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ABSTRACT 

This paper presents a fault prediction model using reliability 

relevant software metrics and fuzzy inference system. For this a 

new approach is discussed to develop fuzzy profile of software 

metrics which are more relevant for software fault prediction. 

The proposed model predicts the fault density at the end of each 

phase of software development using relevant software metrics. 

On the basis of fault density at the end of testing phase, total 

number of faults in the software is predicted. The model seems 

to useful for both software engineer as well as project manager to 

optimally allocate resources and achieve more reliable software 

within the time and cost constraints. To validate the prediction 

accuracy, the model results are validated using PROMISE 

Software Engineering Repository Data set.   
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1. INTRODUCTION 
Software has become so essential to human in their daily lives 

that today it is difficult to imagine living without devices 

controlled by software. Software reliability and quality has 

become the primary concern during the software development. It 

is difficult to produce fault-free software due to the problem 

complexity, complexity of human behaviors, and the resource 

constrains. Failure is an unavoidable phenomenon in all 

technological products and systems. System failures due to the 

software failure are very common and results undesirables 

consequences which can adversely affect both reliability and 

safety of the system. Now a day’s most of the software 

development activity is performed in labor-intensive way. This 

may introduce various faults across the development, causing 

failures in near future. Therefore, there is a growing need ensure 

the reliability of these software systems by fixing the faults as 

early as possible. Moreover, it is well known that earlier an error 

is identified, the better and more cost effectively it can be fixed. 

Therefore, there is a need to predict these software faults across 

the stages of software development process. 

IEEE defines software reliability as “the probability of a software 

system or component to perform its intended function under the 

specified operating conditions over the specified period of time” 

[1]. In other words it can also be defined as “the probability of 

failure-free software operation for a specified period of time in a 

specified environment”. Software reliability is generally accepted 

as the key factor of software quality since it quantifies software 

failures that make the system inoperative or risky [2].  A 

software failure is defined as “the departure of external result of 

program operation from requirements”, whereas a fault is 

defined as “the defect in the program that, when executed under 

particular conditions, causes a failure” [3]. To further elaborate, 

a software fault is a defective, missing, or extra instruction or set 

of related instructions that may cause of one or more actual or 

potential failures when executed. 

Software reliability has roots in each step of the software 

development process and can be improved by inspection and 

review of these steps [4]. Generally, the faults are introduced in 

each phase of software life cycle and keep on propagating to the 

subsequent phases unless they are detected through testing or 

review process. Finally, undetected and/or uncorrected faults are 

delivered with software, causing failures. In order to achieve 

high software reliability, the number of faults in delivered code 

should be at minimum level.  

Software reliability can be estimated or predicted through 

various software reliability models [3, 5]. These models uses 

failure data collected during testing and/or field operation to 

estimate or predict the reliability. This becomes late and 

sometimes infeasible for taking corrective actions. One solution 

to this problem may be predicting the faults across the stages of 

development process so that appropriate actions can be taken to 

mitigate or prevent these faults. Moreover, since the failure data 

are not available during the early phases of software life cycle, 

we have to dependent on the information such as reliability 

relevant software metrics (RRSM), expert opinions and similar 

or earlier project data. This paper proposes a multistage fault 

prediction model using reliability relevant software metrics 

(RRSM) that predicts the total number of faults at the end of 

each phase of software life cycle. 

The remainder of this paper is organized as follows: Section 2 

presents literature survey of the problem. Section 3 describes the 

proposed model. Section 4 provides implementation of model 

using fuzzy inference system. Section 5 contains the case studies 

and results whereas conclusions are presented in Section 6. 

2. RELATED WORK 
A lot of efforts have been made for software reliability prediction 

and assessment using various models [3, 5]. Gaffney and Davis 

[6, 7] of the Software Productivity Consortium developed a 

phase-based model, which makes the use of fault statistics 

obtained during the technical review of requirements, design, 

and the coding to predict reliability. 

One of the earliest and well known efforts to predict software 

reliability during the early phase was the work initiated by the 

Air Force's Rome Laboratory [8]. They developed a prediction 
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model of fault density that can be transformed into failure rates. 

