
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

6

Analysis of Productivity Gain in Incremental Effort
Estimation

Devesh Kumar Srivastava
Department of CSE

Uttrakhand Technical University
Dehradun India

Durg Singh Chauhan
Department of CSE

Uttrakhand Technical University
Dehradun India

ABSTRACT

This paper presents the framework for incremental Effort based

development in order to analysis the productivity gain in Effort

based development. Effort estimation is a challenge in every

software project. The estimates will impact costs and expectations

on schedule, functionality and quality. While expert estimates are

widely used, they are difficult to analyze and the estimation

quality depends on the experience of experts from similar

projects. Alternatively, more formal estimation models can be

used. Traditionally, software size estimated in the number of

Source Lines of Code (SLOC), Function Points (FP) and Object

Points (OP) are used as input to these models. Models that predict

product size as an exponential function of the development effort

are used in the paper to explore the relationships between effort

and the number of increments. The author mainly focus what will

be effect on productivity rate on incremental development and

how duration for incremental software development vary .For

incremental development the author estimate the cumulative effort

gain against effort estimation . This research paper will be helpful

to get productivity rate against incremental effort estimation.

General Terms

Effort estimation, Productivity, Time duration.

Keywords

Kilo line of source code, Estimation models. Effort, Business

Process outsourcing (BPO).

1. INTRODUCTION
Effort estimation of software is the preliminary phase between the

client and the business enterprise. Still there is a challenge for

project managers in software engineering to estimate the actual

Effort which meets to standard as per company policy. Today

there are so many software available in global market, which

requires updating as the requirement of client’s demands changing

from time to time. The fast changes can be seen in BPO industry

for that software which is used for calling. Accurate estimation is

a complex process because it can be visualized as software Effort

prediction. The aim of this paper is to provide guidance for other

organizations that want to improve their estimation process. The

market is fast-moving characterized by a dynamic environment

with high levels of uncertainty and risks. Customers appear more

demanding and discerning expecting non-stop service around the

clock. Service is being judged according to overall traffic,

frequency and duration of visits and loyalty. The scope is highly

changeable over time to respond to competition and opportunities.

Therefore time becomes the critical factor today. As the speed of

release is measured by getting there before the competition,

project execution is measured according to the shortest time to

register a presence (often regardless of the quality). Trade-offs can

often sacrifice scope, cost, expectations or quality to accelerate

the speed of completion. Most projects in this environment are

new, innovative and difficult to estimate and cost. The planning

approach thus needs to focus on key milestones and targets, yet

remain flexible enough and responsive enough to cope with

changing requirements, delivery dates, release deadlines and new

opportunities. Incremental and iterative development approaches

have long been recognized as effective in reducing the risk of

failure in such situations as they entail a more controlled approach

to development. Rapid Application Development and agile

methods are particularly useful in environments that change

regularly and impose demands of early solutions. The motivation

for this work is thus derived from the current interest in speeding

up development schedules. A key implication of the shift to more

rapid development methods is the growing emphasis on fixed time

and fixed Effort in projects. Going back to the triple constraint, if

time schedules are fixed by time boxes and costs are largely

dictated by the availability of personnel to work within these

imposed time frames, the main variable is the scope that can be

delivered.

2. SIZE OF THE DEVELOPMENT

EFFORT

Estimating the development Effort for software system is a long

standing problem in software project management. It has

generally been noted that the Effort (E) is strongly correlated to

the program size. A great deal of research has been carried out to

relate the Effort empirically to the product size, with the Effort E

being commonly expressed in Person Months (PM) and the size in

Kilo Lines of Code (KLOC) or in Kilo Delivered line source

instruction KDSI or in Functions Points (FP) . Typical models

used to express this relationship are of the form:

 E = a Size b+c --------------------------------- (1)

where a, b, and c in equation (1) are determined by regression

analysis using a collection of project outcomes.

