
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

34

Fault Prediction Model by Fuzzy Profile Development of

Reliability Relevant Software Metrics

Ajeet Kumar Pandey
Reliability Engineering Centre

IIT Kharagpur, Kharagpur

 Neeraj Kumar Goyal
Reliability Engineering Centre

IIT Kharagpur, Kharagpur

ABSTRACT

This paper presents a fault prediction model using reliability

relevant software metrics and fuzzy inference system. For this a

new approach is discussed to develop fuzzy profile of software

metrics which are more relevant for software fault prediction.

The proposed model predicts the fault density at the end of each

phase of software development using relevant software metrics.

On the basis of fault density at the end of testing phase, total

number of faults in the software is predicted. The model seems

to useful for both software engineer as well as project manager to

optimally allocate resources and achieve more reliable software

within the time and cost constraints. To validate the prediction

accuracy, the model results are validated using PROMISE

Software Engineering Repository Data set.

Keywords

Reliability Relevant Software Metrics, Software Fault Prediction,

Fault Density, Fuzzy profile, Fuzzy Inference System (FIS)

1. INTRODUCTION
Software has become so essential to human in their daily lives

that today it is difficult to imagine living without devices

controlled by software. Software reliability and quality has

become the primary concern during the software development. It

is difficult to produce fault-free software due to the problem

complexity, complexity of human behaviors, and the resource

constrains. Failure is an unavoidable phenomenon in all

technological products and systems. System failures due to the

software failure are very common and results undesirables

consequences which can adversely affect both reliability and

safety of the system. Now a day’s most of the software

development activity is performed in labor-intensive way. This

may introduce various faults across the development, causing

failures in near future. Therefore, there is a growing need ensure

the reliability of these software systems by fixing the faults as

early as possible. Moreover, it is well known that earlier an error

is identified, the better and more cost effectively it can be fixed.

Therefore, there is a need to predict these software faults across

the stages of software development process.

IEEE defines software reliability as “the probability of a software

system or component to perform its intended function under the

specified operating conditions over the specified period of time”

[1]. In other words it can also be defined as “the probability of

failure-free software operation for a specified period of time in a

specified environment”. Software reliability is generally accepted

as the key factor of software quality since it quantifies software

failures that make the system inoperative or risky [2]. A

software failure is defined as “the departure of external result of

program operation from requirements”, whereas a fault is

defined as “the defect in the program that, when executed under

particular conditions, causes a failure” [3]. To further elaborate,

a software fault is a defective, missing, or extra instruction or set

of related instructions that may cause of one or more actual or

potential failures when executed.

Software reliability has roots in each step of the software

development process and can be improved by inspection and

review of these steps [4]. Generally, the faults are introduced in

each phase of software life cycle and keep on propagating to the

subsequent phases unless they are detected through testing or

review process. Finally, undetected and/or uncorrected faults are

delivered with software, causing failures. In order to achieve

high software reliability, the number of faults in delivered code

should be at minimum level.

Software reliability can be estimated or predicted through

various software reliability models [3, 5]. These models uses

failure data collected during testing and/or field operation to

estimate or predict the reliability. This becomes late and

sometimes infeasible for taking corrective actions. One solution

to this problem may be predicting the faults across the stages of

development process so that appropriate actions can be taken to

mitigate or prevent these faults. Moreover, since the failure data

are not available during the early phases of software life cycle,

we have to dependent on the information such as reliability

relevant software metrics (RRSM), expert opinions and similar

or earlier project data. This paper proposes a multistage fault

prediction model using reliability relevant software metrics

(RRSM) that predicts the total number of faults at the end of

each phase of software life cycle.

The remainder of this paper is organized as follows: Section 2

presents literature survey of the problem. Section 3 describes the

proposed model. Section 4 provides implementation of model

using fuzzy inference system. Section 5 contains the case studies

and results whereas conclusions are presented in Section 6.