To do this the researchers selected a number of factors that they 

felt could be related to fault density at the earlier phases. In a 

similar study, Agresti and Evanco [9] presented a model to 

predict defect density based on the product and process 

characteristics for Ada program. Moreover, there are many 

papers advocating statistical models and software metrics [10, 

11]. Most of them are based on size and complexity metrics. 

A study was conducted by Zhang and Pham [12] to find the 

factors affecting software reliability. The study found thirty two 

potential factors involved in various stages of the software life 

cycle. In another study conducted by Li and Smidt [13], thirty 

reliability relevant software engineering measures have been 

identified. They have developed a set of ranking criteria and their 

levels for various reliability relevant software metrics, present in 

the first four phases of software life cycle. Kumar and Misra [14] 

made an effort for early software reliability prediction 

considering the six top ranked measures given by [13] and 

software operational profile. Sometimes, it may happen that 

some of these top ranked measures are not available, making the 

prediction unrealistic. Also they have considered only product 

metrics and ignored process metrics that influence software 

reliability. Recently, Pandey and Goyal [15] have developed an 

early fault prediction model using process maturity and software 

metrics. In their model they have developed the fuzzy profiles of 

various metrics in different scale and have not explained the 

criteria used for developing these fuzzy profiles.  

Following are the general observations from the literature 

review: 

 Software reliability is a function of number of faults 

present in the software.  

 Software metrics plays a vital role in fault prediction in 

the absence of failure data. 

 Early phase software metrics are of fuzzy nature.  

 Software metrics follow either linear or logarithmic 

nature. 

From the review of literature, we found that earlier fault 

prediction models have not considered these issues altogether. 

Also, no study has discussed the criteria for developing the fuzzy 

profile of software metrics. Keeping these points in mind, a fault 

prediction model is proposed which is able to predict the total 

number of faults present in the software, by systematic 

development of fuzzy profiles of software metrics on the basis of 

their nature and fuzzy inference system. 

3. PROPOSED MODEL 
Prediction of faults is desirable for any industry and attracts both 

engineers as well as managements. For software industry it 

provides an opportunity for the early identification of software 

quality, cost overrun and optimal development strategies. During 

earlier phases of software development; predicting the number of 

faults can reduce the efforts for additional reviews and more 

extensive testing [7].  

The model architecture is shown in Figure1. Stages present in 

the proposed structure are similar to the waterfall model, a well 

known software development process model. It divides the 

structure into four consecutive phase I, II, III, and IV i.e. 

requirement, design, coding, and testing phase respectively. 

Phase-I predicts the fault density at the end of requirement phase 

using relevant requirement metrics. Phase-II predicts the fault 

density at the end of design phase using design metrics as well as 

output of the requirements phase. Similarly at phase-III besides 

the using coding metrics, output of phase-II is also considered as 

input to predict the fault density at the end of coding phase. 

Finally, the phase-IV predicts the fault density using testing 

metrics as well as output of the coding phase. 

The proposed model considers three requirements metrics (RM): 

a) requirements complexity (RC), b) requirements stability (RS), 

and c) review, inspection and walk-through (RIW) as input. 

Similarly, at design phase two design metrics (DM): a) design 

team experience (DTE) and b) process maturity (PM) are 

considered as input. Two coding phase metrics (CM): a) coding 

team experience (CTE) and b) defined process followed (DPF) 

are taken as input. Finally, testing phase metrics (TM): a) testing 

team experience (TTE), b) stake-holders involvement (SI) and c) 

size of the software (KLOC) are taken as input. The outputs of 

the model are fault density indicator at the end of requirements 

phase (FDR), design phase (FDD), coding phase (FDC) and 

testing phase (FDT). It is important to mention here that these 

metrics may fallow either linear or logarithmic scale based on 

their nature.  

