
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

17

A Model based Business Process Requirement Rule
Specification

Atsa Etoundi Roger
Department of Computer

Sciences,

University of Yaoundé I,

Yaoundé, Cameroon

Fouda Ndjodo Marcel
Department of Computer

Sciences,

University of Yaoundé I,

Yaoundé, Cameroon

Atouba Christian Lopez
 Department of Computer

Sciences,

University of Yaoundé I,

Yaoundé, Cameroon

ABSTRACT
The management of requirement is as complex as there are

misunderstanding between designers and end users. To tackle
this complexity, we present a business rules specification

framework. This approach is defined in an incremental manner.

The formalism to specify business rules is first defined for the

definition of the basic model, this model is then extended by

various concepts for a better comprehension of requirements by

both designers and users. This concept includes the notion of
equivalence between business rules, refinement of business

rules and business rules constraints. Having defined the model,

its impact on requirement identity, sub-requirement and

requirement sub division are presented.

General Terms
Requirement Modeling

Keywords
Business Process Modeling, Requirement Engineering,

Software Component, Specification language, Application
Engineering, Requirement representation, Business Rule

Specification, Business Rule Formalization.

1. INTRODUCTION
In [1] a goal oriented approach was defined, for the
development of a business process requirements model. A

formalism for the identification of user requirements was

proposed. With these identified requirements, and as from the

work of [4], a formal representation of the latter was defined.

This representation enabled us to build a hierarchical business

process requirement model. It was shown, as from [2, 3] that,

this representation allowed to comprehensively describe a

business process on the one hand, and on the other, that the set

of expressed requirement is a set arranged hierarchically. The

objective of the works [1, 2, 3], ultimately, is to develop a

component-based development framework from a requirement
specification very close to human language. To achieve this

objective, it was initiated in [1] the definition of a goal-oriented

hierarchical requirement model associated with business

processes. In this model, two concepts are important and

interrelated; the goal defines a potential expectation of a user

and the business rule describes how to achieve that goal. In this
context, it becomes indispensable for business rules, to support

the various concepts developed in [1] and applicable to goals.

Notably, equivalence (identity), sub division, refinement, and

extension. We believe that once these concepts are verified, the
requirements specification approach shown in [1], will

minimize misunderstandings discussed in [5, 6, 7], between
computer applications designers and users of such applications.

It is for this reason that we pointed out in [1] that serious

investigations should be done on the formalized specification of

business rules. We hoped that this semantics description

formalism (service rendered) of a business rule, shall permit us

on the one hand to extend the concepts of equivalence sub-

division, refinement, and extension of business rules; and on the
other, to build the set of objects �� (with � any knowledge bit)

of the organization on which the business rule operates.

In literature, a number of approaches to describing business

rules exist. The most commonly referenced are: SBVR

(Semantics of Business Vocabulary and Business Rules) [9,

10], [11], OCL (Object Constraint Language) [18], ERML (e-

Citiz Rule Markup Language) [8], PRR (Production Rule

Representation) [13]. However, these are, in most cases more
oriented toward expert systems. Moreover, they do not integrate

the possibility to apply concepts mentioned on business rules in

operations. Notably: comparison, composition, sub-division,

refinement, extension. We believe that these operations are

extremely important insofar as they are very often, orienting in

the case of component-based software Engineering, designers
of computer applications on identification, and selection of

reusable aspects of systems. In addition, depending on the

nature of the operations mentioned above, business rules affect

the types of relationships defined between distinct components.

We firmly believe that, these business rules, when “well”

specified, permit us to exhaustively describe the various objects
of the organization brought into play during the course of a

process or a task controlled by that business rule. We firmly

believe that in the case of the composition of components,

software architects implicitly compose the rules embedded in

these components. With this opinion, and as aforesaid,

approaches of business rules specification do not seem to dwell
either on the deduction of objects �� of the organization at

stake in a business rule b, nor on the need to throw more light

on the concepts of equivalence, difference, extensions, sub-

division or refinement of business rules; concepts dear to the

approach developed in [1]. We believe that when a business

rule is clearly defined, it is rich enough to inform us about the

nature of the organizations’ objects involved and the

relationships between them. Thus, it becomes judicious to

define a business rules specification approach that takes into

account the concerns raised above. We hope that if business

rules are properly specified, we can deduce all the objects of the

organization involved in a business process, their different

properties or attributes, as well as existing relationships

between these objects. We believe that this work will contribute
significantly in the model driven development, insofar as it

provides a formalized specification of the semantics of a

business activity.