2. RELATED WORK
A lot of efforts have been made for software reliability prediction

and assessment using various models [3, 5]. Gaffney and Davis

[6, 7] of the Software Productivity Consortium developed a

phase-based model, which makes the use of fault statistics

obtained during the technical review of requirements, design,

and the coding to predict reliability.

One of the earliest and well known efforts to predict software

reliability during the early phase was the work initiated by the

Air Force's Rome Laboratory [8]. They developed a prediction

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

35

model of fault density that can be transformed into failure rates.

To do this the researchers selected a number of factors that they

felt could be related to fault density at the earlier phases. In a

similar study, Agresti and Evanco [9] presented a model to

predict defect density based on the product and process

characteristics for Ada program. Moreover, there are many

papers advocating statistical models and software metrics [10,

11]. Most of them are based on size and complexity metrics.

A study was conducted by Zhang and Pham [12] to find the

factors affecting software reliability. The study found thirty two

potential factors involved in various stages of the software life

cycle. In another study conducted by Li and Smidt [13], thirty

reliability relevant software engineering measures have been

identified. They have developed a set of ranking criteria and their

levels for various reliability relevant software metrics, present in

the first four phases of software life cycle. Kumar and Misra [14]

made an effort for early software reliability prediction

considering the six top ranked measures given by [13] and

software operational profile. Sometimes, it may happen that

some of these top ranked measures are not available, making the

prediction unrealistic. Also they have considered only product

metrics and ignored process metrics that influence software

reliability. Recently, Pandey and Goyal [15] have developed an

early fault prediction model using process maturity and software

metrics. In their model they have developed the fuzzy profiles of

various metrics in different scale and have not explained the

criteria used for developing these fuzzy profiles.

Following are the general observations from the literature

review:

 Software reliability is a function of number of faults

present in the software.

 Software metrics plays a vital role in fault prediction in

the absence of failure data.

 Early phase software metrics are of fuzzy nature.

 Software metrics follow either linear or logarithmic

nature.

From the review of literature, we found that earlier fault

prediction models have not considered these issues altogether.

Also, no study has discussed the criteria for developing the fuzzy

profile of software metrics. Keeping these points in mind, a fault

prediction model is proposed which is able to predict the total

number of faults present in the software, by systematic

development of fuzzy profiles of software metrics on the basis of

their nature and fuzzy inference system.

3. PROPOSED MODEL
Prediction of faults is desirable for any industry and attracts both

engineers as well as managements. For software industry it

provides an opportunity for the early identification of software

quality, cost overrun and optimal development strategies. During

earlier phases of software development; predicting the number of

faults can reduce the efforts for additional reviews and more

extensive testing [7].

The model architecture is shown in Figure1. Stages present in

the proposed structure are similar to the waterfall model, a well

known software development process model. It divides the

structure into four consecutive phase I, II, III, and IV i.e.

requirement, design, coding, and testing phase respectively.

Phase-I predicts the fault density at the end of requirement phase

using relevant requirement metrics. Phase-II predicts the fault

density at the end of design phase using design metrics as well as

output of the requirements phase. Similarly at phase-III besides

the using coding metrics, output of phase-II is also considered as

input to predict the fault density at the end of coding phase.

Finally, the phase-IV predicts the fault density using testing

metrics as well as output of the coding phase.

The proposed model considers three requirements metrics (RM):

a) requirements complexity (RC), b) requirements stability (RS),

and c) review, inspection and walk-through (RIW) as input.

Similarly, at design phase two design metrics (DM): a) design

team experience (DTE) and b) process maturity (PM) are

considered as input. Two coding phase metrics (CM): a) coding

team experience (CTE) and b) defined process followed (DPF)

are taken as input. Finally, testing phase metrics (TM): a) testing

team experience (TTE), b) stake-holders involvement (SI) and c)

size of the software (KLOC) are taken as input. The outputs of

the model are fault density indicator at the end of requirements

phase (FDR), design phase (FDD), coding phase (FDC) and

testing phase (FDT). It is important to mention here that these

metrics may fallow either linear or logarithmic scale based on

their nature.

