International Journal of Computer Applications (0975 — 8887)
Volume 11— No.6, December 2010

Fault Prediction Model by Fuzzy Profile Development of
Reliability Relevant Software Metrics

Ajeet Kumar Pandey
Reliability Engineering Centre
IIT Kharagpur, Kharagpur

ABSTRACT

This paper presents a fault prediction model using reliability
relevant software metrics and fuzzy inference system. For this a
new approach is discussed to develop fuzzy profile of software
metrics which are more relevant for software fault prediction.
The proposed model predicts the fault density at the end of each
phase of software development using relevant software metrics.
On the basis of fault density at the end of testing phase, total
number of faults in the software is predicted. The model seems
to useful for both software engineer as well as project manager to
optimally allocate resources and achieve more reliable software
within the time and cost constraints. To validate the prediction
accuracy, the model results are validated using PROMISE
Software Engineering Repository Data set.

Keywords
Reliability Relevant Software Metrics, Software Fault Prediction,
Fault Density, Fuzzy profile, Fuzzy Inference System (FIS)

1. INTRODUCTION

Software has become so essential to human in their daily lives
that today it is difficult to imagine living without devices
controlled by software. Software reliability and quality has
become the primary concern during the software development. It
is difficult to produce fault-free software due to the problem
complexity, complexity of human behaviors, and the resource
constrains. Failure is an unavoidable phenomenon in all
technological products and systems. System failures due to the
software failure are very common and results undesirables
consequences which can adversely affect both reliability and
safety of the system. Now a day’s most of the software
development activity is performed in labor-intensive way. This
may introduce various faults across the development, causing
failures in near future. Therefore, there is a growing need ensure
the reliability of these software systems by fixing the faults as
early as possible. Moreover, it is well known that earlier an error
is identified, the better and more cost effectively it can be fixed.
Therefore, there is a need to predict these software faults across
the stages of software development process.

IEEE defines software reliability as “the probability of a software
system or component to perform its intended function under the
specified operating conditions over the specified period of time”
[1]. In other words it can also be defined as “the probability of
failure-free software operation for a specified period of time in a
specified environment”. Software reliability is generally accepted
as the key factor of software quality since it quantifies software
failures that make the system inoperative or risky [2]. A

Neeraj Kumar Goyal
Reliability Engineering Centre
IIT Kharagpur, Kharagpur

software failure is defined as “the departure of external result of
program operation from requirements”, whereas a fault is
defined as “the defect in the program that, when executed under
particular conditions, causes a failure” [3]. To further elaborate,
a software fault is a defective, missing, or extra instruction or set
of related instructions that may cause of one or more actual or
potential failures when executed.

Software reliability has roots in each step of the software
development process and can be improved by inspection and
review of these steps [4]. Generally, the faults are introduced in
each phase of software life cycle and keep on propagating to the
subsequent phases unless they are detected through testing or
review process. Finally, undetected and/or uncorrected faults are
delivered with software, causing failures. In order to achieve
high software reliability, the number of faults in delivered code
should be at minimum level.

Software reliability can be estimated or predicted through
various software reliability models [3, 5]. These models uses
failure data collected during testing and/or field operation to
estimate or predict the reliability. This becomes late and
sometimes infeasible for taking corrective actions. One solution
to this problem may be predicting the faults across the stages of
development process so that appropriate actions can be taken to
mitigate or prevent these faults. Moreover, since the failure data
are not available during the early phases of software life cycle,
we have to dependent on the information such as reliability
relevant software metrics (RRSM), expert opinions and similar
or earlier project data. This paper proposes a multistage fault
prediction model using reliability relevant software metrics
(RRSM) that predicts the total number of faults at the end of
each phase of software life cycle.

The remainder of this paper is organized as follows: Section 2
presents literature survey of the problem. Section 3 describes the
proposed model. Section 4 provides implementation of model
using fuzzy inference system. Section 5 contains the case studies
and results whereas conclusions are presented in Section 6.

2. RELATED WORK

A lot of efforts have been made for software reliability prediction
and assessment using various models [3, 5]. Gaffney and Davis
[6, 7] of the Software Productivity Consortium developed a
phase-based model, which makes the use of fault statistics
obtained during the technical review of requirements, design,
and the coding to predict reliability.