In the following, we shall in Section 2, present the business rule

concept; in Section 3, present the specification of a rule in our

context; in Section 4, formally define the various operations and
concepts applicable to business rules; in Section 5; we shall

finish with the conclusion and future works.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

18

2. “BUSINESS RULE” CONCEPT
The “business rule” concept has widely been developed in the

context of expert systems. Known by the acronym BRMS

(“Business Rules Management Systems”), tools for business

rules management are derived from expert systems, which had
their heyday in the 1980s [11]. They use similar wordings and

all have at the center, an inference engine. Under the business

rules-oriented approaches (BROA), this inference engine, is

called business rules manager [8]. It aims at modeling human

reasoning, behavior and cognitive mechanisms of a human
expert in a particular domain. For this, it relies on a fact base

(working memory), an inference engine (rules engine) and a

base of rules (production memory) [8]. Facts concepts,

inference engine will not be developed as part of this work.

2.1 Business Rule
In literature, the concept of “business rule” was widely used,

each author with his own vision. Thus,

• [15, 16] support that a business rule is a formulation that
defines or constrains some aspect of a business activity. Its

purpose is to structure a business activity (policy, know-

how), to control or influence the conduct of a business

activity;
• meanwhile, [17] says that a “business rule” is a directive,

which is meant to influence or guide the conduct of a

business activity, in the aim of implementing a business

policy that is formulated in response to an opportunity or a

risk;
• [4] also thinks that a business rule defines a law of the

domain to which the goal must conform to. It helps to

organize a management process to achieve the goal. The

goal, in turn, defines a potential expectation that the

system can satisfy, it expresses what the user of the system

wishes to do.

 We believe that to better understand the semantics of a

business rule, that it is necessary to situate it in a context or
specific domain.

 Definition (1):
A “business rule” is a directive of a domain which controls the

conduct of a business activity of that domain. Its goal is to

structure a business activity (policy, know-how) to control or

influence the conduct of a business activity of the domain in

question, in view of achieving an expected result.

 [8] tells us that business rules are divided into two broad

categories:

• Structural rules (indicating a necessity): they are rules that

addresses how a business activity is organized or

structured, the elements comprising it. Structural rules are

definition complements;

• Operative rules (indicating an obligation): these are rules
that control the manner in which the business activity is

carried out. Unlike structural rules, operating rules are

those that can be directly violated by business

stakeholders.

In the following, we focus exclusively on business rules

because they control the business activity.

2.2 Structure of Business Rules
[8] tells us that, depending on the type of business rule

(declarative or procedural), the structure and semantics of that

business rule vary. In this paper we focus on production rules.

These rules are of the form “if. . . then. . . [else. . .]” and consist

of the following elements:

• Declarations of variables: used to define the application

context of the business rule;

• Salience (Expression) or “level of importance” is an

expression whose evaluation returns an integer

corresponding to the importance of the rule. It permits us

to define an order in the execution of rules. This value can

also be called business priority. In [1], we associated the

level of importance to knowledge bits. It would be

inappropriate to associate it explicitly to the business rule
given that this association is implicit in [1]. Thus we have

removed this information in the specification that we shall

propose in the next section;

• “If” or condition, or “left-hand part”, or predicate, or

premise (expression): It constitutes the condition under

which the rule can be applied; It consists of an expression

that is evaluated as true or false. It is also called “body”;

• “Then” (side effect expression) or Conclusion or “right-

hand side”: it is the body of the rule or “head”. It

represents the action to carry out if the condition part is

evaluated as true. Under declarative rules, this part must be
an expression without side effects.

• “Else” (optional and side effect Expression). It is only

possible for procedural rules if they contain an “If” part. It

represents the action to carry out if the condition part is
evaluated as false.

Expressions are classified into two groups according to whether
they influence the systems’ state or not. There are side effect
expressions and expressions without side effects. An expression

is without side effect if and only if it does not change the state

of the environment. Some expressions, on the contrary, during a

business activity, do change the state of the environment. They
are said to have side effects.

Although in [4, 8, 9, 10, 11, 13, 15, 16], we have a clear vision
of what a business rule is, the fact remains that until now,

researchers seem not interested in the fact that we can carry out

a certain number of operations on these rules. The interest of

defining a set of operations on business rules is to be able to:
• reuse business rules in the reengineering of a business

process or components-based development.

• compose business rules within the framework of model

driven engineering;

• decide on the quality of the formulation of a rule after its

specification by experts (business executive of the

organization and software experts);

• to open a research branch on the description of a business
rule oriented business process;

• evaluate the quality of model composition.

[8] summarizes the formalized specification of a business rule �
as follows:

R = (RuleLabel (VariableDeclaration)* (conditions, actions))

 where:

RuleLabel = (how?, Priority?, Visibility?,

 Refraction?, CreatedTime?,

 lastModificationDateTime?)

Conditions = (Expression | AndExpression |

 OrExpression | NegationExpression)
+

 Action = ((Expression) * | NegationExpression
+
)

In the following, we shall formalize the specification of a

business rule as proposed in our approach. We continue

subsequently by operations performed on business rules. The

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

19

term putting objects to the stage, refers to the use of the

properties of each object in an expression.

3. PROPOSAL OF A BUSINESS RULES

SPECIFICATION
In this section we will introduce the concepts necessary to
describe a business rule according to our approach. These

concepts are similar to those found in the OCL language [18] on

the one hand and on the other hand to those used in BRMS [11].

