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ABSTRACT 
The paper discuss, applicability of the second-order Newton 

gradient descent method for blind equalization of complex signals 

based on the Constant Modulus Algorithm (CMA). The Constant 

Modulus (CM) loss function is real with complex valued 

arguments, and, hence, non-analytic. The Hessian for noiseless 

FIR channels and rederive the known fact that the full Hessian of 

the CM loss function is always singular in a simpler manner. The 

channel model shows that the perfectly equalizing solutions are 

stationary points of the CM loss function and also evaluate the bit 

error rate. The paper also discuss of the full Newton method. 

Finally, to validate the proposed algorithm, simulation studies 

have been carried out and results are presented and compared. The 

simulation results show the effectiveness of the proposed 

algorithm. 
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1. INTRODUCTION 
For finite length FIR channel models it is common to use 

equalizers with a tapped delay line structure. The taps of the 

equalizer are updated using adaptive algorithms, which usually 

depend on the presence of training symbols. Blind equalizers, 

originally proposed by Sato [1], do not require training symbols, 

thus, potentially improving the information spectral efficiency. A 

well-known candidate among the blind adaptive algorithms is the 

Constant Modulus algorithm (CMA) proposed by Godard [2] for 

two-dimensional digital communication systems (M-ary 

quadrature amplitude modulation (16-QAM) signals), and by 

Treichler and Agee [3], for blind equalization of pulse-amplitude 

modulation (PAM) signals. CMA is a preferred choice for blind 

equalization because of its robustness and its ease of 

implementation [4]. Convergence analysis of CMA can be found 

in [5] and [6]. The speed of convergence is very important for 

practical systems. It is well known that the second-order Newton 

method has fast convergence. However, the Newton method 

requires the computation of the Hessian of the cost function for its 

implementation. Emphasize that it works with complex signals as 

this makes the problem of understanding second-order CMA 

algorithms significantly more difficult than the real case. In 

particular, unlike the real case, there are no isolated local minima 

of the Constant Modulus (CM) loss function in the complex 

situation and as a consequence the Hessian of the CM loss 

function is always singular, which means that the fast converging 

Newton method can not be used in practice without modification. 

Theoretically show that this intrinsic singularity prevents one 

from using the Newton algorithm without precautionary 

modifications. This is accomplished by using the framework and 

methodology developed in [8] to analyze the Newton method 

applied to minimizing the CM loss function. Some modified 

versions of the Newton method as applied to constant modulus 

algorithm can be found in [7]–[8].  

 1) The full Hessian of the CM loss function is proven to be 

intrinsically singular. This fact is actually well known [4], [7], but 

the proof given in this paper is much simpler and is based on the 

complex Hessian derived using the framework of Wirtinger 

calculus. 

2) It shows that the perfectly equalizing solutions are 

stationary points of the CM loss function. We compute the form 

of the Hessian for the noiseless FIR channel model and evaluate it 

at a perfectly equalizing solution.  

3) Conditions are given which ensure that the leading partial 

Hessian is positive definite and necessarily full rank. 

4) It shows that at a perfectly equalizing solution for a 

noiseless full rank channel, the leading partial Hessian is full rank 

assuming that the channel input data sequence is sufficiently sub-

Gaussian. 

5) If the leading partial Hessian is full rank, then the 

necessarily Singular 2NX2Nfull Hessian is shown to attain the 

maximal rank of 2N-1. 

6) The given form of the vector which spans the one 

dimensional null space of a maximal rank full Hessian at a 

perfectly equalizing solution for a noiseless FIR channel.  

7) It presents a novel phase-enforcing regularization of the 

full Newton algorithm and discuss its implication for developing 

practical Newton algorithms as applied to the CMA. 