One of the earliest and well known efforts to predict software
reliability during the early phase was the work initiated by the
Air Force's Rome Laboratory [8]. They developed a prediction

34



model of fault density that can be transformed into failure rates.
To do this the researchers selected a number of factors that they
felt could be related to fault density at the earlier phases. In a
similar study, Agresti and Evanco [9] presented a model to
predict defect density based on the product and process
characteristics for Ada program. Moreover, there are many
papers advocating statistical models and software metrics [10,
11]. Most of them are based on size and complexity metrics.

A study was conducted by Zhang and Pham [12] to find the
factors affecting software reliability. The study found thirty two
potential factors involved in various stages of the software life
cycle. In another study conducted by Li and Smidt [13], thirty
reliability relevant software engineering measures have been
identified. They have developed a set of ranking criteria and their
levels for various reliability relevant software metrics, present in
the first four phases of software life cycle. Kumar and Misra [14]
made an effort for early software reliability prediction
considering the six top ranked measures given by [13] and
software operational profile. Sometimes, it may happen that
some of these top ranked measures are not available, making the
prediction unrealistic. Also they have considered only product
metrics and ignored process metrics that influence software
reliability. Recently, Pandey and Goyal [15] have developed an
early fault prediction model using process maturity and software
metrics. In their model they have developed the fuzzy profiles of
various metrics in different scale and have not explained the
criteria used for developing these fuzzy profiles.

Following are the general observations from the literature
review:

e  Software reliability is a function of number of faults
present in the software.

e  Software metrics plays a vital role in fault prediction in
the absence of failure data.

e  Early phase software metrics are of fuzzy nature.

e  Software metrics follow either linear or logarithmic
nature.

From the review of literature, we found that earlier fault
prediction models have not considered these issues altogether.
Also, no study has discussed the criteria for developing the fuzzy
profile of software metrics. Keeping these points in mind, a fault
prediction model is proposed which is able to predict the total
number of faults present in the software, by systematic
development of fuzzy profiles of software metrics on the basis of
their nature and fuzzy inference system.

3. PROPOSED MODEL

Prediction of faults is desirable for any industry and attracts both
engineers as well as managements. For software industry it
provides an opportunity for the early identification of software
quality, cost overrun and optimal development strategies. During
earlier phases of software development; predicting the number of
faults can reduce the efforts for additional reviews and more
extensive testing [7].

The model architecture is shown in Figurel. Stages present in
the proposed structure are similar to the waterfall model, a well

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.6, December 2010

known software development process model. It divides the
structure into four consecutive phase I, II, 1, and IV i.e.
requirement, design, coding, and testing phase respectively.
Phase-1 predicts the fault density at the end of requirement phase
using relevant requirement metrics. Phase-Il predicts the fault
density at the end of design phase using design metrics as well as
output of the requirements phase. Similarly at phase-1ll besides
the using coding metrics, output of phase-1l is also considered as
input to predict the fault density at the end of coding phase.
Finally, the phase-IV predicts the fault density using testing
metrics as well as output of the coding phase.

The proposed model considers three requirements metrics (RM):
a) requirements complexity (RC), b) requirements stability (RS),
and c) review, inspection and walk-through (RIW) as input.
Similarly, at design phase two design metrics (DM): a) design
team experience (DTE) and b) process maturity (PM) are
considered as input. Two coding phase metrics (CM): a) coding
team experience (CTE) and b) defined process followed (DPF)
are taken as input. Finally, testing phase metrics (TM): a) testing
team experience (TTE), b) stake-holders involvement (SI) and c)
size of the software (KLOC) are taken as input. The outputs of
the model are fault density indicator at the end of requirements
phase (FDR), design phase (FDD), coding phase (FDC) and
testing phase (FDT). It is important to mention here that these
metrics may fallow either linear or logarithmic scale based on
their nature.

