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ABSTRACT  

The vital role of software process improvement is ability 

to measure the current state of system process and 

establishing improvement priorities. In addition, the focus 

on process improvement has increased the demand for 

software measures, or metrics with which to manage the 

software process. The need for such metrics is particularly 

acute when an organization is adopting new technologies 

and establishing best practices for the organization. This 

paper mainly addresses the needs of development and 

implementation of a new suite of metrics for OO design. 

Metrics developed based on literature survey, while 

contributing the software development processes, having 

serious criticisms, which includes the lack of a theoretical 

base this suggests that software metrics need to be 

constructed with a stronger degree of theoretical and 

mathematical rigor. Given the extant software metrics 

literature, this paper has a three fold agenda: 1) To 

propose metrics that are constructed with a firm basis in 

theoretical concepts in measurement and the ontology of 

objects, and which incorporate the experiences of 

professional software developers; 2) Evaluate the 

proposed metrics against established criteria for validity  

3) Present empirical data from commercial projects to 

illustrate the characteristics of these metrics on real 

applications, and suggest ways in which these metrics 

may be used. 
 

Keywords: OOD (Object Oriented Design) Metrics, RFC 

(Response for a Class), WMC (Weighted Methods per 

Class), DIT (Depth of Inheritance Tree).  

 

1. INTRODUCTION 
Given the central role that software development plays in 

the delivery and application of information technology, 

managers are increasingly focusing on process 

improvement in the software development area [1]. This 

emphasis has had two effects. The first is that this demand 

has spurred the provision of a number of new and/or 

improved approaches to software development, with 

perhaps the most prominent being object orientation 

(OO). Second, the focus on process improvement has 

increased the demand for software measures, or metrics 

with which to manage the process. These include: lacking 

a theoretical basis, lacking in desirable measurement 

properties, being insufficiently generalized or too 

implementation technology dependent, and being too 

labor-intensive to collect. [2] Wand and Weber, the 

theoretical base approach applies for the metrics was the 

ontology of Bunge.[4] Six design metrics are developed, 

and then analytically evaluated against Weyuker’s 

proposed set of measurement principles. [7] An 

automated data collection tool was then developed and 

implemented to collect an empirical sample of these 

metrics at two field sites in order to demonstrate their 

feasibility and suggest ways in which project managers 

may use these metrics for process improvement.  

 

2. RESEARCH PROBLEM 
There are two general types of criticisms that can be 

applied to current software metrics. The first category is 

that those theoretical criticisms that are leveled at 

conventional software metrics as they are applied to 

traditional, non-OO software design and development 

[2].  Kearney, et al. criticized software complexity 

metrics as being without solid theoretical bases and 

lacking appropriate properties. Vessey and Weber also 

commented on the general lack of theoretical rigor in the 

structured programming literature. Both Prather and 

Weyuker proposed that traditional software complexity 

metrics do not possess appropriate mathematical 

properties, and consequently fail to display what might 

be termed normal predictable behavior. [7] The second 

category of criticisms is more specific to OO design and 

development. The OO approach centers on modeling the 

real world in terms of its objects, which is in contrast to 

older, more traditional approaches that emphasize a 

function-oriented view that separates data and 

procedures. Several theoretical discussions have 

speculated that OO approaches may even induce 

different problem-solving behavior and cognitive 

processing in the design process, Given the 

fundamentally different notions inherent in these two 

views, it is not surprising to find that software metrics 

developed with traditional methods in mind do not 

readily lend themselves to OO notions such as classes, 

inheritance, encapsulation and message passing. 

Therefore, given that current software metrics are subject 

to some general criticism and are easily seen as not 

supporting key OO concepts, it seems appropriate to 

develop a set, or suite of new metrics especially designed 

to measure unique aspects of the OO approach. The 

shortcomings of existing metrics and the need for new 

metrics especially designed for OO have been suggested 

by a number of authors. Tegarden et al. and Bilow have 

called for theoretical rigor in the design of OO metrics. 

