
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

36

Significance of Software Metrics to Quantify Design
and Code Quality

 S.Arun Kumar T.Arun Kumar P.Swarnalatha
 Assistant Professor, SCSE Professor, SCSE Assistant Professor (SG)
 VIT University, Vellore VIT University, Vellore SCSE, VIT University
 Tamil Nadu, India Tamil Nadu, India Tamil Nadu, India

ABSTRACT

The vital role of software process improvement is ability

to measure the current state of system process and

establishing improvement priorities. In addition, the focus

on process improvement has increased the demand for

software measures, or metrics with which to manage the

software process. The need for such metrics is particularly

acute when an organization is adopting new technologies

and establishing best practices for the organization. This

paper mainly addresses the needs of development and

implementation of a new suite of metrics for OO design.

Metrics developed based on literature survey, while

contributing the software development processes, having

serious criticisms, which includes the lack of a theoretical

base this suggests that software metrics need to be

constructed with a stronger degree of theoretical and

mathematical rigor. Given the extant software metrics

literature, this paper has a three fold agenda: 1) To

propose metrics that are constructed with a firm basis in

theoretical concepts in measurement and the ontology of

objects, and which incorporate the experiences of

professional software developers; 2) Evaluate the

proposed metrics against established criteria for validity

3) Present empirical data from commercial projects to

illustrate the characteristics of these metrics on real

applications, and suggest ways in which these metrics

may be used.

Keywords: OOD (Object Oriented Design) Metrics, RFC

(Response for a Class), WMC (Weighted Methods per

Class), DIT (Depth of Inheritance Tree).

1. INTRODUCTION
Given the central role that software development plays in

the delivery and application of information technology,

managers are increasingly focusing on process

improvement in the software development area [1]. This

emphasis has had two effects. The first is that this demand

has spurred the provision of a number of new and/or

improved approaches to software development, with

perhaps the most prominent being object orientation

(OO). Second, the focus on process improvement has

increased the demand for software measures, or metrics

with which to manage the process. These include: lacking

a theoretical basis, lacking in desirable measurement

properties, being insufficiently generalized or too

implementation technology dependent, and being too

labor-intensive to collect. [2] Wand and Weber, the

theoretical base approach applies for the metrics was the

ontology of Bunge.[4] Six design metrics are developed,

and then analytically evaluated against Weyuker’s

proposed set of measurement principles. [7] An

automated data collection tool was then developed and

implemented to collect an empirical sample of these

metrics at two field sites in order to demonstrate their

feasibility and suggest ways in which project managers

may use these metrics for process improvement.

2. RESEARCH PROBLEM
There are two general types of criticisms that can be

applied to current software metrics. The first category is

that those theoretical criticisms that are leveled at

conventional software metrics as they are applied to

traditional, non-OO software design and development

[2]. Kearney, et al. criticized software complexity

metrics as being without solid theoretical bases and

lacking appropriate properties. Vessey and Weber also

commented on the general lack of theoretical rigor in the

structured programming literature. Both Prather and

Weyuker proposed that traditional software complexity

metrics do not possess appropriate mathematical

properties, and consequently fail to display what might

be termed normal predictable behavior. [7] The second

category of criticisms is more specific to OO design and

development. The OO approach centers on modeling the

real world in terms of its objects, which is in contrast to

older, more traditional approaches that emphasize a

function-oriented view that separates data and

procedures. Several theoretical discussions have

speculated that OO approaches may even induce

different problem-solving behavior and cognitive

processing in the design process, Given the

fundamentally different notions inherent in these two

views, it is not surprising to find that software metrics

developed with traditional methods in mind do not

readily lend themselves to OO notions such as classes,

inheritance, encapsulation and message passing.

Therefore, given that current software metrics are subject

to some general criticism and are easily seen as not

supporting key OO concepts, it seems appropriate to

develop a set, or suite of new metrics especially designed

to measure unique aspects of the OO approach. The

shortcomings of existing metrics and the need for new

metrics especially designed for OO have been suggested

by a number of authors. Tegarden et al. and Bilow have

called for theoretical rigor in the design of OO metrics.