Software Metrics

FIS FDR
i3 L
Rule Base
F;S File
DM & FDD
»| Rule Base
™ F‘IS(S FDC r
3| Rule Base
FIS )
™ &
»| Rule Base
FDT
Figure 1. Software fault prediction model
Table 1. Phase-wise input/output variable
Phase Input Variables Output
Variables
Requirement RC, RS, RIW FDR
Design FDR, DTE, PM FDD
Coding FDD, CTE, DPF FDC
Testing FDT, TTE, SI, KLOC FDT

4. IMPLIMENTATION

The model is based on the fuzzy logic and implemented in
MATLAB. The basic steps of the model are identification of

35



RRSMs as input/output variables, development of fuzzy profile
of these input/output variables defining relationship between
input and output variables and fault prediction at the end of
software life cycle using fuzzy inference system (FIS). These
basic steps can be grouped into three broad phases as follows: a)
information gathering phase, b) information processing phase,
and c) fault prediction phase.

4.1 Information gathering phase

The quality of fuzzy approximation depends mainly on the
quality of information collected and expert opinion. The
information gathering phase is often considered the most vital
step in developing a fuzzy inference system and includes the
following steps:

4.1.1 Selection of input / output variables

A list of RRSMs applicable to various phase of software life
cycle is given in Appendix A [19]. Ten input and four output
variables are identified, as shown in Table 1, for the purpose of
predicting number of faults in the software. Input variables are
the RRSMs relevant to each phase of software life cycle and
output variables are the fault densities at the end of each phase.

We found that metrics RC, RS, and RIW are more suitable for
requirement phase and influence to the requirements faults. If
RC is more, the number of faults will be more, but this is not
true for RS. Similarly, if there are more reviews and inspection,
more faults will be detected and corrected leaving fewer faults in
the requirements phase. For design phase, two metrics DTE and
PM are considered because both of these metrics are responsible
for error free software design. For higher value of DTE and PM,
there will be lower number of design faults in the software. At
coding phase, CTE and DPF metrics is found more suitable to
affect the coding faults. In general it is found that if CTE and
DPF are more, the number of faults will be less. Lastly, for
testing phase, three metrics TTE, SI and KLOC are taken which
can influence the fault density at this phase.

4.1.2 Fuzzy profile development

Input /output variables identified at the previous stage are fuzzy
in nature and characterized by fuzzy numbers. Fuzzy numbers are
a subset from the real numbers set, representing the uncertain
values. All fuzzy numbers are related to degrees of membership,
which state how true it is to say if something belongs or not to a
determined set.

There are various types of fuzzy numbers and its nomenclature
is, in general, associated with its format, such as: sine numbers,
bell shape, polygonal, trapezoids, triangular, and so on.
Triangular fuzzy numbers (TFN) are convenient to work with
because in real space, adding two TFN involves adding the
corresponding vertices used to define the TFNs. Similar simple
formulas can be used to subtract or find the image of TFNs. Also
TFNs are well suited to modeling and design because their
arithmetic operators and functions are developed, which allow
fast operation on equations. Because of these properties we have
considered TFNs, for all input/output variables. We have divided
input variables into five linguistic categories as: i.e. very low
(VL), low (L), moderate (M), high (H) and very high (VH), and
for output variables we have considered seven linguistic

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.6, December 2010

categories i.e. very very low (VVL), very low (VL), low (L),
moderate (M), high (H), very high (VH), and very very High
(VVH).

The data, which may be useful for selecting appropriate
linguistic variable, is generally available in one or more forms
such as expert’s opinion, software requirements, user’s
expectations, record of existing field data from previous release
or similar system, etc. [22]. Fuzzy membership functions are
generated utilizing the linguistic categories such as identified by
a human expert to express his/her assessment and the nature of
the metrics. As stated earlier, that software metrics may be either
linear or logarithmic nature. On the basis of this information,
fuzzy profiles (FP) of each software metrics are developed using
the following formula,

(a) For logarithmic nature software metrics,

log,, 1:5
= O10
log, 5

The profiles may take the following values:

VL (0; 0; 0.14), L (0; 0.14; 0.32), M (0.14; 0.32; 0.57), H (0.32;
0.57; 1.00), and VH (0.57; 1.00; 1.00)

