 

Dr.R.Dhanapal 
Easwari Engineering College 
Affiliated to Anna University of 

Technology, Chennai-89. 

 

S.Gayathri Subramanian 
R.B.Gothi Jain College for 

Women 
Affiliated to University of 

Madras, Chennai-52. 
 

Jobin M Scaria 

King Saud University 
Kingdom of Saudi Arabia. 

 

 

 

ABSTRACT 

Customer retention represents a modern approach for quality in 

enterprises and organizations and serves the development of a 

truly customer-focused management and culture. Customer 

retention measures offer a meaningful and objective feedback 

about client’s preferences and expectations. This paper presents 

an original methodological approach of customer satisfaction 

and retention evaluation, combining multicriteria preference 

desegregations analysis and rule induction data mining. 

Furthermore, it is examined whether the implementation of the 

two methodologies may offer a solution to the problem of 

missing data, in the initial data set. 
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1. INTRODUCTION 
Customer Satisfaction and retention research is one of the 

fastest growing segments of the marketing field. Marketing and 

management sciences, nowadays, are focusing on the 

coordination of all the organization’s activities in order to 

provide goods or services that can satisfy best specific needs of 

existing or potential customers. 

To reinforce customer orientation on a day-to-day basis, a 

growing number of companies choose customer satisfaction as 

their main performance indicator. However, it is almost 

impossible to keep an entire company permanently motivated 

by a notion as abstract and intangible as customer satisfaction. 

Therefore, customer satisfaction must be translated into a 

number of measurable parameters directly linked to people’s 

job-in other words factors that people can understand and 

influence [3]. 

The aim of this paper is to present an original methodological 

approach to the problem of customer satisfaction  and customer 

retention evaluation, combining multicriteria preference 

disaggregation analysis and rule induction data mining. The two 

methodologies were applied to the results of a customer 

satisfaction survey. The main objectives of the paper are: 

 to compare the results of the two methods 

 to evaluate the homogeneity of the set of customers 

 to overcome the problem of no response (missing data) in 

the data set. 

The paper is organized into 3 sections. Section 2 presents 

briefly the basic principles of the two methods used: 

multicriteria preference disaggregation approach and rule 

induction approach, as well as the integration of the two 

approaches and the implemented methodological frame. Section 

3 includes some conclusive remarks on the methodology 

proposed, as well as subjects for further research. 

2. METHODOLOGICAL FRAME 

2.1 MUSA (Multicriteria Satisfaction 

Analysis) 
The MUSA (Multicriteria Satisfaction Analysis) is based on a 

preference disaggregation model. The aggregation of individual 

preferences into a collective value function is the main 

objective of this approach. More specifically, it is assumed that 

the customers’ global satisfaction can be explained by a set of 

criteria or variables representing its characteristic dimensions 

(Figure 1). 
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The preference disaggregation methodology is an ordinal 

regression based approach [5,8] in the field of multicriteria 

analysis. It is used for the assessment of a set of marginal 

satisfaction functions in such a way that the global satisfaction 

criterion becomes as consistent as possible to customers’ 

judgments. 

According to the model, each customer is asked to express 

his/her judgements, namely his/her global satisfaction and 

his/her satisfaction with regard to the set of discrete criteria. 

The collected data is analyzed with the preference 

disaggregation model, respecting the ordinal and qualitative 

form of customers’ judgements and preferences. 

The main results of the method are [5,8,10] :  

 global and partial satisfaction functions 

 weights on the criteria (relative importance),  

 average satisfaction indexes. 

 

2.2 Rule Based Data Mining Techniques 
The objective of data mining is to extract valuable information 

from one’s data, to discover the ‘hidden gold’. In Decision 

Support Management terminology, data mining can be defined 
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as ‘a decision support process in which one search for patterns 

of information in data’ [2]. 
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Data mining techniques are based on data retention and data 

distillation. Rule induction models (Figure 2) belong to the 

logical, pattern distillation based approaches of data mining. 

These technologies extract patterns from data set and use them 

for various purposes, such as prediction of the value of a 

dependent field (Field to Predict). By automatically exploring 

the data set, the induction system forms hypotheses that lead to 

patterns. These patterns may be logic, equations or cross-

tabulations. Logic can deal with both numeric and non-numeric 

data. 

The central operator in a logical language is usually a variation 

on the ‘if-then’ statement. By supervised learning paradigm 

derive rules, of ‘if-then’ type, from data. Such rules relate an 

outcome of interest to a number of attributes. They are of the 

following form [1]: 

if attribute1 = a and attribute2 = b then outcome = c 

(probability = .9) 

The rule’s probability is the probability that for a random 

record satisfying the rule’s condition(s), the rule’s conclusion is 

also fulfilled [7]. 

Rules may easily go beyond attribute- value representations. 

They may have statements such as ‘shipping state = receiving 

state’. Here, in attribute logic, we compare the values of the two 

fields, without naming any values. By expressing attribute-

based patterns, rules have the advantage of being able to deal 

with numeric and non-numeric data (categorical fields). 

2.3 Integrating Multicriteria and Rule-

Induction Approach 
The methodology, presented in this paper, combines the 

preference disaggregation model with the rule-induction 

process. The main stages of the methodology are described 

below (Figure 3): 
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 Preliminary analysis: customer satisfaction research 

objectives should be specified in this stage, in order to 

assess satisfaction dimensions (customers’ consistent 

family of criteria). 

 Questionnaire design and conducting survey: using results 

from the previous step, this stage refers to the development 

of the questionnaire, the determination of survey 

parameters and the survey conduction. 

 Analysis: the two different approaches come to prediction. 

In case the prediction is not considered satisfactory, a new 

selection of clusters is made and the process of analysis 

restarts. In the opposite case (of satisfactory prediction), 

the predicted value is used to fill the empty cells in the 

data table. The empty cells correspond to cases of no 

response. The deriving filled data set is used by the 

preference desegregations method in order to perform final 

analysis. 

3. CONCLUSIONS 
The original methodology presented in this paper combines the 

preference disaggregation methodology with rule-induction data 

mining. The methodology is proposed as a potential solution to 

the problem of no response in the data set that may be due to 

insufficiently completed questionnaires. 
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The MUSA method evaluates the satisfaction added value curve 

with respect to customers’ judgements. This curve normalized 

in [0, 100] shows the value received by customers for each level 

of the ordinal qualitative satisfaction scale. 

The methodology has been applied to a pilot customer 

satisfaction survey for the Greek shipping sector. The main data 

set consists of 523 customers (test set: 100, training set: 423) 

and 5 criteria. Prediction level is quite satisfactory resulting that 

data mining techniques can be successfully combined with 

multiple criteria methods. 

Using other customer characteristics, such as age, marital status, 

etc., the presented methodology may identify and analyze 

special group of customers. Moreover, the integration of ordinal 

data, instead of the satisfaction value estimations resulted from 

the preference-disaggregation model, may give better prediction 

in the rule-induction process. 
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