The challenge is therefore to propose metrics that are

firmly rooted in theory and relevant to practitioners in

organizations. Coplien suggests a number of rules of

thumb for OO programming in C++ Moreau and

Dominick suggest three metrics for OO graphical

information systems, but do not provide formal, testable

definitions. Pfleeger also suggests the need for new

measures, and uses simple counts of objects and methods

to develop and test a cost estimation model for OO

development.[1] Lake and Cook prescribe metrics for

measurement of inheritance in C++ environments, and

have gathered data from an experimental system using an

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

37

automated tool.. However, despite the active interest in

this area, no empirical metrics data from commercial

object oriented applications have been published in the

archival literature.

3. THEORY BASE FOR OOD

METRICS
While there are many object oriented design (OOD)

methodologies, one that reflects the essential features of

OOD is presented by Booch.[3] He outlines four major

steps involved in the object-oriented design process.

1) Identification of Classes (and Objects): In this step,

key abstractions in the problem space are identified and

labeled as potential classes and objects.

2) Identify the Semantics of Classes (and Objects): In this

step, the meaning of the classes and objects identified in

the previous step is established, this includes definition of

the life-cycles of each object from creation to destruction.

3) Identify Relationships Between Classes (and Objects):

In this step, class and object interactions, such as patterns

of inheritance among classes and pattems of visibility

among objects and classes (what classes and objects

should be able to “see” each other) are identified.

4) Implementation of Classes (and Objects): In this step,

detailed internal views are constructed, including

definitions of methods and their various behaviors.

Whether the design methodology chosen is Booch’s OOD

[6] or any of the several other methodologies, design of

classes is consistently declared to be central to the OO

paradigm. As card et al. suggest, class design is the

highest priority in OOD [6], and since it deals with the

functional requirements of the system, it must occur

before systems design (mapping objects to processors,

processes) and program design (reconciling of

functionality using the target languages, tools, etc.) Given

the importance of class design, the metrics outlined in this

paper specifically are designed to measure the complexity

in the design of classes. The limitation of this approach is

that possible dynamic behavior of a system is not

captured. Since the proposed metrics are aimed at

assessing the design of an object oriented system rather

than its specific implementation, the potential benefits of

this information can be substantially greater than metrics

aimed at later phases in the life-cycle of an application. In

addition, implementation-independent metrics will be

applicable to a larger set of users, especially in the early

stages of industry’s adoption of OO before dominant

design standards emerge.

4. EMPIRICAL DATA COLLECTION
As defined earlier, a design encompasses the implicit

ideas designers have about complexity. These viewpoints

are the empirical relations [10] RI,R P,. . . R, in the formal

definition of the design D. The viewpoints that were used

in constructing the metrics presented in this paper were

gathered from extensive collaboration with a highly

experienced team of software engineers from a software

development organization. This organization has used

OOD in more than four large projects over the past five

years. Though the primary development language for all

projects at this site was C++, the research aim was to

propose metrics that were language independent. As a test

of this, later data were collected at two new sites which

used different languages.

The metrics proposed in this paper were collected using

automated tools developed for this research at two

different organizations which will be referred to here as

Site A and Site B. Site A is a software vendor that uses

OOD in their development work and has a collection of

different C++ class libraries. [5] Metrics data from 634

classes from two C++ class libraries that are used in the

design of graphical user interfaces (GUI) were collected.

Both these libraries were used in different product

applications for rapid prototyping and development of

windows, icons and mouse-based interfaces. Reuse

across different applications was one of the primary

design objectives of these libraries. These typically were

used at Site A in conjunction with other C++ libraries

and traditional C-language programs in the development

of software sold to UNIX workstation users. Site B is a

semiconductor manufacturer and uses the Smalltalk

programming language for developing flexible machine

control and manufacturing systems. Metrics were

collected on the class libraries used in the

implementation of a computer aided manufacturing

system for the production of VLSI circuits. Over 30

engineers worked on this application, after extensive

training and experience with object orientation and the

Smalltalk environment. Metrics data from 1459 classes

from Site B were collected.

5. RESULTS

5.1 Metric 1: Weighted Methods per

Class (WMC)
Definition: Consider Class C1 with methods M1... Mn,

that are defined in the class. Let c1, c2... cn, be the

complexity of the methods. Then:

If all method complexities are considered to be unity,

then WMC = n, the number of methods.