Table 1. Inverted form of LOC based formulae

Effort(E in PM) estimation models

Basic

COCOMO

organic

EFFORT = 2.4 KLOC 1.05 KLOC = 0.43

EFFORT 0.952

Basic

COCOMO

semidetached

EFFORT = 3.0 KLOC 1.12

KLOC = 0.37

EFFORT 0.893

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

7

Basic

COCOMO

embedded

EFFORT = 3.6 KLOC 1.20 KLOC = 0.34

EFFORT 0.833

Intermediate

COCOMO

Organic

EFFORT = 3.2 KLOC 1.05 KLOC= 0.31

EFFORT 0.952

Intermediate

COCOMO

semi detach

EFFORT = 3.0 KLOC 1.12 KLOC=0.33

EFFORT 0.892

Intermediate

COCOMO

embedded

EFFORT = 2.8 KLOC 1.20 KLOC=0.35

EFFORT 0.833

COCOMO

II.2000

EFFORT = 2.9 KLOC 1.10 KLOC = 0.38

EFFORT 0.909

Halstead

Model

EFFORT = 0.7 KLOC 1.50 KLOC = 1.27

EFFORT 0.667

Walston-Felix

Model

EFFORT = 5.2 KLOC 0.91 KLOC = 0.16

EFFORT 1.10

Bailey-Basil

Model

EFFORT = 5.5 KLOC 1.16 KLOC = 0.23

EFFORT 0.862

Doty (for

KLOC > 9)

Model

EFFORT = 5.288 KLOC
1.047

KLOC = 1.27

EFFORT 0.674

The different above model are used to calculate the estimated

Effort. The estimation accuracy is improved by setting a number

of parameters to reflect the situation at hand regarding the

product, process, platform, and people involved as is done for

example in COCOMO II [4].

From Table 1, we get the relation like

 Size = a (Effort) b ----------------------- (2)

3. FUNCTIONAL SIZES IN

INCREMENTAL DEVELOPMENT
Suppose that Effort i.e. the total allocated project Effort, is fixed

for a given development project and that the nature of the project

is such that it can be broken into a sequence of n increments. The

Effort E exerted in the individual increments is denoted by E1,

E2, E3….En where

 E= ---------------------- (3)

and Duration D= c E d where c and d are constant values i.e.

 D= c ()d

To get the target functionality there is need of additional

incremental development Effort used for the integration of the

different increments. The term used for this is breakage as some

of the existing code and design has to be mended to fit new

increments. The breakage effect will be accounted by some

fraction of person month. The incremental Effort exerted in

increment i is gained as system enhancement. This fraction is

termed as Additional Multiplier (AM). The net Effort is expressed

as AMi x Ei.

Kan asserted that 20% of the added code in staged and

incremental releases of a product goes into changing the previous

code [19]. In a recent paper the authors argued that the

incremental integration breakage can be expected to lie in a range

from 5% to 30%. This relates to the range in Additional

Multipliers of 95% down to 70% in approximate terms [5]. Thus

an Additional Multiplier (AM) can assume a range of values. The

AM will equal to 1 when all of the gross work delivers new

functionality where some gluing, integration or refactoring effort

is needed. In this way the efficiency will be reduced below 1. The

additional factor can exceed 1 in the case of marked code reuse

(thus suggesting negative entropy and a major benefit from the

application of reuse). One might ask if the Additional Multiplier

(AM) can be negative in which case adding an increment is

counterproductive i.e. more code needs to be mended than has

been written. This interesting pathological case is outside the

scope of this work. It is therefore assumed here that AM>0.

The net incremental effort exerted for increment i is {AMi x Ei }.

The Size of a developed increment is then derived from

expression (2), we get

 Size i
 = ai (AMi x Ei)

bi ---------------(4)

This relation does not hold if the increments are “too small”. For

example, the COCOMO formulation stipulates that the size has to

be larger than 2 KLOC (which roughly equates with 6 PM). Note

also that for one-off development n=1 and AM=1 which is

consistent with expression (2). When the outcome of the

individual increments is accumulated the total developed Size say

total size

 Total Size = i ----------------------------(5)

By combining 4th and 5th

Total Size= ai
 bi

 ------------------------------(6)

For homogeneous project and properties then a and b parameters

in expression 6 are taken to constant values across the increments

ie ai = a and bi = b for all i=1,2……n . In this way the expression

6 will simplifies to

Total Size = a ------------------(7)

Expression 6 and 7 are seen to represent a general way of

estimating the outcome of incremental development projects.