(b) For linear nature software metrics,

FP:{(O:“)}
4

The profiles may take the following values:

VL (0; 0; 0.25), L (0; 0.25; 0.50), M (0.25; 0.50; 0.75), H (0.50;
0.75; 1.00), VH (0.75; 1.00; 1.00)

Outputs are considered on logarithmic scale, and divided in
seven linguistic categories as:

Fuzzy profile range = [1-{logl0 (1:7)} / {[logl0 (7)}]; the
profiles may take the following values:

VVL (0; 0; 0.08), VL (0; 0.08; 0.17), L (0.08; 0.17; 0.29), M
(0.14; 0.32; 0.57), H (0.17; 0.29; 0.44), VH (0.44; 0.64; 1.00),
VVH (0.64; 1.00; 1.00)

It is assumed that out of these ten input variables, only three
variables (RIW, PM and DPF) follow linear nature and
remaining variables follow logarithmic nature. All output
variables are assumed to be following logarithmic nature. Fig. 2
to Fig. 15 shows membership functions and fuzzy profiles of all
the selected input/output variables for visualization purpose.

woL M H VH

Membership
function p

0 01 02 03 04 05 06 07 08 09 10 ﬁC
Figure 2. Fuzzy profile of RC

36



Membership
function p

o 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 RS

Figure 3. Fuzzy profile of RS

VL L M H VH

Membership|
function p

o 0.1 0.2 0.3 0.4 0.5 06 07 08 09 1.0 RIW

Figure 4. Fuzzy profile of RIW

vL L M H VH

Membership
function p

0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 DTE

Figure 5. Fuzzy profile of DTE

VL L M H VH

Membership
function p

0 0.1 0.2 0.3 0.4 05 06 07 0.8 0.9 1.0 PM

Figure 6. Fuzzy profile of PM

VL L M H VH

Membership
function p

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 CTE

Figure 7. Fuzzy profile of CTE

Membership
function p

0 0.1 0.2 0.3 0.4 0.5 068 07 0.8 0.9 1.0 DPF

Figure 8. Fuzzy profile of DPF

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.6, December 2010

Membership
function p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 TTE

Figure 9. Fuzzy profile of TTE

VL L M H VH

Membership
function p

0 01 02 03 04 05 06 07 08 09 10 SI

Figure 10. Fuzzy profile of SI

vL L M H VH

Membership
function p

0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1.0 SIZE

Figure 11. Fuzzy profile of SIZE

VL L M H VH

Membership
function p

0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 1.0 FDR

Figure 12. Fuzzy profile of FDR

vL L M H VH

Membership
function p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 |’=|:||:|

Figure 13. Fuzzy profile of FDD

Membership
function p

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 |’=DC

Figure 14. Fuzzy profile of FDC

37



Membership
function p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FDT

Figure 15. Fuzzy profile of FDT

4.1.3 Development of fuzzy rule base

The most important part of any inference system is the rules, and
how they interact with each other to generate results. In general,
rules are formed using various domain experts so that the system
can emulate the inference of an actual expert. To develop fuzzy
rule base, we can acquire knowledge from different sources such
as domain experts, historical data analysis of similar or earlier
system, and engineering knowledge from existing literature's [25,
12]. In our experiments, we generated some rules from the
software engineering point of view and some from project
management view points. All the rules take the form of “If A then
B'. Table 2 to Table 5 show the fuzzy if-then rules required for
each phase of software life cycle.