Theoretical Basis: WMC relates directly to Bunge's

definition of complexity of a thing, since methods are

properties of object classes and complexity is determined

by the cardinality of its set of properties. The number of

methods is, therefore, a measure of class definition as

well as being attributes of a class, since attributes

correspond to proper ties.

5.1.1 Viewpoints
1) The number of methods and the complexity of

methods involved is a predictor of how much time and

effort is required to develop and maintain the class.

2) The larger the number of methods in a class the

greater the potential impact on children, since children

will inherit all the methods defined in the class.

3) Classes with large numbers of methods are likely to be

more application specific, limiting the possibility of

reuse.

Table 1. Summary Statistics of WMC

Site Metric Medium Max Min

A WMC 5 106 0

B WMC 10 345 0

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

38

5.1.2 Empirical Data
The histograms (Figure. 1 and Figure. 2) and summary

statistics (Table 1) from both sites are shown above.

5.1.3 Interpretation of Data:
The most interesting aspect of the data is the similarity in

the nature of the distribution of the metric values at Site A

and B, despite differences in 1) the nature of the

application; 2) the people involved in their design; and 3)

the languages (C++ and Smalltalk) used. This seems to

suggest that most classes tend to have a small number of

methods (0 to lo), while a few outliers declare a large

number of them. Most classes in an application appear to

be relatively simple in their construction, providing

specific abstraction and functionality.

5.2 Metric 2: Depth of Inheritance Tree

(DIT)
Definition: Depth of inheritance of the class is the DIT

metric for the class. In cases involving multiple

inheritances, the DIT will be the maximum length from

the node to the root of the tree. Theoretical Basis: DIT

relates to Bunge’s notion of the scope of properties. DIT

is a measure of how many ancestor classes can potentially

affect this class.

5.2.1 Viewpoints
1. The deeper a class is in the hierarchy, the

greater the number of methods it is likely to inherit,

making it more complex to predict its behavior.

2) Deeper trees constitute greater design complexity,

since

3) The deeper a particular class is in the hierarchy, the

more methods and classes are involved. Greater the

potential reuse of inherited methods.

5.2.2 Empirical Data

The histograms are shown in Figure. 9 and 10, and the

summary statistics are shown in Table 2 (all metric values

are integers).

Table 2. Summary Statistics of DIT Metric

Site Metric Medium Max Min

A DIT 1 8 0

B DIT 13 10 0

5.2.3 Interpretation of Data

Both Site A and B libraries have a low median value for

the DIT metric. This suggests that most classes in an

application tend to be close to the root in the inheritance

hierarchy. By observing the DIT metric for classes in an

application, a senior designer or manager can determine

whether the design is “top heavy” (too many classes near

the root) or “bottom heavy” (many classes are near the

bottom of the hierarchy). At both Site A and Site B, the

library appears to be top heavy, suggesting that designers

may not be taking advantage of reuse of methods

through inheritance. Note that the Smalltalk application

has a higher depth of inheritance due, in part, to the

library of reusable classes that are a part of the language.

For example, all classes are subclasses of the class

“object”. Another interesting aspect is that the maximum

value of DIT is rather small (10 or less). One possible

explanation is that designers tend to keep the number of

levels of abstraction to a manageable number in order to

facilitate comprehensibility of the overall architecture of

the system. Designers may be forsaking reusability

through inheritance for simplicity of understanding. This

also illustrates one of the advantages of gathering metrics

of design complexity in that a clearer picture of the

conceptualization of software systems begins to emerge

with special attention focused on design tradeoffs.

Examining the class at Site A with a DIT value of 8

revealed that it was a case of increasingly specialized

abstractions of a graphical concept of control panels. The

class itself had only 4 methods and only local variables,

but objects of this specialized class had a total of 132

methods available through inheritance. Designing this

class would have been a relatively simple task, but the

testing could become more complicated due to the high

inheritance. 21 resources between design and testing

could be adjusted accordingly to reflect this.

5.3 Metric 3: Number Of Children

(NOC)
Definition: NOC = number of immediate subclasses

subordinated to a class in the class hierarchy.

Theoretical Basis: NOC relates to the notion of scope of

properties. It is a measure of how many subclasses are

going to inherit the methods of the parent class.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

39

5.3.1 Viewpoints:
1) Greater the number of children, greater the reuse, since

inheritance is a form of reuse.