Generally we maintain the structure of a business rule as

defined in [8]. It should be noted in this section that we are not

defining a programming language, but a manner of doing, for
the specification of business rules, as such this allows us to

perform a certain number of operations on these criteria.

3.1 Predefined Types
3.1.1 Simple Types
 A simple type ST is given by (Dt,Nt,Rt,Stg) where:

• Dt denotes the date type which is used to specify

attributes of objects referring to time;

• Nt denotes the number type referring integer values,

decimal or real;

• Rt denotes the rule type which is used for the

declaration of a business rule;

• Stg denotes the “String” type: referring to a given

character or character strings.

A constant � of type Date, Number or String is denoted by “a”.

Consider � and � two elements of type String, we define the

function �������	����
��
 � ���� such that the following

properties hold: �� �� � ������
����
�������������������
�����������������������������

In the following, we will denote by �
�������� the set of

simple types mentioned above. We also denote by �
��������, the arbitrary choice of a simple type in �
��������.
3.1.2 Compound Types
To these four, we add two suffixes: “aggregate”, “views”, and a

complex type.������!
��

The �����!
�� type, denoted by STg, refers to a physical

object. Example: a career management tool, a stamped

application, a registration certificate, a national identity card,

purchase order, an invoice, etc.. , Whereas:

• the suffix “aggregate” preceded by the keyword

“"������#�”, refers to a set of objects in the scope

of the rule;

• the suffix “views” before the name of an object in

the domain circumscribed by the suffix “aggregate”

refers to the set of information (properties or

attributes) of this object which shall be used by the

business rule.

Objects listed using the suffix “aggregate” can be accompanied

by the following entries:

• The mention “control” indicates that the object is

obligatory, but no data of this object intervenes in

the “description” part of the business rule. If such

an element is to be absent, the data is declared

invalid. For example in the case of advancement of

incremental position, the effective presence is

necessary, but it does not affect the actual

processing of the said file;

• The mention “reference”: it returns a value used to

uniquely identify any object. When specifying the

business rule, this value is not known. A predicate

making use of “reference” has the following

structure:

��$���������#����� % & '
�� % (

The mention “artifact” indicates that the object in question is

produced by the organization.

3.2 Declaration of Business Rules
The declaration of a business rule is done in two phases: the

definition of its context, and the specification of the domain

directives which controls the behavior of the business activity in

question. The first part of the declaration of a business rule
permits us to specify the usage context of each object of the

organization involved in this business activity and the domains

in which this business rule can still be used. These domains are

listed immediately after the “keywords”. Meanwhile the second

part is reserved to describing the action that must be done to

realize a business. This part is called description.

3.2.1 Definition of Context
The specification of any business rule begins by defining its

usage context. The usage context of a business rule defines on
the one hand, the semantic field of an object ob used in the

description; and on the other hand, domains in which this

business rule may be used (exploitation field of the rule).

Formally, we shall define the context of a business rule as

follows:

 Context:

 Keywords =

)���
�*�)���
�
� % �)���
�+;

 Data =

 �"������#�& ����������,���-���� . /0�� ��������������������������������'� ���-���� . �/0(123
 ���4�#�& 5
�6��,�7�- �� '� �7�- ��(12�
 Where:-fd is either a reference to another

 object which may not be in

 "������#�; either a simple name of an

 attribute or property of that object. fd is

 also called arguments of the suffix “views” or

 referenced attribute in the suffix “views”.

 - �� represents the type of field

 - CA = control | artifact

The suffix “aggregate” defines the set of accessible objects

when carrying out a business activity for which the rule is being

defined. The suffix “views” allows for objects which have no
mention “control” to explicitly define the set of information

(properties or attributes) of this object, which must be used in

the description part of that business rule. A single aggregate is

authorized per business rule. Moreover, it is important to note

that when an object has the mention “artifact”, all its attributes

must be defined with the mention “reference” following the
syntax defined below. In the following, we shall call context

objects, with no mention “control” in the suffix “aggregate”. In

the following, the concept set will be considered as a MultiSet.

Consider an object b in this context with no mention “control”,

we shall denote: #��7����� the number of properties of ��listed

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

20

in the suffix « views » ; "������#�8, the set of objects

referenced in the suffix “aggregate” of context / ; #��7�"������#�8� represent the number of objects specified

in the suffix “ aggregate”; ��8 the set of signature of objects of

context / ; et 9��6��7�8 , the set of words listed after the key

word « keyword » in the context /. we denote by �
�8��� the

signature of b where �
�:is defined by �
�:: "������#�8 ���8, and

�
�8��� � �;�
��������� <�;�
��������=1�
 The signature of �, �
�8��� shows the list of the attributes

type defined by the suffix “views”.