1.1 History 
In the literature, blind equalization algorithms blossomed in the 

1980’s. The two principal precursors are Lucky’s blind decision-

direction algorithm [4] and Sato’s algorithm [1]. the CM criterion 

was introduced for blind equalization of QAM signals in [6] and 

of pulse-amplitude modulation (PAM) and FM signals in [3]. By 

the end of the 1980’s blind equalizers were commercialized for 

microwave radio [9]. By the mid 1990’s blind equalizers were 

realized in very large scale integration (VLSI) for high definition 

television (HDTV) set-top cable   demodulators [2]. The current 
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explosion of interest in the CM criterion stems from blind 

processing applications in emerging wireless communication 

technology (e.g., blind equalization, blind source separation, and 

blind antenna steering) and from CMA’s record of practical 

success. 

1.2 Our Mission 
This paper is intended to be a resource to both readers 

Experienced  in blind equalization as well as those new to the 

subject. In a tutorial style, this is provides background in 

fractionally spaced equalizer (FSE) modeling and design.(For 

baud-spaced equalizer (BSE) design, e.g.,[5], [6], [7], and [8].) 

then illustrates several  low-dimensional examples that help to 

characterize the behavior of FSE’s adapted under the constant 

modulus criterion. It constructs a categorization of literatue 

focusing on the application of the CM criterion to blind 

equalization. This is providing the reader with a valuable tool for 

further research. Our attempt to be exhaustive is justified only by 

the relative infancy of the subfield; evidence of the emerging 

status of this literature is seen in the wealth of conference papers 

in references. 

Following the introductory FSE tutorial, presents a novel 

view of classical non blind adaptive equalization that illuminates 

the connection between the MSE and CM criteria. Specifically, 

the LMS-with-training strategy requires pre selection of a design 

variable, namely training sequence delay, that may lead to a 

potentially suboptimal solution. The delay-optimized MSE (a 

function of equalizer parameters only) yields a cost surface for 

which a simple LMS-like parameter update algorithm is not 

known to exist. Remarkably, the CM criterion offers aproxy for 

this surface for which there exists a (blind) parameter update 

algorithm, namely, CMA. 

1.3 Fractionally Spaced Linear Equalization 
This section describes the fractionally spaced equalization 

scenario and presents some fundamental results regarding 

minimum MSE equalizers. This material is primarily intended to 

provide background and context. For simplicity, our focus is 

restricted to a T/2-spaced FSE, where T denotes the baud, or 

symbol, duration. All results are extendible to the more genera 

T/2–spaced case. Examples of seminal work on fractionally 

spaced equalization include [4], [6] and [8], while more 

comprehensive references are [5] and [7]. 

 

Figure. 1 Baseband model of single-channel communication 

system with T/2-spaced receiver. 

 

Figure. 2 Multirate system model. 

1.4 Multirate and Multichannel System 

Models:  
Consider the single-channel model illustrated in Fig.1. A   

possibly complex-valued) T-spaced symbol sequence {Sn} is 

transmitted through a pulse shaping filter, modulated onto a 

propagation channel, and demodulated. Assumption of all 

processing between the transmitter and receiver is linear and time 

invariant (LTI) and can thus be described by the continuous-time 

impulse response c(t) . The received signal r(t) is also corrupted 

by additive channel noise, whose baseband equivalent and it 

denote by u(t) . The received signal is then sampled at T/2-spaced 

intervals and filtered by a T/2-spaced finite impulse response 

(FIR) equalizer of length 2N. (An even length is chosen for 

notational simplicity.) This filtering can be regarded as a 

convolution of the sampled received sequence with the equalizer 

coefficients fk . Finally, the FSE output is{xk} decimated by a 

factor of two to create the T-spaced output sequence{yn}. 

Decimation is accomplished by disregarding alternate samples, 

thus producing the baud-spaced “soft decisions” yn. In general, all 

quantities are complex valued. For clarity, we reserve the index n 

for baud-spaced quantities and the index k for fractionally spaced 

quantities throughout the paper. 