2) Greater the number of children, the greater the

likelihood of improper abstraction of the parent class. If a

class has a large number of children, it may be a case of

misuse of sub-classing.

3) The number of children gives an idea of the potential

influence a class has on the design. If a class has a large

number of children, it may require more testing of the

methods in that class.

5.3.2 Empirical Data:
 The summary statistics from both sites are shown in table

3

Table 3. Summary Statistics of NOC Metric

Site Metric Medium Max Min

A NOC 0 42 0

B NOC 0 50 0

5.3.3 Interpretation of Data
Like the WMC metric, an interesting aspect of the NOC

data is the similarity in the nature of the distribution of the

metric values at Site A and B. This seems to suggest that

classes in general have few immediate children and that

only a very small number of outliers have many

immediate subclasses. This further suggests that designers

may not be using inheritance of methods as a basis for

designing classes, as the data from the histograms show

that a majority of the classes (73% at Site A and 68% at

Site B) have no children. Considering the large sample

sizes at both sites and their remarkable similarity, both the

DIT and NOC [8] data seem to strongly suggest that reuse

through inheritance may not be being fully adopted in the

design of class libraries, at least at these two sites. One

explanation for the small NOC [8] count could be that the

design practice followed at the two sites dictated the use

of shallow inheritance. A different explanation could be a

lack of communication between different class designers

and therefore that reuse opportunities are not being

realized. Whatever the reason, the metric values and their

distribution provide designers and managers with an

opportunity to examine whether their particular design

philosophy is being adhered to in the application. An

examination of the class with 42 subclasses at Site A was

a GUI-command class for which all possible commands

were separate subclasses. Further, none of these

subclasses had any subclasses of their own. Systematic

use of the NOC [8] metric could have helped to

restructure the class hierarchy to exploit common

characteristic of different commands (e.g., text

commands, mouse commands etc.).

5.4 Metric 4: Coupling Between Object

classes (CBO)
Definition: CBO for a class is a count of the number of

other classes to which it is coupled.

Theoretical Basis: CBO relates to the notion that an

object is coupled to another object if one of them acts on

the other, i.e., methods of one use methods or instance

variables of another. As stated earlier, since objects of

the same class have the same properties, two classes are

coupled when methods declared in one class use methods

or instance variables defined by the other class.

5.4.1 Viewpoints
1) Excessive coupling between object classes is

detrimental to modular design and prevents reuse. The

more independent a class is, the easier it is to reuse it in

another application.

2) In order to improve modularity and promote

encapsulation, inter-object class couples should be kept

to a minimum. The larger the number of couples, the

higher the sensitivity to changes in other parts of the

design, and therefore maintenance is more difficult.

3) A measure of coupling is useful to determine how

complexes the testing of various parts of a design are

likely to be. The higher the inter-object class coupling,

the more rigorous the testing needs to be.

5.4.2 Empirical Data

The histograms and summary statistics from both sites

are shown in Table 4.

Table 4. Summary Statistics of CBO Metric

Site Metric Medium Max Min

A CBO 0 8 0

B CBO 9 234 0

5.4.3 Interpretation of Data
Both Site A and Site B class libraries have skewed

distributions for CBO, but the Smalltalk application at

Site B has relatively high median values. One possible

explanation is that contingency factors (e.g., type of

application) are responsible for the difference. A more

likely reason is the difference between the Smalltalk and

C++ languages? Smalltalk requires virtually every

interaction between run-time entities be done through

message passing, while C++ does not. In Smalltalk,

simple scalar variables (integers, real, and characters)