 

Figure 1. Software fault prediction model 

Table 1. Phase-wise input/output variable 

Phase Input Variables Output 

Variables 

Requirement RC, RS, RIW FDR 

Design FDR, DTE, PM FDD 

Coding FDD, CTE, DPF FDC 

Testing FDT, TTE, SI, KLOC FDT 

4. IMPLIMENTATION 
The model is based on the fuzzy logic and implemented in 

MATLAB. The basic steps of the model are identification of 
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RRSMs as input/output variables, development of fuzzy profile 

of these input/output variables defining relationship between 

input and output variables and fault prediction at the end of 

software life cycle using fuzzy inference system (FIS). These 

basic steps can be grouped into three broad phases as follows: a) 

information gathering phase, b) information processing phase, 

and c) fault prediction phase.   

4.1 Information gathering phase 
The quality of fuzzy approximation depends mainly on the 

quality of information collected and expert opinion. The 

information gathering phase is often considered the most vital 

step in developing a fuzzy inference system and includes the 

following steps: 

4.1.1 Selection of input / output variables 
A list of RRSMs applicable to various   phase of software life 

cycle is given in Appendix A [19]. Ten input and four output 

variables are identified, as shown in Table 1, for the purpose of 

predicting number of faults in the software. Input variables are 

the RRSMs relevant to each phase of software life cycle and 

output variables are the fault densities at the end of each phase. 

We found that metrics RC, RS, and RIW are more suitable for 

requirement phase and influence to the requirements faults. If 

RC is more, the number of faults will be more, but this is not 

true for RS. Similarly, if there are more reviews and inspection, 

more faults will be detected and corrected leaving fewer faults in 

the requirements phase. For design phase, two metrics DTE and 

PM are considered because both of these metrics are responsible 

for error free software design. For higher value of DTE and PM, 

there will be lower number of design faults in the software. At 

coding phase, CTE and DPF metrics is found more suitable to 

affect the coding faults. In general it is found that if CTE and 

DPF are more, the number of faults will be less. Lastly, for 

testing phase, three metrics TTE, SI and KLOC are taken which 

can influence the fault density at this phase. 

4.1.2 Fuzzy profile development 
Input /output variables identified at the previous stage are fuzzy 

in nature and characterized by fuzzy numbers. Fuzzy numbers are 

a subset from the real numbers set, representing the uncertain 

values. All fuzzy numbers are related to degrees of membership, 

which state how true it is to say if something belongs or not to a 

determined set. 

There are various types of fuzzy numbers and its nomenclature 

is, in general, associated with its format, such as: sine numbers, 

bell shape, polygonal, trapezoids, triangular, and so on. 

Triangular fuzzy numbers (TFN) are convenient to work with 

because in real space, adding two TFN involves adding the 

corresponding vertices used to define the TFNs. Similar simple 

formulas can be used to subtract or find the image of TFNs. Also 

TFNs are well suited to modeling and design because their 

arithmetic operators and functions are developed, which allow 

fast operation on equations. Because of these properties we have 

considered TFNs, for all input/output variables. We have divided 

input variables into five linguistic categories as: i.e. very low 

(VL), low (L), moderate (M), high (H) and very high (VH), and 

for output variables we have considered seven linguistic 

categories i.e. very very low (VVL), very low (VL), low (L),  

moderate (M), high (H), very high (VH), and very very High 

(VVH). 

The data, which may be useful for selecting appropriate 

linguistic variable, is generally available in one or more forms 

such as expert’s opinion, software requirements, user’s 

expectations, record of existing field data from previous release 

or similar system, etc. [22]. Fuzzy membership functions are 

generated utilizing the linguistic categories such as identified by 

a human expert to express his/her assessment and the nature of 

the metrics. As stated earlier, that software metrics may be either 

linear or logarithmic nature.  On the basis of this information, 

fuzzy profiles (FP) of each software metrics are developed using 

the following formula, 

(a)  For logarithmic nature software metrics,  

10

10

log 1: 5
1

log 5
FP  

The profiles may take the following values: 

VL (0; 0; 0.14), L (0; 0.14; 0.32), M (0.14; 0.32; 0.57), H (0.32; 

0.57; 1.00), and VH (0.57; 1.00; 1.00) 

(b)  For linear nature software metrics, 

(0 : 4)

4
FP  

The profiles may take the following values:  