There is one question assisted “Does the number of increments

affect the resulting product size? This question can be solved

using expression 7 to get the answer.

First expression 2 is used to normalize expression 7 resulting in

what is termed here is known as relative productivity say RP. As

we know the productivity of software is defined as

 Productivity= size / Effort

Then relative productivity RP= Total Size / (a E b). By combining

(2) and (7)

 RP= b --------------------(8)

which is the indication of productivity in incremental

development . For RP > 1 productivity has to increased and if RP

<1 productivity has to decreased.

Second let the Total Effort is equally divided into n increments

then Ei=E/n for all i

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

8

 RP = (1/n)
b

b
-----------------(9)

Third a parameter termed as cumulative effort (CE) is defined as

 CE = 1/n
b
 -----------------------(10)

CE is function of n. If the case may be linear then b=1 then CE is

treated as arithmetic average of AMi. In general cumulative effort

gain CE can be treated as a complex function of project. By

combining expression 9 and 10 we get the new expression like

 RP=(1/n)
(b-1)

 (1/n)
b

By again reducing it we get

 RP = (n) (1-b) CE --------------------------------(11)

Based on the COCOMO Basic, COCOMO – Intermediate,

COCOMO -II, Bailey-Basil, Doty (for KLOC > 9), value of b is

restricted between 0 and 1 (see Table 1) .In the case where

cumulative effort CE is supposed to be constant then the

expression 11 is seen to be a monotonic increasing function of n

i.e. the productivity increases with increasing number of

increments.

Further we know that

 duration effort ----------------------(12)

For incremental developments we can write the equation (12) as

 duration cumulative effort

 i.e. D CE

hence we conclude that if the cumulative effort increases then

duration will increases.

4. DISCUSSION
Table 2 shows computations of relative productivity RP using

expression 11. Relative productivity RP for the exponent fixed at

b=0.833. The value b=0.833 of Intermediate COCOMO embedded

is chosen from Table1.

 Table 2

T

It is clear that as the increments increases, the relative

productivity increases. It is also interesting to find out what will

be effect on relative productivity for a fix number of increments

for constant value of b. Table 3 exemplifies the effect of varying

b in a case where the number of increments is fixed say n=18.

Table 3

CE Cumulative Effort

b 1.0 0.9 0.8 0.7

0.833 1.62 1.48 1.29 1.13

0.892 1.36 1.22 1.08 0.95

0.952 1.14 1.02 0.91 0.79

It is found that the lowest value of b gain the highest value of

relative productivity which is shown in bold font. If b=0.952, the

line of Table 3 shows that RP<1 for the 0.8 and 0.7 values of CE.

It is indicating that there is a loss in productivity whereas RP>1

for 1.0 and 0.9 values of CE indicating that there is high gain in

productivity.

5. CONCLUSION
The paper investigates the implication of working on projects with

fixed-effort level where increments may be utilized to obtain

additional leverage for project managers .The productivity gain

from incremental development in fixed effort situation comes

when relative productivity RP>1 . The lowest values of b yield

the highest gain in productivity .The authors are interested in

addressing a number of emerging challenges that include like

collecting empirical data on incremental development to validate

the postulated formulation, analyzing the relationship between

incremental delivery and team size, relating the findings to factors

expressed in alternative estimation models, investigating the

relationship between incremental development and the evolve

ability of system. It is therefore hope that work put forward for

further research and investigation.