Figure 1. Software fault prediction model

Table 1. Phase-wise input/output variable

Phase Input Variables Output

Variables

Requirement RC, RS, RIW FDR

Design FDR, DTE, PM FDD

Coding FDD, CTE, DPF FDC

Testing FDT, TTE, SI, KLOC FDT

4. IMPLIMENTATION
The model is based on the fuzzy logic and implemented in

MATLAB. The basic steps of the model are identification of

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

36

RRSMs as input/output variables, development of fuzzy profile

of these input/output variables defining relationship between

input and output variables and fault prediction at the end of

software life cycle using fuzzy inference system (FIS). These

basic steps can be grouped into three broad phases as follows: a)

information gathering phase, b) information processing phase,

and c) fault prediction phase.

4.1 Information gathering phase
The quality of fuzzy approximation depends mainly on the

quality of information collected and expert opinion. The

information gathering phase is often considered the most vital

step in developing a fuzzy inference system and includes the

following steps:

4.1.1 Selection of input / output variables
A list of RRSMs applicable to various phase of software life

cycle is given in Appendix A [19]. Ten input and four output

variables are identified, as shown in Table 1, for the purpose of

predicting number of faults in the software. Input variables are

the RRSMs relevant to each phase of software life cycle and

output variables are the fault densities at the end of each phase.

We found that metrics RC, RS, and RIW are more suitable for

requirement phase and influence to the requirements faults. If

RC is more, the number of faults will be more, but this is not

true for RS. Similarly, if there are more reviews and inspection,

more faults will be detected and corrected leaving fewer faults in

the requirements phase. For design phase, two metrics DTE and

PM are considered because both of these metrics are responsible

for error free software design. For higher value of DTE and PM,

there will be lower number of design faults in the software. At

coding phase, CTE and DPF metrics is found more suitable to

affect the coding faults. In general it is found that if CTE and

DPF are more, the number of faults will be less. Lastly, for

testing phase, three metrics TTE, SI and KLOC are taken which

can influence the fault density at this phase.

4.1.2 Fuzzy profile development
Input /output variables identified at the previous stage are fuzzy

in nature and characterized by fuzzy numbers. Fuzzy numbers are

a subset from the real numbers set, representing the uncertain

values. All fuzzy numbers are related to degrees of membership,

which state how true it is to say if something belongs or not to a

determined set.

There are various types of fuzzy numbers and its nomenclature

is, in general, associated with its format, such as: sine numbers,

bell shape, polygonal, trapezoids, triangular, and so on.

Triangular fuzzy numbers (TFN) are convenient to work with

because in real space, adding two TFN involves adding the

corresponding vertices used to define the TFNs. Similar simple

formulas can be used to subtract or find the image of TFNs. Also

TFNs are well suited to modeling and design because their

arithmetic operators and functions are developed, which allow

fast operation on equations. Because of these properties we have

considered TFNs, for all input/output variables. We have divided

input variables into five linguistic categories as: i.e. very low

(VL), low (L), moderate (M), high (H) and very high (VH), and

for output variables we have considered seven linguistic

categories i.e. very very low (VVL), very low (VL), low (L),

moderate (M), high (H), very high (VH), and very very High

(VVH).