VL (0; 0; 0.25), L (0; 0.25; 0.50), M (0.25; 0.50; 0.75), H (0.50; 

0.75; 1.00), VH (0.75; 1.00; 1.00) 

Outputs are considered on logarithmic scale, and divided in 

seven linguistic categories as: 

Fuzzy profile range = [1-{log10 (1:7)} / {[log10 (7)}]; the 

profiles may take the following values:  

VVL (0; 0; 0.08), VL (0; 0.08; 0.17), L (0.08; 0.17; 0.29), M 

(0.14; 0.32; 0.57), H (0.17; 0.29; 0.44), VH (0.44; 0.64; 1.00), 

VVH (0.64; 1.00; 1.00) 

It is assumed that out of these ten input variables, only three 

variables (RIW, PM and DPF) follow linear nature and 

remaining variables follow logarithmic nature. All output 

variables are assumed to be following logarithmic nature. Fig. 2 

to Fig. 15 shows membership functions and fuzzy profiles of all 

the selected input/output variables for visualization purpose. 

 

Figure 2. Fuzzy profile of RC 
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Figure 3. Fuzzy profile of RS 

 

Figure 4. Fuzzy profile of RIW 

 

Figure 5. Fuzzy profile of DTE 

 

Figure 6. Fuzzy profile of PM 

 

Figure 7. Fuzzy profile of CTE 

 

 

Figure 8. Fuzzy profile of DPF 

 

Figure 9. Fuzzy profile of TTE 

 

Figure 10. Fuzzy profile of SI 

 

Figure 11. Fuzzy profile of SIZE 

 

Figure 12. Fuzzy profile of FDR 

 

Figure 13. Fuzzy profile of FDD 

 

 

Figure 14. Fuzzy profile of FDC 
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Figure 15. Fuzzy profile of FDT 

4.1.3 Development of fuzzy rule base 
The most important part of any inference system is the rules, and 

how they interact with each other to generate results. In general, 

rules are formed using various domain experts so that the system 

can emulate the inference of an actual expert. To develop fuzzy 

rule base, we can acquire knowledge from different sources such 

as domain experts, historical data analysis of similar or earlier 

system, and engineering knowledge from existing literature's [25, 

12]. In our experiments, we generated some rules from the 

software engineering point of view and some from project 

management view points. All the rules take the form of `If A then 

B'. Table 2 to Table 5 show the fuzzy if-then rules required for 

each phase of software life cycle.  

 

Table 2. Fuzzy rules at requirements phase 

Rule RC RS RIW FDR 

1 L L L VL 

2 L L M L 

3 L L H M 

. . . . . 

. . . . . 

 

Table 3. Fuzzy rules at design phase 

Rule FRP DTE PM FDD 

1 VL L L VL 

2 VL L M VL 

3 VL L H L 

. . . . . 

 

 

Table 4. Fuzzy rules at coding phase 

Rule FDP CTE DPF FDC 

1 VL L L VL 

2 VL L M VL 

3 VL L H L 

. . . . . 

. . . . . 

 

Table 5. Fuzzy rules at testing phase 

Rule FCP TTE SI K FDT 

1 VL VL L L VL 

2 VL VL L M VL 

3 VL VL L H L 

. . . . . . 

. . . . . . 

 

4.2 Information Processing Phase 
In this phase, the fuzzy system maps all inputs on to an output. 

This process of mapping is known as fuzzy inference process or 

fuzzy reasoning [26, 24]. Basis for this mapping is the number of 

fuzzy IF-THEN rules, each of which describes the local behavior 

of the mapping. The Mamdani fuzzy inference system [27] is 

considered here for all the information processing. We have 

taken the centroid value of each fuzzy profile for computation 

purpose. Centroid value of each fuzzy profile can be computed 

from its fuzzy number and these are shown in the Table 6. 

Another vital part of information processing is the defuzzification 

process, which derives a crisp value from a number of fuzzy 

values. Various defuzzification techniques are Centroid, 

Bisector, Middle of maximum, Largest of maximum, Smallest of 

maximum, etc. [23]. The most commonly used method is the 

centroid method, which returns the centre of area under the 

curve, is considered here for defuzzification. 