Given another object a of the same context, we denote ��
��� ��, the function which returns the signature of a ordered

in the order defined by that of b, where ��
 is defined by Tri: "������#�8
 � ��8, such that for every a and b :

If #��7��� > #��7���, then

 ��
��� �� � ?�
�8��� @ �
�8���A B ?�
�8��� C �
�8���A
 Else,

 ��
��� �� � ?�
�8��� @ �
�8���A
Axiom 1: Equivalence of Signature
(1) We shall say that � and � have equal signatures if and only

if:

 DEF�G� H� � IFJK�H�.
(2) � and � are said to be equivalent in their context.

Axiom 2: Refinement or Extension of Signature

(3) We shall say that the signature of a is a refinement of b if
and only if:

�
�8����⊂��
�8����
(4) We shall also say that b is an extension of a.

Axiom 3: difference of signature
We say that the signatures of objects � and � are different if and

only if they satisfy neither axiom 1, nor axiom 2.

Axiom 4: "������#� and /����L��:
Consider two contexts / and �,

(5)�"������#�8 and "������#�M are said to be equivalent if

and only if:

1. #��7�"������#�8� � #��7�"������#�M� and,

2. N�� O "������#�M �P� O "�����)#�8 � �
�M��� ��
�����.
(6) We also say that "������#�M refines "������#�8 if and

only if:

1. #��7�"������#�8� > #��7�"������#�M��Gnd��
2. N�� O "������#�M �P� O "������#�8 � �
�M��� ��
�����&�

(7) C and B are said to be equivalent if and only if:

1. "������#�8 and "������#�M are equivalent ; and,

2. 9��6��7�M @ 9��6��7�8 S T.

(8) We say that the context / refines context � if and only if:

1. "������#�8 refine "������#�M; and,

2. 9��6��7�M @ 9��6��7�8 S T.

3.2.2 Definition of the Description
The “description” part of any business rule is reserved for the
specification guidelines that must be carried out to achieve the

expected results. Formally, we define the description part of a

business rule by the triplet:

)��#�
��
�� . � �UVGEd� ��W���#�� X�������
Where:

- Guard: is the condition to be satisfied in order

 for actions to be executed;

- Sequence: is a sequence of actions separated by

 commas;

- Results: is a specification of the expected

 result.

3.2.2.1 Guard
The guard is a condition defined in [8] which must be satisfied

in order for the description part of the business rule to be
activated. It is specified by a literal expression of human

language featuring objects and attributes listed in the context.

Concretely, it is materialized in the form “if condition then ...

else ...” to “condition”. A guard shall be said to be simple if and

only if it is the condition in the formulation “if condition then

....” It is said to be complex if and only if it is the condition in

the formulation “if condition then ... else ...”.

A condition is an expression of natural language that expresses
a reality that can be either true or false. To express expressions,

we defined a number of predicates, of: comparison,

coordination, and negation. The following table summarizes the

predicates raised.

Table 1: list of comparison operators

Types of

predicates
predicates Notation

comparison

predicates

…. Is less than…. �lt��%�%��
…. Is less than or equal to…. �le�%�%��
…. Is greater than…. �Vt�%�%��
…. Is greater than or equal to….. �Ve�%�%��
…. Is equl to….. �≝�%��%��

Conjunction

predicates

 …. and …. �∧�%�%��
…. or …. �∨�%�%��

Negation

predicates
Opposite of…. ד��%��

Conjunction predicates apply only to conditions. This is a

conjunction of conditions using the conjunctions (‘or’ or ‘and’).

To reduce misunderstandings between the business executives

and developers, it was important to bring our specification
closer to natural language. It should be noted however that only

objects declared in the context and without the mention

“control” should be used. The predicates we define raised three

types of expression: /���]L�����
�� reserved for literal

expressions depicting two objects of the context associated with

a comparison predicate; "��]L�����
��, reserved for

expressions expressing the opposite of the reality expressed by

a condition. "��]L�����
�� applies only to conditions; /�7]L�����
��, reserved for expressions which translate the

composition of conditions. The formal representation of each of

the preceding expressions is as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

21

/���]L�����
��� � ^_�4�#�*& ����� _�4�#�
& �����⌂ � �̀ �
 "��]L�����
����� � � ^/L*� `�ד
 /�7]L�����
���=a /L*� �/L
�b�/� b�"��]L�����
����c�>

Where:

-_�4�#�d& ����, represents an attribute of the _�4�#�d,

specified in the suffix “views”;

- /Ld is an expression of type]L�����
�� ; -/� is an expression of type L�����
�� ;

-⌂ is a comparison predicate;

- ◊ conjunction predicate;

 .negation predicate ‘ד‘-

In general, a condition will be represented formally by:

/��7
�
�� 	 a /���]L�����
���b/�7]L�����
����b "��]L�����
�� >�
We denote by /��7
�
���, the set of conditions and we define

the function ��
/��7	 /��7
�
���
 � /��7
�
��� such that

for every pair ��� �� of /��7
�
���
, ��
/��7��� �� returns a

sorted condition in the same sense as the above defined ��

function, if the terms � and � are bound by the same

conjunction. ��
/��7��� �� returns � in other cases. Consider

a condition f, we denote �������f�� the set of predicates

comprising the condition f. We shall denote by �W�������, the

function��W�������]L�����
��� � ���
�� , which for any

expression �, �W���������� returns a string obtained by

replacing the various attributes of the objects composing this

expression by their types without affecting the constants.