It derives the equivalence between the continuous-time 

model in Fig. 3 and the discrete time models in Figs. 2 and 3, both 

constructed using -spaced samples of and . Fig.2 depicts the 

multirate model while Fig.3 depicts the multichannel model. 

Though our  derivation of the discrete-time models is based on the 

single-channel system in Fig. 1, the equivalence between the 

multirate and multichannel models suggests that the model on a 

two-sensor(T-sampled) communication system instead. For a 

concise discussion on the equivalence between temporal and 

spatial diversity, see [4]. 

 

Figure.3 Multichannel system model. 

2. SYSTEM MODEL 
Zero-mean, nonzero bounded, fourth-order moment i.i.d signals 

)(na are assumed to be noiselessly transmitted through an 

unknown linear time invariant channel resulting in a received 

zero-mean output sequence )(nx which is processed via an N tap 

FIR equalizer with weights W. The equalizer output sequence  is 

given  

∑
−

=

≡−=
1

0

)()()()(
N

k

H nXwknxkny ω   (1) 

The CM loss function can now be written as 
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( ){ }2)( ρ−= wXXwEwl HH
   (2) 

3. STATIONARY POINTS OF CM LOSS  
The condition for W to be a stationary point of the CM loss 

function (2) is  

0))(( =− wBwA ρ         (3)  

An important problem for the above conventional CMA, however, 

is that it is phase-blind, because the cost function can only deal 

with the modulus of the equalizer output. As a result, the 

equalizer output signal constellation suffers from an arbitrary 

phase rotation at a rate equal to the carrier frequency offset rate. 

In order to achieve simultaneous blind equalization and carrier 

phase recovery, the cost function can be rewritten as the following 

form  

)()()( kJkJkJ IR +=       (4) 

4. CONSTANT MODULUS ALGORITHM  
Consider the baseband model of a digital transmission channel 

characterized by a finite impulse response (FIR) filter and an 

additive white noise. The received signal can be modeled as 

∑
−

=

+−=
1

0

)( )()()()(
L

i

kj kneikaihkx φ
  (5) 

The equalizer output is thus 

)()()( kXkWky H=     (6) 

5. RESULTS AND DISCUSSIONS  
To validate the proposed algorithm, numerical simulation studies 

have been carried out using MATLAB. All simulation 

experiments described in this section employ a complex equalizer 

of transversal filter structure with 9 tap weights, unless otherwise 

mentioned, and the equalizers were initialized with the central tap 

weight set to 1 and others set to zero. The signal to noise ratio 

(SNR) at the input of the equalizer is defined as  

[ ]
)(

)(*)(
log10

2

2

10 dB
khkaE

SNR
nσ

=   (7) 

The simulation results are shown in from Fig. 4 to Fig.9. The Fig. 

4 is an input signal and the Fig. 5 is an modulated signal and the 

Fig. 6 is an noise signal, Fig.7 is an filter ouput, Fig.8 is an 16-

QAM demodulated output  and finally the Fig. 9 show the 

comparison of Newton Method-CMA and CMA. From the 

simulation results, it can be observed that the proposed CMA 

algorithm gives better results when compared with the NM-CMA 

algorithm. 
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Figure.4 Random sequence of input signal 
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Figure 5 16-QAM Modulated signal 
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Fig.6 Noise effected signal 
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Figure 7. Filter output 
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Figure 8. 16-QAM Demodulated output 
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Figure 9. Comparison between BER and SNR of  NM-CMA and 

CMA 

6. CONCLUSIONS 
The CMA technique is proposed in this paper. It has been shown 

that CMA technique can accomplish blind equalization and carrier 

phase recovery simultaneously. Taking advantage to handle the 

non-stability problem and the gradient noise amplification 

problem. The simulation results show that this technique can 

certainly achieve higher convergence speed, lower residual 

intersymbol interference, improved stability and robustness, blind 

equalization and carrier phase recovery simultaneously especially 

with heavy-tailed noise, impulsive noise. 
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