4.3 Fault Prediction Phase 
On the basis of fault density at the end of testing phase, total 

number of faults in the software is predicted. The faults are 

predicted from FTP value, which is an indicator of fault density 

at the end of testing phase. The number of faults detected is 

proportional to the both size of the software and the fault density 

indicator value and can be found as: 

1* *FaultP C LOC FTP                                       (1) 

However, fault detection process is not exactly linear with size. 

As size of a software increases, portion of faults detected 

decreases due to saturation, time and efforts requirements, 

increased possibility due to interactions among the variables and 

instructions. Therefore, the FTP value is divided by (1+exp (-

LOCi /C2)), where the value of C2 scales the effect of LOC 

value. Thus (1) becomes, 

1* * /(1 exp( / 2))i i i iFaultP C LOC FTP LOC C   (2) 

Where FaultPi, is the total number of predicted faults in the ith 

software project, LOC is the size of ith project, FTPi, is the fault 

density indicator at the end of testing phase of project i, and C1 

and C2 are two constants obtained through learning. Value of C1 

and C2 are obtained from available project data. The values of 

C1 and C2 for current project are obtained as 0.04 and 107 

respectively. The proposed fuzzy inference model is generic in 

nature to capture variation in faults present in the software. 
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5. RESULTS 
 Fifteen different software projects data are taken form Appendix 

A, to analyze the prediction accuracy of the proposed model. For 

this, mean absolute percent error (MAPE) is calculated to find 

the absolute percentage error for each predicted faults and 

computing the average of these values. The predicted MAPE 

value is found to be 9.86, which shows good prediction accuracy. 

Table 6. Centroid value of fuzzy profiles 

 RC RS RIW DTE PM CTE DPF TTE SI Size 

VL 0.05 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.05 0.05 

L 0.15 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.15 0.15 

M 0.34 0.34 0.50 0.34 0.50 0.34 0.50 0.34 0.34 0.34 

H 0.63 0.63 0.75 0.63 0.75 0.63 0.75 0.63 0.63 0.63 

VH 0.86 0.86 0.92 0.86 0.92 0.86 0.92 0.86 0.86 0.86 

 

Table 7. Number of faults at the end of each phase 

# FRP FDP FCP FTP Size Efforts No. of faults 

predicted by 

proposed model 

Faults 

observe

d by [19] 

 Percentage 

errors 

1 0.0925 0.0834 0.0739 0.3008 1000 1976 6.02 5 -20.33 

2 0.1827 0.1378 0.1332 0.2703 4840 4410 26.17 29 9.77 

3 0.1827 0.3002 0.1802 0.4645 5790 8822 53.81 53 -1.52 

4 0.2087 0.1898 0.142 0.5 11000 3764 110.06 91 -20.95 

5 0.1872 0.1504 0.1361 0.2395 26670 7121 127.94 109 -17.37 

6 0.2892 0.2498 0.1523 0.1406 49100 25450 138.41 129 -7.29 

7 0.7829 0.7947 0.8577 0.8692 50000 52660 871.41 928 6.1 

8 0.4778 0.5383 0.1817 0.3838 52000 14602 400.17 412 2.87 

9 0.2908 0.2554 0.1552 0.195 53860 18171 210.61 209 -0.77 

10 0.458 0.3002 0.2322 0.5319 58300 33472 622.01 672 7.44 

11 0.4778 0.4944 0.3929 0.564 61000 53995 690.17 680 -1.5 

12 0.6306 0.305 0.2499 0.3281 87000 12388 573.44 476 -20.47 

13 0.5653 0.5 0.3932 0.6528 99000 24895 1298.84 1597 18.67 

14 0.4941 0.3006 0.2338 0.5302 154000 34893 1645.64 1768 6.92 

15 0.607 0.6541 0.457 0.6458 155200 32366 2020.16 1906 -5.99 

 