The challenge is therefore to propose metrics that are 

firmly rooted in theory and relevant to practitioners in 

organizations. Coplien suggests a number of rules of 

thumb for OO programming in C++ Moreau and 

Dominick suggest three metrics for OO graphical 

information systems, but do not provide formal, testable 

definitions. Pfleeger also suggests the need for new 

measures, and uses simple counts of objects and methods 

to develop and test a cost estimation model for OO 

development.[1] Lake and Cook prescribe metrics for 

measurement of inheritance in C++ environments, and 

have gathered data from an experimental system using an 
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automated tool.. However, despite the active interest in 

this area, no empirical metrics data from commercial 

object oriented applications have been published in the 

archival literature. 

 

3. THEORY BASE FOR OOD 

METRICS 
While there are many object oriented design (OOD) 

methodologies, one that reflects the essential features of 

OOD is presented by Booch.[3] He outlines four major 

steps involved in the object-oriented design process. 

 

1) Identification of Classes (and Objects): In this step, 

key abstractions in the problem space are identified and 

labeled as potential classes and objects. 

2)  Identify the Semantics of Classes (and Objects): In this 

step, the meaning of the classes and objects identified in 

the previous step is established, this includes definition of 

the life-cycles of each object from creation to destruction. 

3) Identify Relationships Between Classes (and Objects): 

In this step, class and object interactions, such as patterns 

of inheritance among classes and pattems of visibility 

among objects and classes (what classes and objects 

should be able to “see” each other) are identified. 

4) Implementation of Classes (and Objects): In this step, 

detailed internal views are constructed, including 

definitions of methods and their various behaviors. 

Whether the design methodology chosen is Booch’s OOD 

[6] or any of the several other methodologies, design of 

classes is consistently declared to be central to the OO 

paradigm. As card et al. suggest, class design is the 

highest priority in OOD [6], and since it deals with the 

functional requirements of the system, it must occur 

before systems design (mapping objects to processors, 

processes) and program design (reconciling of 

functionality using the target languages, tools, etc.) Given 

the importance of class design, the metrics outlined in this 

paper specifically are designed to measure the complexity 

in the design of classes. The limitation of this approach is 

that possible dynamic behavior of a system is not 

captured. Since the proposed metrics are aimed at 

assessing the design of an object oriented system rather 

than its specific implementation, the potential benefits of 

this information can be substantially greater than metrics 

aimed at later phases in the life-cycle of an application. In 

addition, implementation-independent metrics will be 

applicable to a larger set of users, especially in the early 

stages of industry’s adoption of OO before dominant 

design standards emerge. 

 

4. EMPIRICAL DATA COLLECTION 
As defined earlier, a design encompasses the implicit 

ideas designers have about complexity. These viewpoints 

are the empirical relations [10] RI,R P,. . . R, in the formal 

definition of the design D. The viewpoints that were used 

in constructing the metrics presented in this paper were 

gathered from extensive collaboration with a highly 

experienced team of software engineers from a software 

development organization. This organization has used 

OOD in more than four large projects over the past five 

years. Though the primary development language for all 

projects at this site was C++, the research aim was to 

propose metrics that were language independent. As a test 

of this, later data were collected at two new sites which 

used different languages.  

The metrics proposed in this paper were collected using 

automated tools developed for this research at two 

different organizations which will be referred to here as 

Site A and Site B. Site A is a software vendor that uses 

OOD in their development work and has a collection of 

different C++ class libraries. [5] Metrics data from 634 

classes from two C++ class libraries that are used in the 

design of graphical user interfaces (GUI) were collected. 

Both these libraries were used in different product 

applications for rapid prototyping and development of 

windows, icons and mouse-based interfaces. Reuse 

across different applications was one of the primary 

design objectives of these libraries. These typically were 

used at Site A in conjunction with other C++ libraries 

and traditional C-language programs in the development 

of software sold to UNIX workstation users. Site B is a 

semiconductor manufacturer and uses the Smalltalk 

programming language for developing flexible machine 

control and manufacturing systems. Metrics were 

collected on the class libraries used in the 

implementation of a computer aided manufacturing 

system for the production of VLSI circuits. Over 30 

engineers worked on this application, after extensive 

training and experience with object orientation and the 

Smalltalk environment. Metrics data from 1459 classes 

from Site B were collected. 