Axiom 5: Equivalence of Conditions

Consider two conditions � and �, we say that ��and � are

equivalent if and only if:

(10) �W���������� = ��������� ;
(11)�one of the �W������� in the reverse order of the other.

Axiom 6: Refinement or Extension of a Condition

(12) Consider two conditions � and �, we say that a is a

refinement of b if and only if ��������W������������ �W����������� is true.

(13) if (10) is satisfied, we say that H is an extension �..

 In the following, the notion of �W������� will be extended

to basic predicates included in the sequences.

3.2.2.2 Sequence
A sequence is a series of actions that must be executed to

produce the result of the business activity. An action is a

predicate, translating an atomic process or operation for

achieving a partial or final objective. It modifies the state of the

environment it is an expression with side effect. Two types of
actions exist: simple actions and complex ones. Simple actions

are those consisted of a single base predicate. Complex actions

are those that refer to a set of base predicates, or business rules

existing via the deterministic choice operator relative to a

condition. The base predicates, inspired by [8], taken into

account in our specification are:

• addition of... to ...;

• the withdrawal of from;

• the product by;

• Division by;

• editing of on;

• recording of in;

• the creation of in;

• the classification of in;

• the next of ... in;

• the previous of in;

• the update by

The set of base predicates constitutes the domain vocabulary.

This concept was well presented in [8]. We will, therefore, not

return to. However, it should be noted that extensions of the
latter can be done based on natural language and the domain, to

cover the set of atomic actions of this human language.

Nevertheless, we recommend, basing on tests performed on the

specification of business rules in the field of career management

of State personnel and payroll, in a sample of twenty-five

administrations, in Cameroon, that we maintain these predicates

in state. However the modification of the number of arguments

is permitted.

In human language, several twists of language can translate

these predicates. It’s for the software engineer assisted by the

business executive to: specify the business rule, identify the

comments of the business executive, the operation in question.
To facilitate the expression of the business rule, we have, at the

risk of repeating ourselves, chosed predicates which to some

extent may reflect the same action. These predicates must put to

stage some objects declared in the suffix “aggregate”. Besides

these basic predicates, we defined a predicate of deterministic

choice denoted '& & & (�,& & & 2� as follows: [obs1,…,obsn]{A1,…,Am}

where Ai is in the form actioni(val.obsi,1,…,val.obsi,n), and

val.obsi,k represents the value of obsk for the action i, and obsi

denotes the property of an object declared in the suffix

aggregate.

The business rule �#�
��g shall be executed if and only if the

values of the parameters _��*� _��
� % � _��+ corresponds to

those of 5��h_��g�*� % � 5��h_��g�+. This predicate enables

execution under certain conditions, of a single action from

among those listed. It also enables us to represent a complex

action of multiple-choice. Formally, the “sequence” will be

represented by:

 ��W���#��	 ��
����0#�
���b�/�����L0#�
����i

 where :

 -�
����0#�
���	�is an action consisted of an unique

 basic predicate;

 - C�����L0#�
�� .
 �j�
����0#�
��b'% (,% 2b'� /�����L0#�
��(k&�
 We denote by ��W���#��, the set of business process

sequences.

Axiom 7: Equivalence of actions

Two actions�� and � are said to be equivalent if and only if :

 �W���������� � �W����������&
We define the function ���#������ as follows: ���#������ .��W���#�� l "������#�8 � �
�������� such that N��� �� � O ��W���#�� l "������#�8/�� ���#��������� �� is

the set of processes which object � is subjected to in the

sequence �. ���#��������� �� is also called the modifications

string of the object �. ���#��������� �� materializes the effect

of processes on the object �.

Axiom 8: Equivalence between Sequences
Consider two sequences �* and �
, we say that �* and �
, are

equivalent if and only if : N� O "������#�8 �����#��������*� �� � ���#��������
� ���
Axiom 9: Extension, Refinement of Sequence

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

22

Consider two sequences �* and �
, we say that �* is a

refinement of �
 (or �
 is an extension of �*) if and only if the �

contains the predicate of deterministic choice and there exist a

sequence � in this predicate, such that, if a is an element of "������#�8 , then

 ����#��������*� �� � ���#��������� ��
3.2.2.3 Results
The result is what we observe at the end of the business activity.

Results indicators are defined in the same way as for attributes

of object that are used in the description part of a business rule.
In a formal way, let Ob be an object, F a given field of Ob of a

given simple type ST, a result Rt is defined as follows:

 X� � �_�& 5
�6�,���-��'� �-��(12�i

Meanwhile, in the result specification of results, certain

attributes of objects may not contain the mention “reference”.