and control flow constructs, while, repeat statements are

objects. Each of these invocations is performed via

message passing which will be counted as an interaction

in the CBO metric [9]. Simple scalars will not be defined

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

40

as C++ classes, and certainly control flow entities are not

objects in C++. Thus, CBO values are likely to be smaller

in C++ applications. However, that does not explain the

similarity in the shape of the distribution. One

interpretation that may account for both the similarity and

the higher values for Site B is that coupling between

classes is an increasing function of the number of classes

in the application. The Site B application has 1459 classes

compared to the 634 classes at Site A. It is possible that

complexity due to increased coupling is a characteristic of

large class libraries. This could be an argument for a more

informed selection of the scale size (as measured by

number of classes) in order to limit coupling. The low

median values of coupling at both sites suggest that at

least 50% of the classes are self-contained and do not

refer to other classes (including super-classes). Since a

fair number of classes at both sites have no parents or no

children, the limited use of inheritance may be also

response for the small CBO [9] values. Examination of

the outliers at Site B revealed that classes responsible for

managing interfaces have high CBO [9] values. These

classes tended to act as the connection point for two or

more subsystems within the same application. At Site A,

the class with the highest CBO value was also the class

with the highest NOC value, further suggesting the need

to re-evaluate that portion of the design. The CBO metric

can be used by senior designers and project managers as a

relative simple way to track whether the class hierarchy is

losing its integrity, and whether different parts of a large

system are developing unnecessary interconnections in

inappropriate places.

5.5 Metric 5: Response For a Class (RFC)
Definition: RFC = IRS(where RS is the response set for

the class

Theoretical Basis: The response set for the class can be

RS = {MI Uall i {Ri}

where { R,} = set of methods called by method i and { M}

= set of all methods in the class. The response set of a

class is a set of methods that can potentially be executed

in response to a message received by an object of that

class 26. The cardinality of this set is a measure of the

attributes of objects in the class. Since it specifically

includes methods called from outside the class, it is also a

measure of the potential communication between the class

and other classes.

5.5.1 Viewpoints
1) If a large number of methods can be invoked in

response to a message, the testing and debugging of the

class becomes more complicated since it requires a

greater level of understanding required on the part of the

tester.

2) The larger the number of methods that can be invoked

from a class, the greater the complexity of the class.

3) A worst case value for possible responses will assist in

appropriate allocation of testing time.

5.5.2 Empirical data:
The summary statistics from both sites are shown in Table

5.
Table 5. Summary Statistics of RFC Metric

Site Metric Medium Max Min

A RFC 6 120 0

B RFC 29 422 3

5.5.3 Interpretation of Data:
The data from both Site A and Site B, suggest that most

classes tend to able to invoke a small number of

methods, while a few outliers maybe be most profligate

in their potential invocation of methods. This reinforces

the argument that a small number of classes may be

responsible for a large number of the methods that

executed in an application, either because they contain

many methods (this appears to be the case at Site A) or

that they call many methods. By using high RFC valued

classes as structural drivers, high test coverage can be

achieved during system test. Another interesting aspect is

the difference in values for RFC between Site A and B.

Note that the median and maximum values of RFC at

Site B are higher than the RFC values at Site A. As in the

case of the CBO metric, this may relate to the complete

adherence to object oriented principles in Smalltalk

which necessitates extensive method invocation, whereas

C++’ incremental approach to object orientation gives

designers alterative to message passing through method

inv~cation.~N’ ot surprisingly, at Site B high RFC value

classes performed interface functions within the

application. Since there are a number of classes that are

standalone (i.e. no parents, no children, no coupling) the

RFC values also tend to be low. Again, the metrics

collectively and individually provide managers and

designers a basis for examining the design of class

hierarchies.

5.6 Metric 6: Lack of Cohesion in

Methods (LCOM)
Definition: Consider a Class C1 with n methods MI, M2.,

Mn. Let {Ij} = set of instance variables used by method

Theoretical Basis: This uses the notion of degree of

similarity of methods. The degree of similarity for two

methods MI and M2 in class C1 is given by:

 σ()={I1}∩{I2} where {I1}and{I2} instance variables

used by MI and M2. The LCOM is a count of the number

of method pairs whose similarity is 0 (i.e., σ() is a null

set) minus the count of method pairs whose similarity is

not zero. The larger the number of similar methods, the

more cohesive the class, which is consistent with

traditional notions of cohesion that measure the inter-

relatedness between portions of a program. If none of the

methods of a class display any instance behavior, i.e., do

not use any instance variables, they have no similarity

and the LCOM value for the class will be zero. The

LCOM value provides a measure of the relative disparate

nature of methods in the class. A smaller number of

disjoint pairs (elements of set P) implies greater

similarity of methods. LCOM is intimately tied to the

instance variables and methods of a class, and therefore

is a measure of the attributes of an object class.

5.6.1 Viewpoints
1) Cohesiveness of methods within a class is desirable,

since it promotes encapsulation.