 

5. RESULTS 

5.1 Metric 1: Weighted Methods per 

Class (WMC) 
Definition: Consider Class C1 with methods M1... Mn, 

that are defined in the class. Let c1, c2... cn, be the 

complexity of the methods. Then: 

  
If all method complexities are considered to be unity, 

then WMC = n, the number of methods.  

Theoretical Basis: WMC relates directly to Bunge's 

definition of complexity of a thing, since methods are 

properties of object classes and complexity is determined 

by the cardinality of its set of properties. The number of 

methods is, therefore, a measure of class definition as 

well as being attributes of a class, since attributes 

correspond to proper ties. 

 

5.1.1 Viewpoints 
1) The number of methods and the complexity of 

methods involved is a predictor of how much time and 

effort is required to develop and maintain the class. 

2) The larger the number of methods in a class the 

greater the potential impact on children, since children 

will inherit all the methods defined in the class. 

3) Classes with large numbers of methods are likely to be 

more application specific, limiting the possibility of 

reuse. 

 

Table 1. Summary Statistics of WMC 

 

Site Metric Medium Max Min 

A WMC 5 106 0 

B WMC 10 345 0 
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5.1.2 Empirical Data 
The histograms (Figure. 1 and Figure. 2) and summary 

statistics (Table 1) from both sites are shown above. 

 

5.1.3 Interpretation of Data: 
The most interesting aspect of the data is the similarity in 

the nature of the distribution of the metric values at Site A 

and B, despite differences in 1) the nature of the 

application; 2) the people involved in their design; and 3) 

the languages (C++ and Smalltalk) used. This seems to 

suggest that most classes tend to have a small number of 

methods (0 to lo), while a few outliers declare a large 

number of them. Most classes in an application appear to 

be relatively simple in their construction, providing 

specific abstraction and functionality. 

 

5.2 Metric 2: Depth of Inheritance Tree 

(DIT) 
Definition: Depth of inheritance of the class is the DIT 

metric for the class. In cases involving multiple 

inheritances, the DIT will be the maximum length from 

the node to the root of the tree. Theoretical Basis: DIT 

relates to Bunge’s notion of the scope of properties. DIT 

is a measure of how many ancestor classes can potentially 

affect this class. 

 

5.2.1 Viewpoints 
1. The deeper a class is in the hierarchy, the 

greater the number of methods it is likely to inherit, 

making it more complex to predict its behavior. 

2) Deeper trees constitute greater design complexity, 

since 

3) The deeper a particular class is in the hierarchy, the 

more methods and classes are involved. Greater the 

potential reuse of inherited methods. 

 

5.2.2 Empirical Data 

The histograms are shown in Figure. 9 and 10, and the 

summary statistics are shown in Table 2 (all metric values 

are integers). 

 

Table 2. Summary Statistics of DIT Metric 
 

Site Metric Medium Max Min 

A DIT 1 8 0 

B DIT 13 10 0 

 

5.2.3 Interpretation of Data 

Both Site A and B libraries have a low median value for 

the DIT metric. This suggests that most classes in an 

application tend to be close to the root in the inheritance 

hierarchy. By observing the DIT metric for classes in an 

application, a senior designer or manager can determine 

whether the design is “top heavy” (too many classes near 

the root) or “bottom heavy” (many classes are near the 

bottom of the hierarchy). At both Site A and Site B, the 

library appears to be top heavy, suggesting that designers 

may not be taking advantage of reuse of methods 

through inheritance. Note that the Smalltalk application 

has a higher depth of inheritance due, in part, to the 

library of reusable classes that are a part of the language. 