Table 2. Fuzzy rules at requirements phase

Rule RC RS RIW FDR
1 L L L VL
2 L L M L
3 L H

Table 3. Fuzzy rules at design phase
Rule FRP DTE PM FDD

1 VL L L VL
2 VL L M VL
3 VL L H L

Table 4. Fuzzy rules at coding phase
Rule FDP CTE DPF FDC

1 VL L L VL
2 VL L M VL
3 VL L H L

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.6, December 2010

Table 5. Fuzzy rules at testing phase
Rule FCP TTE SI K FDT

1 VL VL L L VL
2 VL VL L M VL
3 VL VL L H L

4.2 Information Processing Phase

In this phase, the fuzzy system maps all inputs on to an output.
This process of mapping is known as fuzzy inference process or
fuzzy reasoning [26, 24]. Basis for this mapping is the number of
fuzzy IF-THEN rules, each of which describes the local behavior
of the mapping. The Mamdani fuzzy inference system [27] is
considered here for all the information processing. We have
taken the centroid value of each fuzzy profile for computation
purpose. Centroid value of each fuzzy profile can be computed
from its fuzzy number and these are shown in the Table 6.
Another vital part of information processing is the defuzzification
process, which derives a crisp value from a number of fuzzy
values. Various defuzzification techniques are Centroid,
Bisector, Middle of maximum, Largest of maximum, Smallest of
maximum, etc. [23]. The most commonly used method is the
centroid method, which returns the centre of area under the
curve, is considered here for defuzzification.

4.3 Fault Prediction Phase

On the basis of fault density at the end of testing phase, total
number of faults in the software is predicted. The faults are
predicted from FTP value, which is an indicator of fault density
at the end of testing phase. The number of faults detected is
proportional to the both size of the software and the fault density
indicator value and can be found as:

FaultP = C1*LOC*FTP @)

However, fault detection process is not exactly linear with size.
As size of a software increases, portion of faults detected
decreases due to saturation, time and efforts requirements,
increased possibility due to interactions among the variables and
instructions. Therefore, the FTP value is divided by (1+exp (-
LOCi /C2)), where the value of C2 scales the effect of LOC
value. Thus (1) becomes,

FaultPi = C1*LOCi*FTPi/(1+exp(-LOCi/C2)) (2)

Where FaultPi, is the total number of predicted faults in the ith
software project, LOC is the size of ith project, FTPi, is the fault
density indicator at the end of testing phase of project i, and C1
and C2 are two constants obtained through learning. Value of C1
and C2 are obtained from available project data. The values of
Cl and C2 for current project are obtained as 0.04 and 107
respectively. The proposed fuzzy inference model is generic in
nature to capture variation in faults present in the software.

38



5. RESULTS
Fifteen different software projects data are taken form Appendix
A, to analyze the prediction accuracy of the proposed model. For

International Journal of Computer Applications (0975 — 8887)
Volume 11— No.6, December 2010

this, mean absolute percent error (MAPE) is calculated to find
the absolute percentage error for each predicted faults and
computing the average of these values. The predicted MAPE
value is found to be 9.86, which shows good prediction accuracy.

Table 6. Centroid value of fuzzy profiles

RC RS RIW DTE PM CTE DPF TTE Sl Size
VL 0.05 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.05 0.05
L 0.15 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.15 0.15
0.34 0.34 0.50 0.34 0.50 0.34 0.50 0.34 0.34 0.34
H 0.63 0.63 0.75 0.63 0.75 0.63 0.75 0.63 0.63 0.63
VH 0.86 0.86 0.92 0.86 0.92 0.86 0.92 0.86 0.86 0.86
Table 7. Number of faults at the end of each phase
# FRP FDP FCP FTP Size Efforts No. of faults Faults Percentage
retciby s oo
1 0.0925 0.0834 0.0739 0.3008 1000 1976 6.02 5 -20.33
2 0.1827 0.1378 0.1332 0.2703 4840 4410 26.17 29 9.77
3 0.1827 0.3002 0.1802 0.4645 5790 8822 53.81 53 -1.52
4 0.2087 0.1898 0.142 0.5 11000 3764 110.06 91 -20.95
5 0.1872 0.1504 0.1361 0.2395 26670 7121 127.94 109 -17.37
6 0.2892 0.2498 0.1523 0.1406 49100 25450 138.41 129 -7.29
7 0.7829 0.7947 0.8577 0.8692 50000 52660 871.41 928 6.1
8 0.4778 0.5383 0.1817 0.3838 52000 14602 400.17 412 2.87
9 0.2908 0.2554 0.1552 0.195 53860 18171 210.61 209 -0.77
10 0.458 0.3002 0.2322 0.5319 58300 33472 622.01 672 7.44
11 0.4778 0.4944 0.3929 0.564 61000 53995 690.17 680 -1.5
12 0.6306 0.305 0.2499 0.3281 87000 12388 573.44 476 -20.47
13 0.5653 0.5 0.3932 0.6528 99000 24895 1298.84 1597 18.67
14 0.4941 0.3006 0.2338 0.5302 154000 34893 1645.64 1768 6.92
15 0.607 0.6541 0.457 0.6458 155200 32366 2020.16 1906 -5.99