We denote by X�����_�4���, the set of results objects of a

business rule and #��7�X�����_�4�#�� the number of objects

in this set. Elements of X�����_�4��� implicitly have the

mention “artifacts.” The results can also be seen as the goal to

attain.

Axiom 10: Equivalence Results

Consider two results�� and �, we denote X�����_�4���m

(X�����_�4���� respectively), the set of result objects of �

(of�� respectively) we shall say that � and � are equivalent if

and only if:

1- #��7�X�����_�4���m� � #��7�X�����_�4������and��
2- N�* � O X�����_�4���m��������P�
 O X�����_�4����� �
�m��*� � �
����
�&�

Axiom 11: Extension, Results Refinement
Consider two results � and �, we denote X�����_�4���m

(respectively X�����_�4����) the set of result objects of � (of b

respectively), we say that � is a refinement of b, if and only if:

1- #��7�X�����_�4���m� > #��7�X�����_�4����� and,

2- N�* � O X�����_�4���m �
 P�
 O �X�����_�4����� �
�m��*� � �
����
�.

After presenting the different parts of a business rule, we

formally define the business rule as follows:

 ����h���� � � �/����L��nopq � 7��#�
��
��nopq�
 where: - /����L��nopq: represents the context

 part of the business rule

- 7��#�
��
��nopq : represents the

description part o the business rule

The formal representation of the context and description parts

of a business rule were given in the previous sections. We also

defined a number of relationships such as equivalence,
refinement between concepts developed in the sections above.

As we proceed, we shall use these relations to develop

relationships between the business rules.

4. RELATIONSHIP BETWEEN BUSINESS

RULES
In the previous section, we have defined a set of concepts and

relationships between these different concepts. All these works

were intended to clearly present our vision of the business rule

and prepare the ground for defining relationships between

different business rules. The lines that follow shall be devoted

to these relationships. Furthermore, we denote equivalence

between two concepts by: ≡; refinement by: ≅, and 5
�6���� s�, all attributes of the object � in the business rule s.

4.1 Axioms

Consider two business rules α and β, we denote by /����L��t, �/����L��β the respective contexts of the business rules s and f and)��#�
��
��t � �u��7�t � ��W���#�t � X�����t�,)��#�
��
��v � �u��7�v� ��W���#�v� X�����v� the

descriptions part of the business rule α and β respectively.

Axiom 12: Equivalence of Business Rules

We say that α and β are equivalent if and only if:

/����L��t w /����L��v���� xIeyVenzeα w IeyVenzeβUGEdeα w UGEdeβ��������������{e|Vltα w {e|Vltβ������������
Axiom 13: Extension, Refinement of Business Rules
We say that α is a refinement β or that β is an extension of α if

and only if:

/����L��t ≅ /����L��v���7� xIeyVenzeα ≅ IeyVenzeβUGEdeα ≅ UGEdeβ��������������{e|Vltα ≅ {e|Vltβ������������
Axiom 14: Inconsistent Business Rules
We say that a business rule is inconsistent, if and only if:

1- there exists at least one object in the context of this

business rule that is not used in the description of that

business rule;

2- there exists at least one attribute or property of an object

from its context which is not used in the description part

of that business rule;

Axiom 15: Incomplete Business Rules
A business rule is said incomplete if and only if it is not

inconsistent and there are properties that have the mention

“reference” which does not appear in the result objects of the

same rule.

Axiom 16: Merging Business Rules
We say that two business rules α and β can merge if and only if:

1- s�and f�are neither inconsistent nor incomplete;

2- 9��6��7�t @ 9��6��7�v S T and "������#�t @ "������#�v S T��
3- P��� O �"������#�t @ "������#�v and �5
�6���� s� @ 5
�6���� f� S T;

4.2 Impact of these Relations on the Business

Process Requirements Model

Definition (2): Sequencing Rule

A business rule α is a sequencing rule if ��W���#�} contains

the predicate of deterministic choice.

In [1], we presented a goal oriented approach- for the definition

of a business process requirement model, taking into account

their level of importance and constraints inherent to these

requirements. The level of importance of a goal is the credit
which the user associates to this goal. Constraints are non-

functional requirements related to what this goal must satisfy.

The approach that was proposed in [1], revolves around four

main activities: requirement elicitation, selection of different

goals, transformation of requirements into knowledge bits and

finally the development of the requirement model. We have
shown formally that this approach will exhaustively describe a

business process. To do this, we have given a formalism to

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

23

model the requirements of a business executive and deduced

from the work of [4], a formal representation of what we call

knowledge bit or expressed requirement. An expressed

requirement or knowledge bit was defined as follows:

~ � � �ψ� ��λ� δ� ν���
 6!��� . ~�����������n��ledJe�HFt��

ψ��
���!��#����L��
��6!
#!��!�������
��7��
��7��
���!���
λ�
���!�����
���
δ�������������#�����
��ν��
���!����5������
�������#������!���������������������������

 ~ is the name of a domain concept ψ.