For example, all classes are subclasses of the class 

“object”. Another interesting aspect is that the maximum 

value of DIT is rather small (10 or less). One possible 

explanation is that designers tend to keep the number of 

levels of abstraction to a manageable number in order to 

facilitate comprehensibility of the overall architecture of 

the system. Designers may be forsaking reusability 

through inheritance for simplicity of understanding. This 

also illustrates one of the advantages of gathering metrics 

of design complexity in that a clearer picture of the 

conceptualization of software systems begins to emerge 

with special attention focused on design tradeoffs. 

Examining the class at Site A with a DIT value of 8 

revealed that it was a case of increasingly specialized 

abstractions of a graphical concept of control panels. The 

class itself had only 4 methods and only local variables, 

but objects of this specialized class had a total of 132 

methods available through inheritance. Designing this 

class would have been a relatively simple task, but the 

testing could become more complicated due to the high 

inheritance. 21 resources between design and testing 

could be adjusted accordingly to reflect this. 

 

5.3 Metric 3: Number Of Children 

(NOC) 
Definition: NOC = number of immediate subclasses 

subordinated to a class in the class hierarchy. 

Theoretical Basis: NOC relates to the notion of scope of 

properties. It is a measure of how many subclasses are 

going to inherit the methods of the parent class. 
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5.3.1 Viewpoints: 
1) Greater the number of children, greater the reuse, since 

inheritance is a form of reuse. 

2) Greater the number of children, the greater the 

likelihood of improper abstraction of the parent class. If a 

class has a large number of children, it may be a case of 

misuse of sub-classing. 

3) The number of children gives an idea of the potential 

influence a class has on the design. If a class has a large 

number of children, it may require more testing of the 

methods in that class. 

 

5.3.2 Empirical Data: 
 The summary statistics from both sites are shown in table 

3 

 
Table 3. Summary Statistics of NOC Metric 

 
Site Metric Medium Max Min 

A NOC 0 42 0 

B NOC 0 50 0 

 

 
 

5.3.3 Interpretation of Data 
Like the WMC metric, an interesting aspect of the NOC 

data is the similarity in the nature of the distribution of the 

metric values at Site A and B. This seems to suggest that 

classes in general have few immediate children and that 

only a very small number of outliers have many 

immediate subclasses. This further suggests that designers 

may not be using inheritance of methods as a basis for 

designing classes, as the data from the histograms show 

that a majority of the classes (73% at Site A and 68% at 

Site B) have no children. Considering the large sample 

sizes at both sites and their remarkable similarity, both the 

DIT and NOC [8] data seem to strongly suggest that reuse 

through inheritance may not be being fully adopted in the 

design of class libraries, at least at these two sites. One 

explanation for the small NOC [8] count could be that the 

design practice followed at the two sites dictated the use 

of shallow inheritance. A different explanation could be a 

lack of communication between different class designers 

and therefore that reuse opportunities are not being 

realized. Whatever the reason, the metric values and their 

distribution provide designers and managers with an 

opportunity to examine whether their particular design 

philosophy is being adhered to in the application. An 

examination of the class with 42 subclasses at Site A was 

a GUI-command class for which all possible commands 

were separate subclasses. Further, none of these 

subclasses had any subclasses of their own. Systematic 

use of the NOC [8] metric could have helped to 

restructure the class hierarchy to exploit common 

characteristic of different commands (e.g., text 

commands, mouse commands etc.). 

 

5.4 Metric 4: Coupling Between Object 

classes (CBO) 
Definition: CBO for a class is a count of the number of 

other classes to which it is coupled. 

Theoretical Basis: CBO relates to the notion that an 

object is coupled to another object if one of them acts on 

the other, i.e., methods of one use methods or instance 

variables of another. As stated earlier, since objects of 

the same class have the same properties, two classes are 

coupled when methods declared in one class use methods 

or instance variables defined by the other class. 

 

5.4.1 Viewpoints 
1) Excessive coupling between object classes is 

detrimental to modular design and prevents reuse. The 

more independent a class is, the easier it is to reuse it in 

another application. 

2) In order to improve modularity and promote 

encapsulation, inter-object class couples should be kept 

to a minimum. The larger the number of couples, the 

higher the sensitivity to changes in other parts of the 

design, and therefore maintenance is more difficult. 