6. CONCLUSION AND FUTURE SCOPE 
This paper has developed a fault prediction model using early 

phase software metrics and fuzzy inference system. Fuzzy 

profiles of metrics were developed by a human expert to 

express his/her assessment and the nature of the metrics. For 

this, ten software metrics are taken from PROMISE data set 

and fault density at the end of each phase is predicted using 

fuzzy inference system. For software professionals, this model 

provides an insight towards software metrics and its impact on 

software fault during the development process. For software 

project mangers, the model provides a methodology for 

allocating the resources for developing reliable and cost-

effective software. There are various models for fault prediction 

and each one has its own strengths, and weakness. An 

interesting open problem for the future work is to find the 

failure rate form these fault densities, and predict the software 

reliability, safety, availability from these values. 
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Appendix A: PROMISE database: Twenty six software project data 

 

 

REFERENCES 
 

[1] ANSI/IEEE Standard Glossary of Software Engineering 

Terminology, IEEE STD-729, 1991.  

[2] M. Agrawal, K. Chari, Software Effort, Quality and 

Cycle Time: A Study of CMM Level 5 Projects, IEEE 

Transaction on Software Engineering, vol. 33, no. 2, 

pp. 145-156, 2007. 

[3] J. D. Musa, A. Iannino, K. Okumoto, Software 

Reliability: Measurement, Prediction, Application, 

McGraw-Hill Publishers, New York, 1987. 

[4] C. Kaner, Software Engineering Metrics: What Do They 

Measure and How Do We Know, 10th International 

Software Metrics Symposium 2004. 

[5] H. Pham, System Software Reliability, Reliability 

Engineering Series, Springer-Verlag Publisher, London, 

2006. 

[6] J. E. Gaffney, C. F. Davis, An Approach to Estimating 

Software Errors and Availability, Proceedings of 11th   

Minnow brook Workshop on Software Reliability 1988. 

[7] J. E. Gaffney, J. Pietrolewiez, An Automated Model for 

Software Early Error Prediction (SWEEP), Proceedings 

of 13th Minnow brook Workshop on Software 

Reliability1990. 

   RC RS RIW DTE PM CTE DPF TTE SI Efforts Size Faults 

# 

Projec

t F1 S7 S3 D1 D4 D2 D3 T2 P5 E K TD 

1 1 M L VH L H H H H H 7108.82 6.02 148 

2 2 L H VH L H H H H H 1308.08 0.90 31 

3 3 H H VH H VH VH H H VH 18170.00 53.86 209 

4 5 H M H L H M H M M 9434.00 14.00 373 

5 7 L M VH M H VH H M VH 13888.27 21.00 204 

6 8 M H H H M H M M H 8822.00 5.79 53 

7 10 M H H H H H H M H 4410.00 4.84 29 

8 11 H H H H H H H H H 14196.00 4.37 71 

9 12 H L H VH H M M H H 13387.50 19.00 90 

10 13 H L M H H H H M H 25449.60 49.10 129 

11 14 VH H H H H H H H H 33472.00 58.30 672 

12 15 H VL H H H H H H VH 34892.65 154.00 1768 

13 16 L M H H H H H H VH 7121.00 26.67 109 

14 17 L M M M H M H L M 13680.00 33.00 688 

15 18 VH VL H M H H H H VH 32365.98 155.20 1906 

16 19 H M H H H H H M H 12387.65 87.00 476 

17 20 VH VL M VL H VL L VL H 52660.00 50.00 928 

18 21 L M H H H H H H H 18748.00 22.00 196 

19 22 M L M H H M L M H 28206.00 44.00 184 

20 23 H M VH L H H H H H 53995.00 61.00 680 

21 24 M L M M M H H M M 24895.00 99.00 1597 

22 27 H M VH M H L M M M 14602.00 52.00 412 

23 28 VH L VH M H L H M M 8581.00 36.00 881 

24 29 M VH VH VH H VH H VH VH 3764.00 11.00 91 

25 30 L VH VH H H H H H VH 1976.00 1.00 5 

26 31 M M H H H H H H VH 15691.00 33.00 653 



International Journal of Computer Applications (0975 – 8887) 

Volume 11– No.6, December 2010 

41 

[8] Technical Report, Report Methodology for Software 

Reliability Prediction and Assessment, Rome 

Laboratory (RL) RL-TR-92-52, vol. 1 & 2, 1992 

[9] W. W. Agresti, W. M. Evanco, Projecting Software 

Defects form Analyzing Ada Design, IEEE Transaction 

on Software Engineering, vol. 18, no. 11, pp. 988-997, 

1992. 