6. CONCLUSION AND FUTURE SCOPE

This paper has developed a fault prediction model using early
phase software metrics and fuzzy inference system. Fuzzy
profiles of metrics were developed by a human expert to
express his/her assessment and the nature of the metrics. For
this, ten software metrics are taken from PROMISE data set
and fault density at the end of each phase is predicted using
fuzzy inference system. For software professionals, this model
provides an insight towards software metrics and its impact on
software fault during the development process. For software

project mangers, the model provides a methodology for
allocating the resources for developing reliable and cost-
effective software. There are various models for fault prediction
and each one has its own strengths, and weakness. An
interesting open problem for the future work is to find the
failure rate form these fault densities, and predict the software
reliability, safety, availability from these values.

39



International Journal of Computer Applications (0975 — 8887)

Volume 11— No.6, December 2010

Appendix A: PROMISE database: Twenty six software project data

RC RS RIW DTE PM CTE DPF TTE Sl Efforts Size Faults
Projec
# t F1 S7 S3 D1 D4 D2 D3 T2 P5 E K TD
1 1 M L VH L H H H H H 7108.82 6.02 148
2 2 L H VH L H H H H H 1308.08 0.90 31
3 3 H H VH H VH VH H H VH 18170.00 53.86 209
4 5 H M H L H M H M M 9434.00 14.00 373
5 7 L M VH M H VH H M VH 13888.27 21.00 204
6 8 M H H H M H M M H 8822.00 5.79 53
7 10 M H H H H H H M H 4410.00 4.84 29
8 11 H H H H H H H H H 14196.00 4.37 71
9 12 H L H VH H M M H H 13387.50 19.00 90
10 13 H L M H H H H M H 25449.60 49.10 129
11 14 VH H H H H H H H H 33472.00 58.30 672
12 15 H VL H H H H H H VH 34892.65 154.00 1768
13 16 L M H H H H H H VH 7121.00 26.67 109
14 17 L M M M H M H L M 13680.00 33.00 688
15 18 VH VL H M H H H H VH  32365.98 155.20 1906
16 19 H M H H H H H M H 12387.65 87.00 476
17 20 VH VL M VL H VL L VL H 52660.00 50.00 928
18 21 L M H H H H H H H 18748.00 22.00 196
19 22 M L M H H M L M H 28206.00 44.00 184
20 23 H M VH L H H H H H 53995.00 61.00 680
21 24 M L M M M H H M M 24895.00 99.00 1597
22 27 H M VH M H L M M M 14602.00 52.00 412
23 28 VH L VH M H L H M M 8581.00 36.00 881
24 29 M VH VH VH H VH H VH VH 3764.00 11.00 91
25 30 L VH VH H H H H H VH 1976.00 1.00 5
26 31 M M H H H H H H VH  15691.00 33.00 653
[4] C. Kaner, Software Engineering Metrics: What Do They
REFERENCES Measure and How Do We Know, 10" International
Software Metrics Symposium 2004.
[1] ANSVIEEE Standard Glossary of Software Engineering [5] H. Pham, System Software Reliability, Reliability
Terminology, IEEE STD-729, 1991. Engineering Series, Springer-Verlag Publisher, London,
[21 M. Agrawal, K. Chari, Software Effort, Quality and 2006.
Cycle Time: A Study of CMM Level 5 Projects, IEEE [6] J. E. Gaffney, C. F. Davis, An Approach to Estimating
Transaction on Software Engineering, vol. 33, no. 2, Software Errors and Availability, Proceedings of 11™
pp. 145-156, 2007. Minnow brook Workshop on Software Reliability 1988.
[3] J. D. Musa, A. lannino, K. Okumoto, Software [7] J. E. Gaffney, J. Pietrolewiez, An Automated Model for
Reliability: Measurement, Prediction, ~Application, Software Early Error Prediction (SWEEP), Proceedings

McGraw-Hill Publishers, New York, 1987.

of 13" Minnow brook Workshop on Software
Reliability1990.