3) A measure of coupling is useful to determine how 

complexes the testing of various parts of a design are 

likely to be. The higher the inter-object class coupling, 

the more rigorous the testing needs to be. 

 

5.4.2 Empirical Data  

The histograms and summary statistics from both sites 

are shown in Table 4. 

 

Table 4. Summary Statistics of CBO Metric 

 

Site Metric Medium Max Min 

A CBO 0 8 0 

B CBO 9 234 0 

 

5.4.3 Interpretation of Data 
Both Site A and Site B class libraries have skewed 

distributions for CBO, but the Smalltalk application at 

Site B has relatively high median values. One possible 

explanation is that contingency factors (e.g., type of 

application) are responsible for the difference. A more 

likely reason is the difference between the Smalltalk and 

C++ languages? Smalltalk requires virtually every 

interaction between run-time entities be done through 

message passing, while C++ does not. In Smalltalk, 

simple scalar variables (integers, real, and characters) 

and control flow constructs, while, repeat statements are 

objects. Each of these invocations is performed via 

message passing which will be counted as an interaction 

in the CBO metric [9]. Simple scalars will not be defined 
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as C++ classes, and certainly control flow entities are not 

objects in C++. Thus, CBO values are likely to be smaller 

in C++ applications. However, that does not explain the 

similarity in the shape of the distribution. One 

interpretation that may account for both the similarity and 

the higher values for Site B is that coupling between 

classes is an increasing function of the number of classes 

in the application. The Site B application has 1459 classes 

compared to the 634 classes at Site A. It is possible that 

complexity due to increased coupling is a characteristic of 

large class libraries. This could be an argument for a more 

informed selection of the scale size (as measured by 

number of classes) in order to limit coupling. The low 

median values of coupling at both sites suggest that at 

least 50% of the classes are self-contained and do not 

refer to other classes (including super-classes). Since a 

fair number of classes at both sites have no parents or no 

children, the limited use of inheritance may be also 

response for the small CBO [9] values. Examination of 

the outliers at Site B revealed that classes responsible for 

managing interfaces have high CBO [9] values. These 

classes tended to act as the connection point for two or 

more subsystems within the same application. At Site A, 

the class with the highest CBO value was also the class 

with the highest NOC value, further suggesting the need 

to re-evaluate that portion of the design. The CBO metric 

can be used by senior designers and project managers as a 

relative simple way to track whether the class hierarchy is 

losing its integrity, and whether different parts of a large 

system are developing unnecessary interconnections in 

inappropriate places. 

 

5.5 Metric 5: Response For a Class (RFC) 
Definition: RFC = IRS( where RS is the response set for 

the class 

Theoretical Basis: The response set for the class can be 

RS = {MI Uall i {Ri} 

where { R,} = set of methods called by method i and { M} 

= set of all methods in the class. The response set of a 

class is a set of methods that can potentially be executed 

in response to a message received by an object of that 

class 26.  The cardinality of this set is a measure of the 

attributes of objects in the class. Since it specifically 

includes methods called from outside the class, it is also a 

measure of the potential communication between the class 

and other classes. 

 

5.5.1 Viewpoints 
1) If a large number of methods can be invoked in 

response to a message, the testing and debugging of the 

class becomes more complicated since it requires a 

greater level of understanding required on the part of the 

tester. 

2) The larger the number of methods that can be invoked 

from a class, the greater the complexity of the class. 

3) A worst case value for possible responses will assist in 

appropriate allocation of testing time. 

 

5.5.2 Empirical data: 
The summary statistics from both sites are shown in Table 

5. 
Table 5. Summary Statistics of RFC Metric 

 
Site Metric Medium Max Min 

A RFC 6 120 0 

B RFC 29 422 3 

5.5.3 Interpretation of Data: 
The data from both Site A and Site B, suggest that most 

classes tend to able to invoke a small number of 

methods, while a few outliers maybe be most profligate 

in their potential invocation of methods. This reinforces 

the argument that a small number of classes may be 

responsible for a large number of the methods that 

executed in an application, either because they contain 

many methods (this appears to be the case at Site A) or 

that they call many methods. By using high RFC valued 

classes as structural drivers, high test coverage can be 

achieved during system test. Another interesting aspect is 

the difference in values for RFC between Site A and B. 