[10] T. J. Yu, V. Y. Shen, H. E. Dunsmore, (1988), An 

Analysis of Several Software Defect Models, IEEE 

Transaction on Software Engineering, vol. 14, no. 9, 

pp. 261-270, 1988. 

[11] T. M. Khoshgoftaar, J. C.  Munson, Predicting Software 

Development Errors Using Complexity Metrics, IEEE 

Journal on Selected Areas in Communication, vol. 8, 

no. 2, pp. 253-261, 1990. 

[12] X. Zhang, H.  Pham, An Analysis of Factors Affecting 

Software Reliability, The Journal of Systems and 

Software, vol. 50, no. 1, pp. 43-56, 2000. 

[13] M. Li, C. Smidts,  A Ranking of Software Engineering 

Measures Based on Expert Opinion, IEEE Transaction 

on Software Engineering,  vol. 29, no. 9, pp. 811-824, 

2003. 

[14] K. S. Kumar, R. B.  Misra,  An Enhanced Model for 

Early Software Reliability Prediction using Software 

Engineering Metrics,  Proceedings of 2nd   Int. Conf. on 

Secure System Integration and Reliability Improvement,  

pp. 177-178, 2008. 

[15] A. K. Pandey, N. K. Goyal, A Fuzzy Model for Early 

Software Fault Prediction Using Process Maturity and 

Software Metrics, International Journal of Electronics 

Engineering, vol. 1, no. 2, pp. 239-245, 2009. 

[16] M. S. Krishnan, M. I.  Kellner, Measuring Process 

Consistency: Implications Reducing Software Defects, 

IEEE Transaction on Software Engineering, vol. 25, no. 

6, pp. 800-815, 1999. 

[17] M. Diaz, J. Sligo, How Software Process Improvement 

Helped Motorola, IEEE Software, vol. 14, no. 5, pp. 75-

81, 1997. 

[18] D. E. Harter, M. S.  Krishnan, S. A. Slaughter, Effects 

of Process Maturity on Quality, Cycle Time and Effort 

in     Software Product Development, Management 

Science, vol. 46, pp. 451-466, 2000.  

[19] http://promisedata.org/ 

[20] IEEE Standard, IEEE Guide for the Use of IEEE 

Standard Dictionary of Measures to Produce Reliable 

Software, IEEE Standard 982.2, New York, 1988. 

[21] D. C. Montgomery, Design and Analysis of 

Experiments, Wiley-India, New Delhi, 2005. 

[22] K. S. Saravana, R. B. Misra, N. K. Goyal, Development 

of Fuzzy Software Operational Profile, International 

Journal of Reliability, Quality and Safety Engineering, 

vol. 15, no. 6, 581-597, 2008. 

[23]  T. Ross, Fuzzy Logic with Engineering Applications, 

Wiley-India, New Delhi 2005. 

[24] L. A. Zadeh, Knowledge representation in fuzzy logic, 

IEEE Transactions on Knowledge and Data 

Engineering, vol. 1, pp. 89-100, 1989. 

[25] M. Xie, G. Y.  Hong, C.  Wohlin, Software reliability 

prediction incorporating information from a similar 

project, The Journal of Systems and Software, vol. 49, 

pp. 43-48, 1999.  

[26] J. B. Bowles, C. E.  Pelaez,  Application of fuzzy logic 

to reliability engineering,  IEEE Proceedings, vol. 83, 

no. 3, pp. 435-449, 1995. 

[27] E. H. Mamdani, Applications of fuzzy logic to 

approximate reasoning using linguistic synthesis, IEEE 

Transactions on Computers, vol. 26, no. 12, pp.1182-

1191, 1977. 

 

  

 

 

 

 

 

 

 

http://promisedata.org/?cat=4

