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1. INTRODUCTION 
The theory of fuzzy sets which was introduced by Zadeh 

[8] is applied to many mathematical branches. Abou-zoid 

[1], introduced the notion of a fuzzy sub near-ring and 

studied fuzzy ideals of near-ring. This concept discussed by 

many researchers among cho, Davvaz, Dudek, Jun, Kim 

[2],[3],[4].  In [5], considered the intuitionistic fuzzification 

of a right (resp left) R- subgroup in a near-ring. A.Solairaju 

and R.Nagarajan [7] introduced the new structures of Q- 

fuzzy groups and then they investigate the notion Q- fuzzy 

left R- subgroups of near rings with respect to  T-norms in 

[6]. Also cho.at.al in [4] the notion of normal intuitionistic 

fuzzy           R- subgroup in a near-ring is introduced and 

related properties are investigated. The notion of 

intuitionistic Q- fuzzy semi primality in a semi group is 

given by Kim [3].   In this paper, we introduce the notion of 

Q- fuzzification of left M-N subgroups in a near ring and 

investigate some related properties. Characterizations of Q- 

anti fuzzy left M-N subgroups are given.       

 

     

2. PRELIMINARIES                 
Definition 2.1: A non empty set with two binary operations 

„+‟ and  „.‟ is called a near-ring if it satisfies the following 

axioms        

(i) ( R,+ ) is a group. 

(ii) ( R,. ) is a semi group.  

(iii) x . (y+z)  =  x .y + x . z       for all x,y,z ε R.  

Precisely speaking it is a left near-ring. 

Because it satisfies the left distributive law.               

As R – subgroup of a near- ring „S‟ is a subset „H‟ of  

„R‟ such that              

(i) ( H , + ) is a subgroup of ( R, + ).  

(ii) RH  H  

(iii) HR  H.     If „H‟ satisfies (i) and (ii) then it 

is called left N- subgroup of „R‟ and if „N‟ 

satisfies (i) and (iii) then it is called a right 

N- subgroup of „R‟. A map  f : R→ S is 

called homomorphism  

if f(x+y) = f(x) + f (y) for all x,y in R. 

Definition  2.2 :  Let M is a left operator sets of group G, N 

is right operator sets of group G.     If (ma)n = m(an) for all 

a in G, m ε M, n ε N, then G is said to be an M-N group. If 

a subgroup of M-N group is also M-N group, then it is 

called M-N subgroup of G.  

Definition 2.3 : Let G and G1 both be M-N groups. f : G→ 

G1 be a homomorphism‟s,                If f(mx) = mf(x) and 

f(xn) = f(x)n for all      x ε G, mε M, nε N, then f is called 

M-N homomorphism. 

Definition 2.4: Let „R‟ be a near ring.         A fuzzy set „μ‟ 

in R is called Q- fuzzy sub near ring in „R‟ if   
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(i) μ(x-y,q) ≥ min { μ(x,q) ,   μ(y,q)  }   

(ii) μ(xy,q)  ≥ min  { μ(x,q) ,   μ(y,q) }  for all x,y in R.          

Definition 2.5:  A „Q‟-fuzzy set „μ‟ is called a Anti Q-

fuzzy left M-N subgroup of R over Q if „μ‟ satisfies   

(i) μ(m(x-y), q)  ≤ max{μ(mx,q ), μ(my,q)}   (ii) μ(xn,q)  ≤ 

μ(x,q) for all x,y,m,n ε R and q ε Q.  

Definition 2.6 :  By a s- norm „S‟ , we mean a function S: 

[0,1]× [0,1]→ [0,1]  satisfying the following conditions ;        

       (S1) S(x ,0)  =  x              

(S2) S(x,y)  ≤  S(x,z) if y ≤ z                

(S3) S(x,y)  =  S(y,x)                            

(S4) S(x, S(y,z) ) = S(S(x,y),z), for all x,y,z ε [0,1].                                       

Proposition 2.7:  For a S-norm,     then    the following 

statement holds                          S(x,y)  ≥ max{x,y}, for all    

x,y ε [0,1].                                                 

Definition 2.8: Let „S‟ be a s-norm. A fuzzy set „A‟ in „R‟ 

is said to be sensible with respect to „S‟ if  Im(A) c Δs, 

where            Δs = { s( α, α) = α / α ε [0,1] }.                           

