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ABSTRACT 
In the present paper, Two-dimensional state time dependent 

probabilities along with some interesting particular cases 

are obtained for single server Markovian queuing system 

where the service mechanism is Non-exhaustive i.e. the 

server may go on vacation even if there are some customers 

waiting for service and during a vacation (working) period 

the server is allowed to do an alternative job at a different 

rate. The interarrival time, service time, working vacation 

time and availability time of the server are assumed to be 

exponentially distributed. Sample computational 

representations of the solution are developed and results of 

a simple computation are provided and presented 

graphically. Finally some particular cases are derived there 

from. 
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1. INTRODUCTION 
Vacation models had been the subject of interest to queue 

theorists of deep study in recent years because of their 

applicability and theoretical structures in real life 

congestion situations such as manufacturing and 

production, computer and communication systems, service 

and distribution systems, etc. In a queueing system with 

server vacations: vacation may start when the queue is 

empty or may start when there are customers in the queue. 

In literature, a time interval when the server is either 

unavailable (for various reasons) or idle is called a 

Vacation period. In Exhaustive service and multiple 

vacation policy the server keeps serving customers until 

the system is empty and then takes vacations for as long as 

the system is empty. Non-Exhaustive service policy refers 

to those systems, where the server may go on vacation even 

if there are some customers waiting for service. It is 

assumed that the server completes the service in hand 

before the interruption. Recently Indra & Vijay [7] 

obtained  the  explicit   transient    solution   of   two -  state 

markovian queuing model with exhaustive and non-

exhaustive service in which arrivals or departures or both 

are occurring in batches of variable sizes. 

However, in Exhaustive service and multiple vacation 

policy, the server stops the service completely during the 

vacation period. Past, Servi & Finn [9] first studied an 

M/M/1 queue with the working vacation policy: the server 

can work at different rate during the vacation period rather 

than stopping completely. Subsequently, Kim, Choi & 

Chae [6], Wu & Takagi [10] generalized results in [9] to an 

M/G/1 queue with working vacations. Baba [1] extended 

this study to an GI/M/1 queue with working vacations by 

the matrix-analysis method. Banik et. al [2] analyzed the 

GI/M/1/N queue with working vacations. All of the above 

mentioned contributions on working vacation are confined 

to results describing steady-state operation only. 

 

2. MODEL DESCRIPTION 
In the present work, we study the transient solution of 

“Two-dimensional state markovian queueing system 

with multiple working vacations & Non-Exhaustive 

service policy”. We are following Pegden & Rosenshine 

[8] (who analyzed the M/M/1 queueing system in which the 

state of the system is given by (i, j), where ‘i’ is the number 

of arrivals and ‘j’ is the number of departures until time t) 

along with the concept of working vacation, and also 

considering the Non-Exhaustive service policy, we 

obtained 

 

1) Explicit probabilities of exact number of 

arrivals & departures by a given time 

2) Number of units arrive by time t  

3) Numbers of units depart by time t and many 

other related information.  

 

The numerical results are provided for the above three 

situations. Finally particular cases of interest are 

derived there from.  

 

The queueing system investigated in the present paper 

assumes that during the working vacation period and 

otherwise also the units are arriving in Poisson stream with 

parameter λ . The service times are exponentially 

distributed with parameters VB µ&µ for busy period and 

vacation period respectively. The availability time and 

vacation time of service channel follow exponential 
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distribution with parameters v and w respectively. The 

various stochastic processes involved in the system are 

statistically independent & initially the system starts with 

zero units and the server is on working vacation.  

 

3. DEFINITIONS AND NOTATIONS 

(t)P Bj,i, = The probability that there are exactly i 

arrivals and j departures by time t and the 

server is busy in relation to the queue; j<i. 

 

(t)P Vj,i, =  The probability that there are exactly i 

arrivals and j departures by time t and the 

server is on working vacation; j≤ i.       

 

=(t)P Fj,i,   The probability that there are exactly i 

arrivals and j departures by time t and the 

server is free in relation to the queue; j<i. 