2) Lack of cohesion implies classes should probably be

split into two or more subclasses.

3) Any measure of disparateness of methods helps

identify flaws in the design of classes.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

41

4) Low cohesion increases complexity, thereby increasing

the likelihood of errors during the development process.

5.6.2 Empirical Data

The summary statistics from both sites are shown in Table

6.

Table 6. Summary Statistics of LCOM Metric

Site Metric Medium Max Min

A LCOM 0 200 0

B LCOM 2 17 0

5.6.3 Interpretation of Data
 At both sites, LCOM median values are extremely low,

indicating that at least 50% of classes have cohesive

methods. In other words, instance variables seem to be

operated on by more than one method defined in the class.

This is consistent with the principle of building methods

around the essential data elements that define a class. The

Site A application has a few outlier classes that have low

cohesion, as evidenced by the high maximum value 200.

In comparison, the Site B application has almost no

outliers, which is demonstrated by the difference in the

shape of the two distributions. A high LCOM value

indicates disparateness in the functionality provided by

the class. This metric can be used to identify classes that

are attempting to achieve many different objectives, and

consequently are likely to behave in less predictable ways

than classes that have lower LCOM values. Such classes

could be more error prone and more difficult to test and

could possibly be disaggregated into two or more classes

that are better defined in their behavior. The LCOM

metric can be used by senior designers and project

managers as a relatively simple way to track whether the

cohesion principle is adhered to in the design of an

application and advice changes, if necessary, at an earlier

phase in the design cycle.

5.6.4 Summary
The Metrics Suite and Booch OOD Steps:

The six metrics are designed to measure the three

implementation steps in Booch’s definition of OOD. Each

metric is one among several that can be defined using

Bunge’s ontological principles. But inclusion in the

proposed suite is influenced by three additional criteria:

1) ability to meet analytical properties 2) intuitive appeal

to practitioners and managers in organizations and 3) ease

of automated collection. Reading down the columns of

Table VII, WMC, DIT and NOC relate to the first step

(identification of classes) in OOD since WMC is an

aspect of the complexity of the class and both DIT and

NOC directly relate to the layout of the class hierarchy.

WMC and RFC [8] capture how objects of a class may

“behave” when they get messages. For example, if a class

has a large WMC or RFC, it has many possible responses

(since a potentially large number of methods can

execute). The LCOM metric relates to the packaging of

data and methods within a class definition provides a

measure of the cohesiveness of a class. Thus WMC, RFC

and LCOM relate to the second step (the semantics of

classes) in OOD. A benefit of having a suite of metrics is

that there is the potential for multiple measures of the

same underlying construct”. The RFC and CBO metrics

also capture the extent of communication between classes

by counting the inter-class couples and methods external

to a given class, providing a measure of the third step

(the relationships between classes) in OOD.

5.6.5 Future Directions:

The proposed OOD metrics have already begun to be

used in a few leading edge organizations. Sharble and

Cohen report on how these metrics were used by Boeing

Computer Services to evaluate different OO

methodologies [9]. Two implementations of an example

system, one is using responsibility based methodology

and another using data driven methodology were

analyzed using these six metrics.

 The application of these metrics is in studying

differences between different OO languages and

environments. As the RFC and DIT data suggest, there

are differences across the two sites that may be due to

the features of the two target languages. However,

despite the large number of classes examined (634 at Site

A and 1459 at Site B), only two sites were used in this

study, and therefore no claims are offered as to any

systematic differences between the C++ and Smalltalk

environments. This is suggested as a future avenue

where OO metrics can help establish a preliminary

benchmarking of languages and environments. The most

obvious extension of this research is to analyze the

degree to which these metrics correlate with managerial

performance indicators, such as design, test and

maintenance effort, quality and system performance and

managerial decision making.

6. CONCLUSION AND REMARKS
To analyze some of the issues related to this problem

having some concluding remarks:

1. By using the metrics suite they can identify

areas of the application that may require more rigorous

testing and areas that are candidates for redesign.

2. Using the metrics in this manner, potential

flaws and other leverage points in the design can be

identified and dealt with earlier in the design develop-

test-maintenance cycle of an application.

3. Yet another benefit of using these metrics is

the added insight gained about trade-offs made by

designers between conflicting requirements such as

increased reuse (via more inheritance) and ease of testing

(via a less complicated inheritance hierarchy).