6. REFERENCES
[1].G. R. Finnie, G. E. Witting, “A Comparison of Software Effort

Estimation Techniques: Using Function Points with Neural

Networks, Case-Based Reasoning and Regression Models,”

J. Systems Software vol. 39, pp. 281-289, 1997.

[2]. Martin Shepperd, Chris Schofield, “Estimating Software

Project Effort Using Analogies,” IEEE Transactions on

Software Engineering, vol. 23, no. 12, pp.736-743, 1997.

[3]. S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of

empirical software engineering cost models,” IEEE

Transaction on Software Engineerining, vol. 25, no. 4,

July/August 1999.

[4]. Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B.

K., Horowitz, E., Madachy, R., Reifer, D., and Steece, B.

2000. Software Cost Estimation with COCOMO II. P.H.

[5]. Benediktsson, O. and Dalcher, D. 2003 Effort Estimation in

Incremental Software Development. IEE Proc. Softw., Vol.

150, no. 6, December 2003, pp. 351-357.

[6] M. Jorgensen, “A review of studies on expert estimation of

software development effort,” Journal of Systems and

Software, vol. 70, no. 1-2, pp. 37–60, 2004.

[7]. M. Jorgensen and K. Molokeen-Ostvoid, “Reasons for

software effort estimation error: Impact of respondent error,

information collection approach, and data analysis method,”

IEEE Transactions on Software Engineering, vol. 30, no. 12,

December 2004.

CE -Cumulative Effort

n 1 0.9 0.8 0.7

1 1.00 0.90 0.80 0.70

2 1.12 1.01 0.90 0.79

3 1.20 1.08 0.96 0.84

4 1.26 1.13 1.01 0.88

5 1.30 1.17 1.04 0.91

6 1.35 1.21 1.08 0.94

7 1.38 1.24 1.10 0.96

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.9, December 2010

9

[8]. Pendharkar, P. C., Subramanian, G. H. and Rodger, J. A.

2005. A probabilistic model for predicting software

development effort, IEEE Trans. Software Eng., 31, 7, 615-

624.

[9]. Alaa F. Sheta, Estimation of the COCOMO Model Parameters

Using Genetic Algorithms for NASA Software Projects,

Journal of Computer Science 2 (2): 118-123, 2006

 [10]. Mitat Uysal, Estimation of the Effort Component of the

Software Projects Using Simulated Annealing Algorithm

World Academy of Science, Engineering and Technology 41

2008.

[11]. Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh

Brar Software Effort Estimation Using Soft Computing

Techniques, World Academy of Science, Engineering and

Technology 46 2008.

[12]. Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, and

Atul Bisht , A Model for Estimation of Efforts in

Development of Software Systems- World Academy of

Science, Engineering and Technology 56 2009.

[13]. P. K. Suri1, Bharat Bhushan, Ashish Jolly, Time Estimation

for Project Management Life Cycle: A Simulation Approach,

International Journal of Computer Science and Network

Security, VOL.9 No.5, May 2009.

[14]. Ch. Satyananda Reddy, Raju , A Concise Neural Network

Model for Estimating Software Effort International Journal

of Recent Trends in Engineering, Issue. 1, Vol. 1, May

2009.

[15]. Kirti Seth, Arun Sharma, Effort Estimation Techniques in

Component Based Development - A Critical Review

Proceedings of the 3rd National Conference; INDIACom-

2009.

[16]. M. V. Deshpande ,S. G. Bhirud . Analysis of Combining

Software Estimation Techniques International Journal of

Computer Applications (0975 – 8887) Volume 5– No.3,

August 2010.

[17]. Yogesh Singh, K.K.Aggarwal . Software Engineering Third

edition, New Age International Publisher Limited New

Delhi.

[18]. Pankaj Jolte , An Integrated Approach to Software

Engineering Third edition Narosa Publishing house New

Delhi.

[19]. Kan, S.H. 2003. Metrics and Models in Software Quality

Engineering, 2nd edition Pearson Education.

[20]. Roger S Pressmen, “Software Engineering - A Practitioner’s

Approch” 6th Eddition Mc Graw Hill international Edition,

Pearson education, ISBN 007 - 124083 – 7.