 

 (t)P ji,
=    The probability that there are exactly I 

arrivals and j departures by time t; ij ≤ . 
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4. SOLUTION OF THE PROBLEM 

Initially                 

                             1(0)P V0,0, =                                           (5)            

                             0(0)P B0,0, =                                           (6) 

 

Difference-differential equations governing the system 

are  

)δ(t)(1Pµ(t)λP(t)w)Pµ(λ(t)P
dt

d
j,0V1,-ji,VVj,1,iVj,i,VVj,i, −++++−= −

                                                                 0ji ; ≥>       (7) 

 )δ(t)(1Pµ)δ(t)(1Pµ(t)λP(t)P
dt

d
i,0B1,ii,Bi,0V1,-ii,VVi,i,Vi,i, −+−+−= −

                                                                  0i  ; ≥              (8) 

(t)vP(t)wP)δ-(t)(1λP(t))Pµ(λ(t)P
dt

d
Fj,i,Vj,i,j1,-iBj,1,iBj,i,BBj,i, ++++−= −

                                                                 0ji; ≥>       (9) 

(t)Pµ)δ(t)(1λP(t)v)P(λ(t)P
dt

d
B1,ji,Bj1,-iFj,1,iFj,i,Fj,i, −− +−++−=

                                                                   ; 0ji >>   (10) 

Clearly, 

)δ(t)(1P)δ(t)(1P(t)P(t)P ji,Fj,i,ji,Bj,i,Vj,i,ji, −+−+=
                                                                                         (11) 

 

Using (1) in eqns. (7) to (10) along with (5) & (6) and 

solving recursively, we have  

 

λs

1
(s)P V0,0,

+
=                                (12) 

(s)Fλ(s)P
wµλλ,
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i
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The Laplace transform (s)P i,• of the probability 

(t)Pi,• that exactly i units arrive by time t is 
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The Laplace transform of the mean number of the 

arrivals is  
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Using eqn. (4) for finding Laplace inverse of eqn. (12) to 

(17), we have  
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The arrivals follow Poisson distribution as the 

probability of total number of arrivals is not affected by 

the vacation time and availability time of the server.  

 

The graphical representation of (t)Pi,• with the 

variation of arrival rate ( )λ has also been shown in the 

figures 1(a)-1(d). 

 

The Laplace inverse of the mean number of arrivals by 

time t  
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5. PARTICULAR CASES 
Case I- When the server is following exhaustive service 

policy only i.e. letting ∞→v , we have 

 

λt
V0,0, e(t)P −=                                                          (30) 

(t)Fλ(t)P
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These results agree with eqns. (10) to (13) of Indra & Ruchi 

[5]. 

Case II- Along with case –I, when server is on vacation 

only then the rate of doing work during vacation period is 

zero i.e. 0µV =  in (30) to (34), we have 

λt
V0,0, e(t)P −=                                                           (35) 

(t)Fλ(t)P wλλ,

i1,

i

Vi,0,

+= 0i  ; ≥                          (36) 

(t)P(t)Fµλ(t)P B1,jj,

wλλ,

j-1,iB

ji

Vj,i, −
+− ∗=  

                                                              0ji; >≥    (37) 

(t)Fwλ(t)P wµλw,λλ,

k1,k-i1,

i

1k

i

Bi,0,
B +++

+
=
∑= 0i; >                                                                                                   

                                                                                         (38) 

(t)P
k)!(i

t
ewλ(t)P Vj,k,

ki
λ)t(µ

i

1jk

ki

Bj,i,
B ∗

−
=

−
+−

+=

−∑  

                                                                0ji; >>          (39) 

These results agree with eqns. (1.2.15) to (1.2.20) of Indra 

[4]. 

Case III- In continuation with case II, when server is 

instantaneously available and he does not go for a vacation 

i.e. the mean vacation time w-1 is zero. Letting ∞→w  

in (35) to (39), we have 
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Eqns. (40) to (42) coincide with eqn. (5) of Pegden and 

Rosenshine [8]. 

 

6. NUMERICAL RESULTS 
1. The numerical results for the probabilities of 

exact number of arrivals  

(i) by a given time i.e.∑
=

i

0j

ji, (t)P  

(ii) during busy period i.e. ∑
=

i

0j

Bj,i, (t)P  

(iii) during vacation period i.e.∑
=

i

0j

Vj,i, (t)P  

(iv) during free period i.e. ∑
=

i

0j

Fj,i, (t)P  

are computed for different sets of parameter and is 

summarized in Table – I. The Table – I shows complete 

agreement with the Table – I of Pegden & Rosenshine [8] 

except the columns having probabilities of arrivals during 

busy period, vacation period and free period. All the 

computation works are performed on Pentium IV using 

MATLAB software. 