Let’s consider �� � � �ψ� ��λ� δ� ν�� and �� � � �ψ′� �′�λ′� δ′� ν′��
two expressed requirements �m is the set of objects of the

organizations’ information system, for which the expectation �&� is satisfied under the rule �& λ and the constraint �& δ [1]. It

is the same for ��

The concepts of requirements identity, sub-requirements, and

sub division of requirements were clearly defined in [1]. This

definition was exclusively focused on usage intension. We shall

not return to this. We shall use these characteristics to show the

impact of a business rule on the organizations’ business

processes requirement model. ����#���	��m � "������#�m&λ� by definition.

Impact 2:��& λ�w �& λ�� therefore ����7�� are identical

Proof: We assume �& λ�w �& λ�� and shall show that ψ�� �ψ������ � ���et���m � �� �
Consider two requirements � and �, in the conditions of the

paragraph above, we assume that �& λ�w �& λ��, by definition of �&λ�w �& λ� �e��G�e:
a) /����L����m&λ w /����L���&λ���, that is "������#�m&λ�w"������#��&λ��� and 9��6��7�m&λ�@ 9��6��7��&λ��� S T,

hence, �m � ��;

b) X������m&λ�w X�������&λ���, by definition, � � ��.
c) From a) and b) we deduce that ψ�� �ψ���.

Impact 3 : �& λ�≅ �& λ��, � is a sub-requirement of �.

Proof: Suppose that �& λ�≅ �& λ��. 'and show that �m⊂������ and � � �m. Consider two requirements � and ; by λ� ≅ �λ� in the

conditions in the above paragraph, we assume that �& λ�≅�&λ��3�by definition of �& λ�≅ �& λ�� we have: λ ≅ λ� definition of �:

a) /����L����m&λ ≅ /����L���&λ��� that is to say "������#�m&λ�≅ "������#��&λ��� and 9��6��7�m&λ�@ 9��6��7��&λ��� S T. "������#�m&λ�≅ "������#��&λ��� we deduce by

definition that �m⊂�������;
b) ��W���#���m&λ ≅ ��W���#��&λ� by definition the �&λ is

referenced in �&λ�� therefore � � �m�.
Impact 4: (definition of divisible requirement):
We say that � is divisible if and only if ��W���#���m&λ contains

the predicate of deterministic choice. The number of business
rules referenced in the predicate of deterministic choice

constitute the number of parts of requirement �.

Impact 5 (definition of ambiguous requirement):

We say that an expressed requirement � is ambiguous if and

only if �&ψ� is not in the list of domains listed in the domain of

operations of the business rule.

Impact 6 (definition merging requirements):
We shall say that two requirements � and � can merge if and

only if �& λ is merged to �& λ�.
These impacts allow us to complete the definition of the

concepts discussed in [1] which remained superficial.

4.3 Business Object Model (BOM)

We mean by “Business Objects”, an object referenced in a

business rule. Business objects are manipulated in the
description part of a business rule. This part enables one to

describe exhaustively the various business objects of business

processes. In this section, we present the methodology of

defining business objects.

Consider XM� � � �& λ+g (where � is an expressed requirement,

λ the business rule of �), the set business rules of a business

process "������#�M� � � "������#�n�+g�* (where �g is the

ith business rules; "������#�n�is the set of objects referenced

in the rule �g), of objects referenced in all business rules; 0M�,

all the business objects attributes, a function ����	�"������#�M� l XM� � 0M� that for every pair ��� ������"������#�M� l XM� � 0M�, ������� �� returns the

set of attributes of the object � referenced in the rule � .We

define a function �
��7� : "������#�M� � 0M�, such that if b

∈"������#�M� , then� ��
��7���� � � ������� ��&nO���

Property 1: Business Object Attributes
Consider a business object _, of "������#�M�, �
��7�
represents the set of attributes of the object _.

Let fieldref denotes a function fieldref: NameSpaceBP → 0M� l"������#�M�, the attributes of an object b ∈ NameSpaceBP

referenced in a business rule is given by :

��
��7�nq���� � � ����nq���� ��& ����
������nO���

 Where:

- ����nq�	�"������#�M� l XM� � 0M� l "������#�M�

is a function for every pair ��� �� of "������#�M� l XM�, ����nq���� �� returns the set of pairs �����
����� �� such that ����
���� represents the set of attributes of the object � having

the mention “reference” in the suffix “views” of the object of �

business rule �.
Property 2: Reference Attributes of a Business Objects

Consider a business object _ of "������#�M�, �
��7�nq��_�
represents the set of attributes of the object _ with the mention
“reference” in the suffix “views” of business objects of "������#�M�.