3. PROPERTIES OF ANTI Q- FUZZY 

LEFT M-N SUBGROUPS 
Proposition 3.1: Let „S‟ be a s- norm. Then every 

imaginable anti Q- fuzzy left M-N subgroup „μ‟ of a near 

ring „ R‟ is a Q-fuzzy left M-Nsubgroup of R. 

Proof: Assume „μ‟ is imaginable anti Q- fuzzy left M-N 

subgroup of „R‟, then        we have         

μ (m(x-y) , q)  ≤ S { μ(mx,q),  μ(my,q) }and  μ (xn, q) ≤ μ 

(x,q)  for all x,y in R.               

Since „μ‟ is imaginable, we have  

max { μ(mx,q) ,  μ(my,q) }   

=  S{max{μ(mx,q), μ(my,q)}, max{ μ(mx,q) , μ(my,q) }} 

≥  S (μ(mx,q) , μ(my,q))               

≥  max {μ(mx,q) , μ(my,q)}  

And so  S( μ(mx,q) , μ(my,q))   

= max { μ(mx,q) , μ(my,q) } . It follows that       μ(m(x-y), 

q )   ≤ S( μ(mx,q) ,  μ(my,q) ) 

=  max { μ(mx,q) , μ(my,q) } for all x,y ε R. Hence „μ‟ is a 

Q-fuzzy left M-N subgroup of R.          

Proposition 3.2: If „μ‟ is anti Q- fuzzy left M-N subgroups 

of a near ring „R‟ and „Ө‟ is an endomorphism of R, then 

μ[Ө] is a anti Q- fuzzy left M-N sub group of „R‟.  

Proof:    For any x,y ε R, we have               

(i) μ[Ө] ( m(x-y),q)    = μ ( Ө(m(x-y) , q ))                  

=  μ ( Ө(mx,q ) ,  Ө(my,q)) 

≤ S { μ( Ө(mx,q))  ,   μ( Ө(my,q) ) } 

=  S { μ[Ө] (mx,q)  ,   μ[Ө] (my,q ) }   

(ii) μ[Ө] (xn , q )      =  μ( Ө (xn, q )  

                                 ≤ μ ( Ө(x,q) )  

                                 ≤  μ [Ө] (x,q)  .       

Hence  μ[Ө] is a anti Q- fuzzy left M-N subgroup of R.               

Proposition 3.3:  An onto homomorphism‟s of anti Q- 

fuzzy left M-N subgroup of near ring „R‟ is anti Q- fuzzy 

left M-N subgroup.  

Proof: Let f : R→ R1 be an onto homomorphism of near 

rings and let „ξ‟ be anti Q- fuzzy left           M-N subgroup 

of R1 and „μ‟ be the pre image of „ξ‟ under „f‟, then we 

have      

(i) μ(m(x-y) , q) =   ξ ( f(m(x-y) , q ))              

                          =   ξ ( f(mx,q) , f(my,q) )      

                          ≤ S(ξ(f(mx,q)),ξ(f(my,q))) 

                          ≤ S (μ(mx,q) , μ(my,q) ) 
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(ii) μ(xn,q)       =  ξ (f (xn,q))   

                         ≤ ξ (f(x,q) ) 

                         ≤ μ(x,q).                                  

Proposition 3.4: An onto homomorphic image of a anti Q-

fuzzy left M-N subgroup with the inf property is anti Q- 

fuzzy left M-N- subgroup.      

Proof: Let f: R→R1 be an onto homomorphism of near 

rings and let „μ‟ be a inf property of anti Q-fuzzy left M-N 

subgroups of „R‟. 