 Table-I is based on the relationship 

Pr {i arrivals in (0, t)} = 
i!

t)(λe iλt−

=∑
∞

=0j

ji, (t)P   where 

(t)P ji, is defined in eqn.(11). 
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Table – I 

 

2. The departure process from the M/M/1 queue has the 

distribution function t)P(j, , the probability that exactly j 

customers have been served by time t. In terms of (t)P ji,
, 

we have 

∑
∞
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and ∑
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ji

Fj,i,F (t)Pt)(j,P  

Tables II shows values of t)P(j,  respectively for different 

values of t. Table II coincides approximately with table I of 

Hubbard et al. [3] because they computed 28 values & we 

are able to compute only 7 values. 

Figs. 2(a) - 2(d) display the effect of different values of λ
on t)P(j,&t)(j,P t),(j,Pt),(j,P FVB .  

Table – II 

Values of t)P(j, for 1w& 1v4,µ 4,µ 1,λ VB =====  

 

3. The probability of exactly n customers in the system at 

time t, denoted by t)P(n, can be expressed in terms 

of (t)P ji,
as 

∑
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+=
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Fj,n,jF (t)Pt)(n,P  

Values of t)P(n,  with parameters 1λ = , 2µB = , 

1µ V = , 1v = and 1w = for different values of t are 

shown in the following table.  

Figs. 3(a) - 3(d) depict the effect of different values of λ
on t)P(n,&t)(n,P,t)(n,Pt),(n,P FVB . 

Table III for t)P(n,  

N t =1 t =3 t =5 

0 0.544463487 0.342393336 0.247722816 

1 0.301386032 0.244239753 0.21074915 

2 0.113474309 0.178057177 0.158116102 

3 0.031975805 0.126442243 0.0959276 

4 0.007149923 0.073748734 0.04049963 

5 0.001308813 0.025124171 0.008882113 

6 0.000103028 0.001350017 0.000372955 

Total 0.999861397 0.991355431 0.762270366 
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17566 
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52521 

0.1606231

41 
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63 

0.0045

65085                                  

0.0686

97470 

0.0 0.0732625

55 
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0.0400

20126 

0.1233

65030 

0.0319

81659 

0.1953668

15 
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93 

0.0464

04687 

0.0462

01055 

0.0636

87711 
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j t =1 t =3 t =5 t =7 t =10 

0 0.484397903 0.066376912 0.008983381 0.001215769 0.000060529 

1 0.371603904 0.198424464 0.046464401 0.008829504 0.000617739 

2 0.118475832 0.27111896 0.113871393 0.030870402 0.003128400 

3 0.02230139 0.226474024 0.174763531 0.068715478 0.010134541 

4 0.002857452 0.131597834 0.188280632 0.108802889 0.023693062 

5 0.000263886 0.05620838 0.149284734 0.128007415 0.041690377 

6 0.000016391 0.016290888 0.08053539 0.103269597 0.050810907 

Total 0.999916758 0.966491462 0.762183462 0.449711054 0.130135555 
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4. The waiting  time  distribution  for a  customer  can be  

derived as P(W> τ |t), the probability that a customer 

waits more than τ  time units in the system, given that 

the customer arrives at time t is based on the 

relationship= 

∑
∞

=

+<
0n

1)n  τby time services ofP(number (t)Pn
  

                              = ( )
(t)P

s!

µτ
e n

0n

n

0s

s
µτ∑∑

∞

= =

−  

Fig. 4 depicts the effect of waiting time on the system.      

 

5. The cumulative distribution for the sojourn time in 

the system is  

P (W≤ τ |t) = 1-  ( )
(t)P

s!

µτ
e n

0n

n

0s

s
µτ∑∑

∞

= =

−  

The graphical representation has also been shown in 

the fig. – 5. 

 

6. The system utilization, i.e. the fraction of time the 

server is busy until time t can also be expressed in 

terms of (t)P ji,
. Thus the fraction of the time the system 

is empty and consequently the server is on working 

vacation is ∑∑
∞

= =

=
0i

i

0j

Vj,i,v (t)P(t)U
  

and the fraction of time that the system is non-empty 

and hence the server utilized is 

∑∑
∞

= =

=
0i

i

0j

Bj,i,B (t)P(t)U
,  

∑∑
∞

= =

=
0i

i

0j

Fj,i,F (t)P(t)U
 

also total utilization time of server is given by 

(t)U(t)U(t)UU(t) FVB ++=  

Table – IV is based on the above relationships and the 

graphical representation has also been shown in the 

fig. – 6(a), 6(b) and 6(c). 
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