The data, which may be useful for selecting appropriate

linguistic variable, is generally available in one or more forms

such as expert’s opinion, software requirements, user’s

expectations, record of existing field data from previous release

or similar system, etc. [22]. Fuzzy membership functions are

generated utilizing the linguistic categories such as identified by

a human expert to express his/her assessment and the nature of

the metrics. As stated earlier, that software metrics may be either

linear or logarithmic nature. On the basis of this information,

fuzzy profiles (FP) of each software metrics are developed using

the following formula,

(a) For logarithmic nature software metrics,

10

10

log 1: 5
1

log 5
FP

The profiles may take the following values:

VL (0; 0; 0.14), L (0; 0.14; 0.32), M (0.14; 0.32; 0.57), H (0.32;

0.57; 1.00), and VH (0.57; 1.00; 1.00)

(b) For linear nature software metrics,

(0 : 4)

4
FP

The profiles may take the following values:

VL (0; 0; 0.25), L (0; 0.25; 0.50), M (0.25; 0.50; 0.75), H (0.50;

0.75; 1.00), VH (0.75; 1.00; 1.00)

Outputs are considered on logarithmic scale, and divided in

seven linguistic categories as:

Fuzzy profile range = [1-{log10 (1:7)} / {[log10 (7)}]; the

profiles may take the following values:

VVL (0; 0; 0.08), VL (0; 0.08; 0.17), L (0.08; 0.17; 0.29), M

(0.14; 0.32; 0.57), H (0.17; 0.29; 0.44), VH (0.44; 0.64; 1.00),

VVH (0.64; 1.00; 1.00)

It is assumed that out of these ten input variables, only three

variables (RIW, PM and DPF) follow linear nature and

remaining variables follow logarithmic nature. All output

variables are assumed to be following logarithmic nature. Fig. 2

to Fig. 15 shows membership functions and fuzzy profiles of all

the selected input/output variables for visualization purpose.

Figure 2. Fuzzy profile of RC

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

37

Figure 3. Fuzzy profile of RS

Figure 4. Fuzzy profile of RIW

Figure 5. Fuzzy profile of DTE

Figure 6. Fuzzy profile of PM

Figure 7. Fuzzy profile of CTE

Figure 8. Fuzzy profile of DPF

Figure 9. Fuzzy profile of TTE

Figure 10. Fuzzy profile of SI

Figure 11. Fuzzy profile of SIZE

Figure 12. Fuzzy profile of FDR

Figure 13. Fuzzy profile of FDD

Figure 14. Fuzzy profile of FDC

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

38

Figure 15. Fuzzy profile of FDT

4.1.3 Development of fuzzy rule base
The most important part of any inference system is the rules, and

how they interact with each other to generate results. In general,

rules are formed using various domain experts so that the system

can emulate the inference of an actual expert. To develop fuzzy

rule base, we can acquire knowledge from different sources such

as domain experts, historical data analysis of similar or earlier

system, and engineering knowledge from existing literature's [25,

12]. In our experiments, we generated some rules from the

software engineering point of view and some from project

management view points. All the rules take the form of `If A then

B'. Table 2 to Table 5 show the fuzzy if-then rules required for

each phase of software life cycle.

Table 2. Fuzzy rules at requirements phase

Rule RC RS RIW FDR

1 L L L VL

2 L L M L

3 L L H M

.

.

Table 3. Fuzzy rules at design phase

Rule FRP DTE PM FDD

1 VL L L VL

2 VL L M VL

3 VL L H L

.

Table 4. Fuzzy rules at coding phase

Rule FDP CTE DPF FDC

1 VL L L VL

2 VL L M VL

3 VL L H L

.

.

Table 5. Fuzzy rules at testing phase

Rule FCP TTE SI K FDT

1 VL VL L L VL

2 VL VL L M VL

3 VL VL L H L

.

.

4.2 Information Processing Phase
In this phase, the fuzzy system maps all inputs on to an output.

This process of mapping is known as fuzzy inference process or

fuzzy reasoning [26, 24]. Basis for this mapping is the number of

fuzzy IF-THEN rules, each of which describes the local behavior

of the mapping. The Mamdani fuzzy inference system [27] is

considered here for all the information processing. We have

taken the centroid value of each fuzzy profile for computation

purpose. Centroid value of each fuzzy profile can be computed

from its fuzzy number and these are shown in the Table 6.