Let x1, y1  ε  R1 , and x0 ε f-1(x1), y0 ε f-1(y1) be such that               

  

μ(x 0, q )  =  inf  μ(h,q), μ(y 0,q) =  inf μ(h,q)       

                   (h,q)εf-1(x1)               (h,q)εf-1(y1)      

Respectively, then we can deduce that 

(i) μf ( m(x1-y1), q )  =   inf    μ(mz,q)                

                              (mz,q) ε f-1(m(x1-y1),q)                             

                             ≤ max{μ(mx0,q), μ(my0,q)      

            = max{inf μ(mh,q),      inf μ(mh,q)} 

                     (h,q)εf-1(x1,q)       (h,q)εf-1(y1,q)              

            = max { μf(mx1,q) ,  μf(my1,q) }              

(ii) μf(xn,q)         =      inf   μ(zn,q)  

                                 (zn,q)εf-1(r1x1n,q)             

                            ≤    μ(y0 , q)                         

                            =      inf    μ(hn,q)                     

                                (h,q) ε f-1(y1,q) 

                            =μf(y1,q).                     

Hence  „μf‟ is a anti Q- fuzzy left M-N subgroup of R1.      

Proposition 3.5: Let „S‟ be a continuous    s-norm and let 

„f‟ be a homomorphism on a near ring „R‟ . If „μ‟ is anti Q- 

fuzzy left M-N subgroup of R, then μf is anti Q- fuzzy left 

M-N subgroup of f(R).    

Proof:  Let A1 = f -1(y1,q) , A2 = f -1(y2,q) and  A12 = f -

1(n(y1-y2), q) where              y1,y2 ε f(S), q ε Q.     Consider 

the set    

  A1- A2 = { x ε S /  (x,q)  =   (a1,q) -  (a2,q) }  for some 

(a1,q) εA1 and (a2,q) ε A2.         

If (x,q) ε A1-A2 , then (x,q)  =  (x1,q) -  (x2,q)     for some 

(x1,q) ε A1  and (x2,q) ε A2                         

so that we have   

  f (x,q)     =  f(x1,q) -  f(x2,q)   

                           =   y1-  y2               

(x,q) ε f-1((y1,q) - (y2,q))  

=  f-1(n(y1-y2), q) =  A12.         

Thus A1-A2 c A12.   

It follows that                      

(i) μf(m(y1-y2), q)  

= inf{μ(mx,q)/(mx,q) ε f-1(my1,q)- (my2,q))}           

=   inf{  μ(mx,q) / (x,q) ε A12 }               

≥   inf { μ(mx,q)/ (x,q) ε A1-A2}           

≥   inf { μ((mx1,q)- (mx2,q) ) /  (x1,q) ε A1 and (x2,q) ε A2}    

≥   inf { S(μ(mx1,q) , μ(mx2,q))/ (x1,q) ε A1 and (x2,q) ε A2} 

Since „S‟ is continuous. For  every  ε > 0 , we see that if        

inf {μ(mx1,q) / (x1,q) ε A1} - (mx1*, q) }  ≥ δ  and  

inf { μ(mx2,q) / (x2,q)  ε A2} - (mx2*,q)}  ≥ δ                   

S{inf{μ(mx1,q) / (x1,q) ε A1} , inf { μ(mx2,q) / (x2,q) ε A2 } 

-  S ((mx1*,q), (mx2*,q) ≥ ε                 
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Choose (a1,q) ε A1 and  (a2,q) ε A2 such that                       

inf { μ(mx1,q) / (x1.q) ε A1 } -  μ(ma1,q)  ≥ δ        and            

 inf { μ(mx2,q) / (x2,q) ε A2}  - μ(ma2,q)  ≥ δ.  Then we 

have  

S{inf{ μ(mx1,q) / (x1,q) ε A1}, inf {μ(mx2,q) / (x2,q) ε A2 } 

– S(μ(ma1,q), μ(ma2,q) ≥ ε consequently, we have μf(m(y1-

y), q )           ≤ inf{ S(μ(mx1,q), μ(x2,q)) / (x1,q) ε A1 ,(x2,q) 

ε A2} 

≤ S (inf{μ(mx1,q) / (x1,q) ε A1}, inf{μ(mx2,q) / (x2,q)εA2}           

 ≤  S (μf(my1,q) ,  μf(my2,q) }    

Similarly we can show  μf(xn,q) ≤  μf(y,q). Hence „μf‟ is 

anti Q- fuzzy left M-N subgroup of „f(R)‟.  

 Proposition 3.6:  Let μ  be anti Q fuzzy M-N subgroup of 

R. Then the Q- fuzzy subset <μ> is a anti Q- fuzzy M-N 

subgroup of S generated by. More over <μ> is the smallest 

anti Q- fuzzy M-N subgroup containing μ. 