Note that the median and maximum values of RFC at 

Site B are higher than the RFC values at Site A. As in the 

case of the CBO metric, this may relate to the complete 

adherence to object oriented principles in Smalltalk 

which necessitates extensive method invocation, whereas 

C++’ incremental approach to object orientation gives 

designers alterative to message passing through method 

inv~cation.~N’ ot surprisingly, at Site B high RFC value 

classes performed interface functions within the 

application. Since there are a number of classes that are 

standalone (i.e. no parents, no children, no coupling) the 

RFC values also tend to be low. Again, the metrics 

collectively and individually provide managers and 

designers a basis for examining the design of class 

hierarchies. 

 

5.6 Metric 6: Lack of Cohesion in 

Methods (LCOM) 
Definition: Consider a Class C1 with n methods MI, M2., 

Mn. Let {Ij} = set of instance variables used by method  

 
Theoretical Basis: This uses the notion of degree of 

similarity of methods. The degree of similarity for two 

methods MI and M2 in class C1 is given by: 

 σ()={I1}∩{I2} where {I1}and{I2} instance variables 

used by MI and M2. The LCOM is a count of the number 

of method pairs whose similarity is 0 (i.e., σ() is a null 

set) minus the count of method pairs whose similarity is 

not zero. The larger the number of similar methods, the 

more cohesive the class, which is consistent with 

traditional notions of cohesion that measure the inter-

relatedness between portions of a program. If none of the 

methods of a class display any instance behavior, i.e., do 

not use any instance variables, they have no similarity 

and the LCOM value for the class will be zero. The 

LCOM value provides a measure of the relative disparate 

nature of methods in the class. A smaller number of 

disjoint pairs (elements of set P) implies greater 

similarity of methods. LCOM is intimately tied to the 

instance variables and methods of a class, and therefore 

is a measure of the attributes of an object class. 

 

5.6.1 Viewpoints 
1) Cohesiveness of methods within a class is desirable, 

since it promotes encapsulation. 

2) Lack of cohesion implies classes should probably be 

split into two or more subclasses. 

3) Any measure of disparateness of methods helps 

identify flaws in the design of classes. 
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4) Low cohesion increases complexity, thereby increasing 

the likelihood of errors during the development process. 

 

5.6.2 Empirical Data 

The summary statistics from both sites are shown in Table 

6. 

 
Table 6. Summary Statistics of LCOM Metric 

 

Site Metric Medium Max Min 

A LCOM 0 200 0 

B LCOM 2 17 0 

 

 

5.6.3 Interpretation of Data 
 At both sites, LCOM median values are extremely low, 

indicating that at least 50% of classes have cohesive 

methods. In other words, instance variables seem to be 

operated on by more than one method defined in the class. 

This is consistent with the principle of building methods 

around the essential data elements that define a class. The 

Site A application has a few outlier classes that have low 

cohesion, as evidenced by the high maximum value 200. 

In comparison, the Site B application has almost no 

outliers, which is demonstrated by the difference in the 

shape of the two distributions. A high LCOM value 

indicates disparateness in the functionality provided by 

the class. This metric can be used to identify classes that 

are attempting to achieve many different objectives, and 

consequently are likely to behave in less predictable ways 

than classes that have lower LCOM values. Such classes 

could be more error prone and more difficult to test and 

could possibly be disaggregated into two or more classes 

that are better defined in their behavior. The LCOM 

metric can be used by senior designers and project 

managers as a relatively simple way to track whether the 

cohesion principle is adhered to in the design of an 

application and advice changes, if necessary, at an earlier 

phase in the design cycle. 