Another vital part of information processing is the defuzzification

process, which derives a crisp value from a number of fuzzy

values. Various defuzzification techniques are Centroid,

Bisector, Middle of maximum, Largest of maximum, Smallest of

maximum, etc. [23]. The most commonly used method is the

centroid method, which returns the centre of area under the

curve, is considered here for defuzzification.

4.3 Fault Prediction Phase
On the basis of fault density at the end of testing phase, total

number of faults in the software is predicted. The faults are

predicted from FTP value, which is an indicator of fault density

at the end of testing phase. The number of faults detected is

proportional to the both size of the software and the fault density

indicator value and can be found as:

1* *FaultP C LOC FTP (1)

However, fault detection process is not exactly linear with size.

As size of a software increases, portion of faults detected

decreases due to saturation, time and efforts requirements,

increased possibility due to interactions among the variables and

instructions. Therefore, the FTP value is divided by (1+exp (-

LOCi /C2)), where the value of C2 scales the effect of LOC

value. Thus (1) becomes,

1* * /(1 exp(/ 2))i i i iFaultP C LOC FTP LOC C (2)

Where FaultPi, is the total number of predicted faults in the ith

software project, LOC is the size of ith project, FTPi, is the fault

density indicator at the end of testing phase of project i, and C1

and C2 are two constants obtained through learning. Value of C1

and C2 are obtained from available project data. The values of

C1 and C2 for current project are obtained as 0.04 and 107

respectively. The proposed fuzzy inference model is generic in

nature to capture variation in faults present in the software.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

39

5. RESULTS
 Fifteen different software projects data are taken form Appendix

A, to analyze the prediction accuracy of the proposed model. For

this, mean absolute percent error (MAPE) is calculated to find

the absolute percentage error for each predicted faults and

computing the average of these values. The predicted MAPE

value is found to be 9.86, which shows good prediction accuracy.

Table 6. Centroid value of fuzzy profiles

 RC RS RIW DTE PM CTE DPF TTE SI Size

VL 0.05 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.05 0.05

L 0.15 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.15 0.15

M 0.34 0.34 0.50 0.34 0.50 0.34 0.50 0.34 0.34 0.34

H 0.63 0.63 0.75 0.63 0.75 0.63 0.75 0.63 0.63 0.63

VH 0.86 0.86 0.92 0.86 0.92 0.86 0.92 0.86 0.86 0.86

Table 7. Number of faults at the end of each phase

FRP FDP FCP FTP Size Efforts No. of faults

predicted by

proposed model

Faults

observe

d by [19]