Proof; Let x,y ε N and let μ (x,q) = t,     μ(y,q)  = t2 and  

μ(m(x-y) , q ) = t 

Let it possible t =  < μ >(m(x-y) , q)             ≥ S { <μ> 

(mx,q) ,  <μ> (my,q) }                 S {t1,t2} = t1 (say) 

Then t1 = <μ > (mx,q) = inf { k / x ε <μk> } ≤ t, therefore 

there exist k1, such that             x ε <μk1> . Also t2 = <μ 

>(my,q)                   = sup {k / yε <μk > } t1 ≤ t.   Therefore 

there exists k2 ≤ t such that y ε <μk > without loss of 

generality, we may assume that k1 k2,     so that <μk1>C  

<μk2>.   Then x,y ε <μk> that is x-y which is a contradiction 

since k2 ≤ t. therefore t ≤ t1.   Consequently,              μ(m(x-

y),q) ≤   S {<μ>(mx,q) , <μ> (my,q)}                            

                                                         ------  (1) 

Now let , if possible, t3 = <μ> (xn,q)             ≤ <μ> (xn,q) = 

t1  

Then t1 = <μ> (xn,q) = inf {k / x ε <μk>}     ≤ t3, therefore 

there exists k such that           x ε <μk> and t1 ≤ k ≤ t3  so 

that  xn ε <μk> C {μt1} which is a contradiction. 

Hence t3 =  <μ> (xn,q) ≤ <μ> (xn,q) = t1  

                                                         ------  (2) 

Consequently conditions (1) and (2) yield that <μ>  is a anti 

Q- fuzzy M-N subgroup of R. Finally, to show that <μ> is 

the smallest anti Q- fuzzy M-N subgroup containing μ , let 

us assume that θ to be anti Q- fuzzy M-N subgroup of R 

such that μ C θ and show that  <μ> C θ. 

Let it possible, t = <μ> (x,q) ≥ θ (x,q) for some x ε N , q ε 

Q. Let ε > 0 be given, then   t = μt = sup { k / x ε <μk> }. 

Therefore there exists K such that  x ε ,μk> and t-ε ≥ k ≥ t   

so that  x ε <μk> C <  μt-ε >, for all ε >0. Now x = ά1x1 + ά2 

x2+ ………άnxn, άi ε N,   xi belongs to  t-ε.   Xi ε μt-ε 

implies               μ (xi,q) ≤ t-ε, that is θ(xi,q) ≤ t-ε for all ε > 

0. Therefore  

θ (x,q ) ≤ S { θ(x1,q) ,  θ (x2,q) … θ (xn,q)} 

             ≤  t-ε for  ε > 0 

Hence θ (x,q) = t which is a contradiction to our 

supposition. 

 Proposition3.7:   Let „μ‟ be  a anti Q- fuzzy M-N 

subgroup of a near ring R and let μ* be a Q- fuzzy set in N 

defined by               μ*(x,q) = μ(x,q) +1- μ(0,q) for all x, ε 

N. Then μ* is a normal anti Q- fuzzy M-N subgroup of R 

containing μ. 

Proof :   For any x, y ε R and  q ε Q           we have  

μ*(m(x-y),q) = μ(m(x-y),q) +1 – μ(0,q)       ≤ S(μ(mx,q)+1- 

μ(0,q), (μ(my,q)+1- μ(0,q) ) 

= T (μ*(mx,q) , μ*(my,q)). 

μ*(xn,q)     =  μ(xn,q) +1 – μ(0,q) 

                   ≤    μ(x,q) +1- μ(0,q) 

                   = μ(x,q) 
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Proposition 3.8: Let μ be anti Q- fuzzy left M-N subgroup 

of near ring R.   Let μ+ be a fuzzy α–cut set in R defined by           

μ+(x,q) = μ(x,q) +1- μ(0,q) for x ε R , q ε Q. Then μ+ is α- 

cut normal anti Q- fuzzy left M-N subgroup of R  which 

contains μ. 

Proof:  For any  x,y ε R, we have        μ+(x,q) + 1 – μ(0,q) 

and μ+(x,q) ≤ α for all    x εR, m ε M. 