 

5.6.4 Summary 
The Metrics Suite and Booch OOD Steps: 

The six metrics are designed to measure the three 

implementation steps in Booch’s definition of OOD. Each 

metric is one among several that can be defined using 

Bunge’s ontological principles. But inclusion in the 

proposed suite is influenced by three additional criteria: 

1) ability to meet analytical properties 2) intuitive appeal 

to practitioners and managers in organizations and 3) ease 

of automated collection. Reading down the columns of 

Table VII, WMC, DIT and NOC relate to the first step 

(identification of classes) in OOD since WMC is an 

aspect of the complexity of the class and both DIT and 

NOC directly relate to the layout of the class hierarchy. 

WMC and RFC [8] capture how objects of a class may 

“behave” when they get messages. For example, if a class 

has a large WMC or RFC, it has many possible responses 

(since a potentially large number of methods can 

execute). The LCOM metric relates to the packaging of 

data and methods within a class definition provides a 

measure of the cohesiveness of a class. Thus WMC, RFC 

and LCOM relate to the second step (the semantics of 

classes) in OOD. A benefit of having a suite of metrics is 

that there is the potential for multiple measures of the 

same underlying construct”. The RFC and CBO metrics 

also capture the extent of communication between classes 

by counting the inter-class couples and methods external 

to a given class, providing a measure of the third step 

(the relationships between classes) in OOD.  

 

5.6.5 Future Directions:  

The proposed OOD metrics have already begun to be 

used in a few leading edge organizations. Sharble and 

Cohen report on how these metrics were used by Boeing 

Computer Services to evaluate different OO 

methodologies [9]. Two implementations of an example 

system, one is using responsibility based methodology 

and another using data driven methodology were 

analyzed using these six metrics. 

 The application of these metrics is in studying 

differences between different OO languages and 

environments. As the RFC and DIT data suggest, there 

are differences across the two sites that may be due to 

the features of the two target languages. However, 

despite the large number of classes examined (634 at Site 

A and 1459 at Site B), only two sites were used in this 

study, and therefore no claims are offered as to any 

systematic differences between the C++ and Smalltalk 

environments. This is suggested as a future avenue 

where OO metrics can help establish a preliminary 

benchmarking of languages and environments. The most 

obvious extension of this research is to analyze the 

degree to which these metrics correlate with managerial 

performance indicators, such as design, test and 

maintenance effort, quality and system performance and 

managerial decision making.  
 

6. CONCLUSION AND REMARKS 
To analyze some of the issues related to this problem 

having some concluding remarks:   

 

1. By using the metrics suite they can identify 

areas of the application that may require more rigorous 

testing and areas that are candidates for redesign. 

2.  Using the metrics in this manner, potential 

flaws and other leverage points in the design can be 

identified and dealt with earlier in the design develop- 

test-maintenance cycle of an application.  

3. Yet another benefit of using these metrics is 

the added insight gained about trade-offs made by 

designers between conflicting requirements such as 

increased reuse (via more inheritance) and ease of testing 

(via a less complicated inheritance hierarchy).  

4. These metrics can help in selecting one that is 

most appropriate to the goals of the organization, such as 

reducing the cost of development, testing and 

maintenance over the life of the application. In general 

the idea is to use measurement to improve the process of 

software development.  

This set of six proposed metrics is presented as the first 

empirically validated proposal for formal metrics for 

OOD [9]. By bringing together the formalism of 

measurement theory, Bunge’s ontology, Weyuker’s 

evaluation criteria and empirical data from professional 

software developers working on   commercial projects, 

this paper seeks to demonstrate the level of rigor 

required in the development of usable metrics for design 

of software systems. Of course, there is no reason to 

believe that the proposed metrics will be found to be 

comprehensive, and further work could result in 

additions, changes and possible deletions from this suite. 

In particular, the LCOM metric might warrant alterative 



International Journal of Computer Applications (0975 – 8887) 

Volume 11– No.9, December 2010 

42 

interpretations since it is currently based on a data-

centered view of cohesion. In addition, these metrics may 

also serve as a generalized solution for other researchers 

to rely on when seeking to develop specialized metrics or 

particular purposes or customized environments. Further 

research in moving OO development management 

towards a strong theoretical base should help to provide a 

basis for significant future progress. 
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