Let �
��7��m�, be a function "������#�M� → 0M� l"������#�M�, the attributes of an object b referenced in the

business rule is defined by :

�
��7��m���� � � ����nq���� ��& � �nO���

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

24

Where:

- ����nq�	�"������#�M� l XM� � 0M� l "������#�M�

is a function for every pair ��� �� of "������#�M� l XM�, ����nq���� ��returns the set of pairs �����
���� � ��, such that ����
���� represents the set of attributes of the object b having

the mention “reference” in the suffix “views” of the the

business rule object �.
Property 3: Links between business Objects

Consider a business object _ of "������#�M�, �
��7��m��_�
represents the set of business objects with references in the

attributes of _. These references are called links or connections

between _ and other business objects.

Constraints: (uniqueness of the name business object)

The name of a business object is unique in a business processes.

It can be reused as many times as you want in the context part

of different rules. It is the same for attributes of these business

objects. The latter retains their types and their names, whatever
the business rule.

5. CONCLUSION AND FUTURE WORKS
After this work which focused on formal specification of

business rules of a business process, we introduced a formalism

to formally describe business rules of a business process. The

approach that we proposed in this paper firstly presents a

formalism for the specification of business rules, and then
extends the notion of: equivalence, refinement, and extension to

these business rules through a range of axioms. These axioms

are based on a number of predicates which themselves are black

boxes. A the end, we present the impact of this specification on

the concepts of requirements identity, sub-requirements, sub

division of requirements and the compositions of requirements.

However, we were not interested on operations contained in

base predicates. We thought of this as subject of research in our

laboratory. We envisage in the coming days:

− to Define passage rules from business process requirement

model to a business component model;

− the introduction of performance indicators in the modeling

of business processes;

− to define a platform for identifying a system requirements

model and in the same urge identify reusable requirements;

− to enrich the work on selection of software components.

The purpose of all this work is to implement a component-

based development platform from requirement specification

closer to human language. This shall surely permit us to

minimize misunderstandings between developers and business

executives, and to produce systems on the basis of software
components of lower costs while mastering the changing

requirements in a business process.

6. REFERENCES

[1] R. Atsa Etoundi, M. Fouda Ndjodo, Christian Lopez Atouba,

 “A Goal Oriented Approach for the Definition of a Business

 Process Requirement Model”, IJCA, 2010.

[2] R. Atsa Etoundi, M. Fouda Ndjodo, « Human Resource

 Constraints driven Virtual Workflow Specification »,

 IEEE SITIS pp 176-182, 2005.

[3] R. Atsa Etoundi, M. Fouda Ndjodo, « Feature-Oriented

 Business Process and Workflow », IEEE SITIS pp 114-121,

 2005.

[4] Farida Semmak, Joël Brunet, « Un métamodèle orienté buts

 pour spécifier les besoins d’un domaine », 23e Congrès

 INFORSID, pp 115-132, mai 2005.

[5] Lubars, M., Potts, C., Richer, C.: A review of the state of the

 practice in requirements modeling.Proc. IEEE Symp.

 Requirements Engineering, San Diego 1993.

[6] Karen Mc Graw, Karan Harbison, User Centered

 Requirements, The Scenario-Based Engineering Process.

 Lawrence Erlbaum Associates Publishers, 1997.

[7] The Standish Group, Chaos. Standish Group Internal

 Report, http://www.standishgroup.com/chaos.html, 1995

[8] Mouhamed Diouf, « Spécification Et Mise En Œuvre D'un

 Formalisme De Règles Métier» , thèse n°3507, Université

 Bordeaux I, décembre 2007.

[9] “Anonyme” Business Semantics of Business Rules,

 Business Rules Team Response to RFP: SBVR Submission

 bei/2005-08-01 Version 8. http://www.omg.org/docs/bei/05-

 08-01.pdf last accessed on 2007/05/02

[10] “Anonyme” Semantics of Business Vocabulary and

 Business Rules Specification, Document de specification
 de l’OMG, 2006. http://www.omg.org/docs/dtc/06-03-

 02.pdf last accessed on 2007/05/02

[11] Vincent Legendre, Gérald Petitjean , Thierry Lepatre,

 « Gestion des règles métier », Génie Logiciel Y no 92 mars

 2010, pp 43-52, 2010

[12] Tim van Eijndhoven, Maria-Eugenia Iacob, María Laura
 Ponisio “Achieving Business Process Flexibility With

 Business Rules”, 12th IEEE EDOCC, pp 95-104,2008.

[13] Object Management Group, Production Rule

 Representation: Request for Proposal, br/2003-09-03, Sept.

 2003. http://www.omg.org/docs/br/03-09-03.pdf.

[14] David Hay and Keri Anderson Healy. De_ning Business

 rules What Are They Really ? Technical Report 1.3, The

 Business Rules Group, July 2000

[15] Ronald G. Ross. Principles of the Business Rule Approach.

 Addison-Wesley, Boston, USA, 2003.

[16] Business Rule Group Community BRG.
 http ://www.brcommunity.com. Web page.

[17]D. Hay and K. A Healy. “GUIDE Business Rule Project

 Final Report”. Technical report, 1997.

[18] The Object Management Group OMG, UML 2.0 OCL

 Specification.OMG Specification, October 2000