μ+(m(x-y), q) =  μ (m(x-y), q) +1 – μ(0,q) 

≤ max { μ(mx,q), μ(my,q)} + 1 – μ(0,q)  

= max{μ(mx,q)+1–μ(0,q),μ(my,q)+1– μ(0,q)} 

= max { μ+(mx,q), μ+(my,q)} 

≤ max { α, α} ≤ α 

μ+(xn,q)  = μ(xn,q) + 1 – μ(0,q) 

  ≤ μ(x,q) +1- μ(0,q) 

  = μ+(x,q) 

  ≤ α 

Therefore, μ+ is a α-cut normal Anti Q-fuzzy left M-N 

subgroup of R. 

Definition 3.9: Let u and v be Q-fuzzy subsets in R.  Then 

the S-product of u and v written as [u,v]S(x,q) = 

S(u(x,q),v(x,q)) for all x ε R, q ε Q. 

Proposition 3.10 :  If u and v be Anti Q-fuzzy left M-N 

subgroups of R, then the      S-product of Anti Q-fuzzy left 

M-N subgroups of R is Anti Q-fuzzy left M-N subgroups of 

R. 

Proof:  For any x,y ε R, q ε Q    

[u,v]S(m(x-y),q)                                   

 =S{u(m(x-y),q),v(m(x-y),q)} 

≤S{max{u(mx,q),u(my,q)},max{v(mx,q), v(my,q)}} 

≤max{S{u(mx,q),v(mx,q)},S{v(my,q), v(my,q)}} 

≤ max{[u,v]S(mx,q),[u,v]S(my,q)} 

[u,v]S(xn,q)  =  S{u(xn,q), v(xn,q)} 

  ≤  S{u(x,q), v(x,q)} 

  ≤  [u,v]S(x,q)  

Hence S-product of Anti Q-fuzzy left M-N subgroups of R 

is Anti Q-fuzzy left M-N subgroups of R. 

Definition3.11:  Anti Q-fuzzy left M-N subgroup near ring 

R is said to Anti Q-fuzzy characteristic, if Af(x,q) = A(x,q) 

for all       x εR, qεQ. 

Proposition 3.12 :  Let f : R→ R‟ be an epimorphism of 

„A‟ is anti Q-fuzzy left M-N subgroups of R the Af is anti 

Q-fuzzy left M-N subgroups of R‟. 

Proof:  Let x,y εR and qεQ 

Af(m(x-y),q)  =  A f(m(x-y),q) 

  =  A (f(mx) - f(my), q) 

≤  max { A (f(mx),q), A (f(my),q)} 

≤  max { Af(mx,q), Af(my,q)} 

Af(xn,q) =  Af(xn,q) 

  ≤  Af(x,q) 

  ≤  Af(x,q) 

Therefore, Af is anti Q-fuzzy left M-N subgroup of R‟. 

Proposition 3.13 :  Let f : R→ R‟ be epimorphism.   If Af 

is anti Q-fuzzy left M-N subgroup of R‟, then A is anti Q-

fuzzy left M-N subgroup of R. 

Proof:  Let x,y ε R, q ε Q, then there exists a,b ε X such 

that f(a,q) = x and f(b,q) = y. 

It follows that   A(x,q)  =  A f(a,q)  = Af(a,q) 

A(m(x-y),q)  =  A f(a,q)  = Af(a,q)               

 ≤  max {Af(a,q), Af(b,q)} 
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=  max {A(a,q), A(b,q)}  

≤  max {A(x,q), A(y,q)} 

A(xn,q)  =  A f(a,q)  = Af(a,q)                      

 ≤  A f(a,q)  ≤  A f(x,q) 

There fore A is anti Q-fuzzy left M-N subgroup of R. 

4. CONCLUSION                           

Osman kazanci , Sultanyamark and Serifeyilmaz  

introduced the intutionistic   Q- fuzzy R-subgroups of near 

rings. A.Solairaju and R.Nagarajan investigate the notion of  

Q- fuzzy left R- subgroup of near rings with respect to T- 

norms.In this paper we investigate the notion of anti Q- 

fuzzy left M-N subgroup of near ring with respect to  s-

norm and characterization of them. 
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