40



[8] Technical Report, Report Methodology for Software
Reliability ~ Prediction and  Assessment, Rome
Laboratory (RL) RL-TR-92-52, vol. 1 & 2, 1992

[9] W. W. Agresti, W. M. Evanco, Projecting Software
Defects form Analyzing Ada Design, IEEE Transaction
on Software Engineering, vol. 18, no. 11, pp. 988-997,
1992.

[10] T. J. Yu, V. Y. Shen, H. E. Dunsmore, (1988), An
Analysis of Several Software Defect Models, IEEE
Transaction on Software Engineering, vol. 14, no. 9,
pp. 261-270, 1988.

[11] T. M. Khoshgoftaar, J. C. Munson, Predicting Software
Development Errors Using Complexity Metrics, IEEE
Journal on Selected Areas in Communication, vol. 8,
no. 2, pp. 253-261, 1990.

[12] X. Zhang, H. Pham, An Analysis of Factors Affecting
Software Reliability, The Journal of Systems and
Software, vol. 50, no. 1, pp. 43-56, 2000.

[13] M. Li, C. Smidts, A Ranking of Software Engineering
Measures Based on Expert Opinion, IEEE Transaction
on Software Engineering, vol. 29, no. 9, pp. 811-824,
2003.

[14] K. S. Kumar, R. B. Misra, An Enhanced Model for
Early Software Reliability Prediction using Software
Engineering Metrics, Proceedings of 2"® Int. Conf. on
Secure System Integration and Reliability Improvement,
pp. 177-178, 2008.

[15] A. K. Pandey, N. K. Goyal, A Fuzzy Model for Early
Software Fault Prediction Using Process Maturity and
Software Metrics, International Journal of Electronics
Engineering, vol. 1, no. 2, pp. 239-245, 2009.

[16] M. S. Krishnan, M. I. Kellner, Measuring Process
Consistency: Implications Reducing Software Defects,
IEEE Transaction on Software Engineering, vol. 25, no.
6, pp. 800-815, 1999.

International Journal of Computer Applications (0975 — 8887)

Volume 11— No.6, December 2010

[17] M. Diaz, J. Sligo, How Software Process Improvement
Helped Motorola, IEEE Software, vol. 14, no. 5, pp. 75-
81, 1997.

[18] D. E. Harter, M. S. Krishnan, S. A. Slaughter, Effects
of Process Maturity on Quality, Cycle Time and Effort
in Software Product Development, Management
Science, vol. 46, pp. 451-466, 2000.

[19] http://promisedata.org/

[20] IEEE Standard, IEEE Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software, IEEE Standard 982.2, New York, 1988.

[21] D. C. Montgomery, Design and Analysis of
Experiments, Wiley-India, New Delhi, 2005.

[22] K. S. Saravana, R. B. Misra, N. K. Goyal, Development
of Fuzzy Software Operational Profile, International
Journal of Reliability, Quality and Safety Engineering,
vol. 15, no. 6, 581-597, 2008.

[23] T. Ross, Fuzzy Logic with Engineering Applications,
Wiley-India, New Delhi 2005.

[24] L. A. Zadeh, Knowledge representation in fuzzy logic,
IEEE Transactions on Knowledge and Data
Engineering, vol. 1, pp. 89-100, 1989.

[25] M. Xie, G. Y. Hong, C. Wohlin, Software reliability
prediction incorporating information from a similar
project, The Journal of Systems and Software, vol. 49,
pp. 43-48, 1999.

[26] J. B. Bowles, C. E. Pelaez, Application of fuzzy logic
to reliability engineering, IEEE Proceedings, vol. 83,
no. 3, pp. 435-449, 1995.

[27] E. H. Mamdani, Applications of fuzzy logic to
approximate reasoning using linguistic synthesis, IEEE
Transactions on Computers, vol. 26, no. 12, pp.1182-
1191, 1977.

41


http://promisedata.org/?cat=4