 Percentage

errors

1 0.0925 0.0834 0.0739 0.3008 1000 1976 6.02 5 -20.33

2 0.1827 0.1378 0.1332 0.2703 4840 4410 26.17 29 9.77

3 0.1827 0.3002 0.1802 0.4645 5790 8822 53.81 53 -1.52

4 0.2087 0.1898 0.142 0.5 11000 3764 110.06 91 -20.95

5 0.1872 0.1504 0.1361 0.2395 26670 7121 127.94 109 -17.37

6 0.2892 0.2498 0.1523 0.1406 49100 25450 138.41 129 -7.29

7 0.7829 0.7947 0.8577 0.8692 50000 52660 871.41 928 6.1

8 0.4778 0.5383 0.1817 0.3838 52000 14602 400.17 412 2.87

9 0.2908 0.2554 0.1552 0.195 53860 18171 210.61 209 -0.77

10 0.458 0.3002 0.2322 0.5319 58300 33472 622.01 672 7.44

11 0.4778 0.4944 0.3929 0.564 61000 53995 690.17 680 -1.5

12 0.6306 0.305 0.2499 0.3281 87000 12388 573.44 476 -20.47

13 0.5653 0.5 0.3932 0.6528 99000 24895 1298.84 1597 18.67

14 0.4941 0.3006 0.2338 0.5302 154000 34893 1645.64 1768 6.92

15 0.607 0.6541 0.457 0.6458 155200 32366 2020.16 1906 -5.99

6. CONCLUSION AND FUTURE SCOPE
This paper has developed a fault prediction model using early

phase software metrics and fuzzy inference system. Fuzzy

profiles of metrics were developed by a human expert to

express his/her assessment and the nature of the metrics. For

this, ten software metrics are taken from PROMISE data set

and fault density at the end of each phase is predicted using

fuzzy inference system. For software professionals, this model

provides an insight towards software metrics and its impact on

software fault during the development process. For software

project mangers, the model provides a methodology for

allocating the resources for developing reliable and cost-

effective software. There are various models for fault prediction

and each one has its own strengths, and weakness. An

interesting open problem for the future work is to find the

failure rate form these fault densities, and predict the software

reliability, safety, availability from these values.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

40

Appendix A: PROMISE database: Twenty six software project data

REFERENCES

[1] ANSI/IEEE Standard Glossary of Software Engineering

Terminology, IEEE STD-729, 1991.

[2] M. Agrawal, K. Chari, Software Effort, Quality and

Cycle Time: A Study of CMM Level 5 Projects, IEEE

Transaction on Software Engineering, vol. 33, no. 2,

pp. 145-156, 2007.

[3] J. D. Musa, A. Iannino, K. Okumoto, Software

Reliability: Measurement, Prediction, Application,

McGraw-Hill Publishers, New York, 1987.

[4] C. Kaner, Software Engineering Metrics: What Do They

Measure and How Do We Know, 10th International

Software Metrics Symposium 2004.

[5] H. Pham, System Software Reliability, Reliability

Engineering Series, Springer-Verlag Publisher, London,

2006.

[6] J. E. Gaffney, C. F. Davis, An Approach to Estimating

Software Errors and Availability, Proceedings of 11th

Minnow brook Workshop on Software Reliability 1988.

[7] J. E. Gaffney, J. Pietrolewiez, An Automated Model for

Software Early Error Prediction (SWEEP), Proceedings

of 13th Minnow brook Workshop on Software

Reliability1990.

 RC RS RIW DTE PM CTE DPF TTE SI Efforts Size Faults

Projec

t F1 S7 S3 D1 D4 D2 D3 T2 P5 E K TD

1 1 M L VH L H H H H H 7108.82 6.02 148

2 2 L H VH L H H H H H 1308.08 0.90 31

3 3 H H VH H VH VH H H VH 18170.00 53.86 209

4 5 H M H L H M H M M 9434.00 14.00 373

5 7 L M VH M H VH H M VH 13888.27 21.00 204

6 8 M H H H M H M M H 8822.00 5.79 53

7 10 M H H H H H H M H 4410.00 4.84 29

8 11 H H H H H H H H H 14196.00 4.37 71

9 12 H L H VH H M M H H 13387.50 19.00 90

10 13 H L M H H H H M H 25449.60 49.10 129

11 14 VH H H H H H H H H 33472.00 58.30 672

12 15 H VL H H H H H H VH 34892.65 154.00 1768

13 16 L M H H H H H H VH 7121.00 26.67 109

14 17 L M M M H M H L M 13680.00 33.00 688

15 18 VH VL H M H H H H VH 32365.98 155.20 1906

16 19 H M H H H H H M H 12387.65 87.00 476

17 20 VH VL M VL H VL L VL H 52660.00 50.00 928

18 21 L M H H H H H H H 18748.00 22.00 196

19 22 M L M H H M L M H 28206.00 44.00 184

20 23 H M VH L H H H H H 53995.00 61.00 680

21 24 M L M M M H H M M 24895.00 99.00 1597

22 27 H M VH M H L M M M 14602.00 52.00 412

23 28 VH L VH M H L H M M 8581.00 36.00 881

24 29 M VH VH VH H VH H VH VH 3764.00 11.00 91

25 30 L VH VH H H H H H VH 1976.00 1.00 5

26 31 M M H H H H H H VH 15691.00 33.00 653

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.6, December 2010

41

[8] Technical Report, Report Methodology for Software

Reliability Prediction and Assessment, Rome

Laboratory (RL) RL-TR-92-52, vol. 1 & 2, 1992

[9] W. W. Agresti, W. M. Evanco, Projecting Software

Defects form Analyzing Ada Design, IEEE Transaction

on Software Engineering, vol. 18, no. 11, pp. 988-997,

1992.