4. These metrics can help in selecting one that is

most appropriate to the goals of the organization, such as

reducing the cost of development, testing and

maintenance over the life of the application. In general

the idea is to use measurement to improve the process of

software development.

This set of six proposed metrics is presented as the first

empirically validated proposal for formal metrics for

OOD [9]. By bringing together the formalism of

measurement theory, Bunge’s ontology, Weyuker’s

evaluation criteria and empirical data from professional

software developers working on commercial projects,

this paper seeks to demonstrate the level of rigor

required in the development of usable metrics for design

of software systems. Of course, there is no reason to

believe that the proposed metrics will be found to be

comprehensive, and further work could result in

additions, changes and possible deletions from this suite.

In particular, the LCOM metric might warrant alterative

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

42

interpretations since it is currently based on a data-

centered view of cohesion. In addition, these metrics may

also serve as a generalized solution for other researchers

to rely on when seeking to develop specialized metrics or

particular purposes or customized environments. Further

research in moving OO development management

towards a strong theoretical base should help to provide a

basis for significant future progress.

7. REFERENCES
[1] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk,

and N. Ballou, “Data model issues for object

oriented applications,” ACM Trans. Oflce Inform.

Syst., vol. 5, pp. 3-26, 1987.

[2] V. Basili and R. Reiter, “Evaluating automatable

measures of software models,” in IEEE Workshop

Quantitative Sofware Models, Kiamesha, S. C.

Bilow, “Applying graph-theoretic analysis models to

object oriented system models,” in OOPSLA 92

Workshop on Metricsfor ObjectOriented Software

Eng., Position Paper, 1992.

[3] G. Booch, Object Oriented Design with Applications.

Redwood City, CA: Benjamin/Cummings, 1991.

[4] Bunge, Treatise on Basic Philosophy: Ontology I :

The Furniture of the World. Boston: Riedel, 1977.

[5] M. Bunge, Treatise on Basic Philosophv: Ontology /I:

The World of Systems. Boston: Riedel. 1979.

[6] D. N. Card and W. W. Agresti, “Measuring software

design complexity,” J . Syst. and Sofh+are, vol. 8,

pp. 185-197, 1988.

[7] J. C. Chemiavsky and C. H. Smith, “On Weyuker’s

axioms for software complexity measures,” IEEE

Trans. Sofn*“z Eng., vol. 17, pp. 636-638, 1991.

[8] V. Chemiavsky and D. G. Lakhuty, “On the problem

of information system evaluation,” Automatic

Documentation and Mathematical Linguistics, vol. 4,

pp. 9-26, 1971.

[9] S. R. Chidamber and C. F. Kemerer, “Towards a

metrics suite for object oriented design,” in Proc.

6th ACM Conf. Object Oriented Programming.

Syst., Lung. and Applicat. (OOPSLA), Phoenix,

AZ, 1991, pp. 197-21

[10] P. Coad and E. Yourdon, Object-Oriented Design.

Englewood Cliffs, NJ: Prentice-Hall, 1991.

8. AUTHOR PROFILE

S. Arun Kumar, Assistant Professor in School of

Computing Science and engineering, VIT University,

Vellore, Tamil Nadu, India. He is a M.E professional

with five years of teaching experience. He is currently

pursuing Ph.D. in Computer Science and engineering in

VIT University, Vellore, India. His current research

interests are Requirements engineering and software

metrics. He has presented various papers in national and

international conferences in these areas.

T. Arun Kumar, Professor in School of Computing

Science and engineering, VIT University, Vellore, Tamil

Nadu, India. He is a Ph.D professional with more

than ten years of teaching experience. He was awarded

Ph.D in computer applications. His current research

interests are Software Engineering and Mobile

Computing. He has presented various papers in national,

international conferences and journals in these areas.

P.Swarna Latha, Assistant Professor(SG) in School of

Computing Science and engineering, VIT University,

Vellore, Tamil Nadu, India. She is a M.E professional

with more than five years of teaching experience. She is

currently pursuing Ph.D. in Computer Science and

engineering in VIT University, Vellore, India. Her current

research interests are Image Processing and software

engineering. She has presented various papers in national

and international conferences in these areas.