[10] T. J. Yu, V. Y. Shen, H. E. Dunsmore, (1988), An

Analysis of Several Software Defect Models, IEEE

Transaction on Software Engineering, vol. 14, no. 9,

pp. 261-270, 1988.

[11] T. M. Khoshgoftaar, J. C. Munson, Predicting Software

Development Errors Using Complexity Metrics, IEEE

Journal on Selected Areas in Communication, vol. 8,

no. 2, pp. 253-261, 1990.

[12] X. Zhang, H. Pham, An Analysis of Factors Affecting

Software Reliability, The Journal of Systems and

Software, vol. 50, no. 1, pp. 43-56, 2000.

[13] M. Li, C. Smidts, A Ranking of Software Engineering

Measures Based on Expert Opinion, IEEE Transaction

on Software Engineering, vol. 29, no. 9, pp. 811-824,

2003.

[14] K. S. Kumar, R. B. Misra, An Enhanced Model for

Early Software Reliability Prediction using Software

Engineering Metrics, Proceedings of 2nd Int. Conf. on

Secure System Integration and Reliability Improvement,

pp. 177-178, 2008.

[15] A. K. Pandey, N. K. Goyal, A Fuzzy Model for Early

Software Fault Prediction Using Process Maturity and

Software Metrics, International Journal of Electronics

Engineering, vol. 1, no. 2, pp. 239-245, 2009.

[16] M. S. Krishnan, M. I. Kellner, Measuring Process

Consistency: Implications Reducing Software Defects,

IEEE Transaction on Software Engineering, vol. 25, no.

6, pp. 800-815, 1999.

[17] M. Diaz, J. Sligo, How Software Process Improvement

Helped Motorola, IEEE Software, vol. 14, no. 5, pp. 75-

81, 1997.

[18] D. E. Harter, M. S. Krishnan, S. A. Slaughter, Effects

of Process Maturity on Quality, Cycle Time and Effort

in Software Product Development, Management

Science, vol. 46, pp. 451-466, 2000.

[19] http://promisedata.org/

[20] IEEE Standard, IEEE Guide for the Use of IEEE

Standard Dictionary of Measures to Produce Reliable

Software, IEEE Standard 982.2, New York, 1988.

[21] D. C. Montgomery, Design and Analysis of

Experiments, Wiley-India, New Delhi, 2005.

[22] K. S. Saravana, R. B. Misra, N. K. Goyal, Development

of Fuzzy Software Operational Profile, International

Journal of Reliability, Quality and Safety Engineering,

vol. 15, no. 6, 581-597, 2008.

[23] T. Ross, Fuzzy Logic with Engineering Applications,

Wiley-India, New Delhi 2005.

[24] L. A. Zadeh, Knowledge representation in fuzzy logic,

IEEE Transactions on Knowledge and Data

Engineering, vol. 1, pp. 89-100, 1989.

[25] M. Xie, G. Y. Hong, C. Wohlin, Software reliability

prediction incorporating information from a similar

project, The Journal of Systems and Software, vol. 49,

pp. 43-48, 1999.

[26] J. B. Bowles, C. E. Pelaez, Application of fuzzy logic

to reliability engineering, IEEE Proceedings, vol. 83,

no. 3, pp. 435-449, 1995.

[27] E. H. Mamdani, Applications of fuzzy logic to

approximate reasoning using linguistic synthesis, IEEE

Transactions on Computers, vol. 26, no. 12, pp.1182-

1191, 1977.

http://promisedata.org/?cat=4

