S-Product of Anti Q-Fuzzy Left M-N Subgroups of Near Rings under Triangular Conorms

B. Chellappa Associate Professor Department of Mathematics Alagappa Govt. Arts College Karaikudi.

ABSTRACT

In this paper, we introduce the notion of Q- fuzzification of left M-N subgroups in a near-ring and investigate some related properties. Characterization of Anti Q- fuzzy left M-N subgroups with respect to s-norm is given.

AMS Subject Classification (2000): 03F055, 03E72.

Index terms: Q- fuzzy set, Q- fuzzy M-N subgroup (sub near rings), anti Q- fuzzy left M-N subgroups, s-norm.

1. INTRODUCTION

The theory of fuzzy sets which was introduced by Zadeh [8] is applied to many mathematical branches. Abou-zoid [1], introduced the notion of a fuzzy sub near-ring and studied fuzzy ideals of near-ring. This concept discussed by many researchers among cho, Davvaz, Dudek, Jun, Kim [2],[3],[4]. In [5], considered the intuitionistic fuzzification of a right (resp left) R- subgroup in a near-ring. A.Solairaju and R.Nagarajan [7] introduced the new structures of Qfuzzy groups and then they investigate the notion Q- fuzzy left R- subgroups of near rings with respect to T-norms in [6]. Also cho.at.al in [4] the notion of normal intuitionistic R- subgroup in a near-ring is introduced and fuzzy related properties are investigated. The notion of intuitionistic Q- fuzzy semi primality in a semi group is given by Kim [3]. In this paper, we introduce the notion of Q- fuzzification of left M-N subgroups in a near ring and investigate some related properties. Characterizations of Qanti fuzzy left M-N subgroups are given.

S.V. Manemaran Assistant Professor Department of Mathematics Oxford Engineering College Tiruchirappalli.

2. PRELIMINARIES

Definition 2.1: A non empty set with two binary operations '+' and '.' is called a near-ring if it satisfies the following axioms

- (i) (R,+) is a group.
- (ii) (R,.) is a semi group.
- (iii) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all x,y,z εR . Precisely speaking it is a left near-ring. Because it satisfies the left distributive law.

As R – subgroup of a near- ring 'S' is a subset 'H' of 'R' such that

- (i) (H, +) is a subgroup of (R, +).
- (ii) $RH \subset H$
- (iii) HR ⊂ H. If 'H' satisfies (i) and (ii) then it is called left N- subgroup of 'R' and if 'N' satisfies (i) and (iii) then it is called a right N- subgroup of 'R'. A map f : R→ S is called homomorphism

if f(x+y) = f(x) + f(y) for all x,y in R.

Definition 2.2 : Let M is a left operator sets of group G, N is right operator sets of group G. If (ma)n = m(an) for all a in G, m ϵ M, n ϵ N, then G is said to be an M-N group. If a subgroup of M-N group is also M-N group, then it is called M-N subgroup of G.

Definition 2.3 : Let G and G¹ both be M-N groups. $f : G \rightarrow G^1$ be a homomorphism's, If f(mx) = mf(x) and f(xn) = f(x)n for all $x \in G$, $m \in M$, $n \in N$, then f is called M-N homomorphism.

Definition 2.4: Let 'R' be a near ring. A fuzzy set ' μ ' in R is called Q- fuzzy sub near ring in 'R' if

<u>International Journal of Computer Applications (0975 – 8887)</u> Volume 12– No.1, December 2010

(i) $\mu(x-y,q) \ge \min \{ \mu(x,q), \mu(y,q) \}$

 $(ii) \ \mu(xy,q) \ge min \ \{ \ \mu(x,q) \ , \ \ \mu(y,q) \ \} \ \ for \ all \ x,y \ in \ R.$

Definition 2.5: A 'Q'-fuzzy set ' μ ' is called a Anti Q-fuzzy left M-N subgroup of R over Q if ' μ ' satisfies

(i) $\mu(m(x-y), q) \le \max{\{\mu(mx,q), \mu(my,q)\}}$ (ii) $\mu(xn,q) \le \mu(x,q)$ for all x,y,m,n εR and $q \varepsilon Q$.

Definition 2.6 : By a s- norm 'S', we mean a function S: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions ;

(S1) S(x, 0) = x

(S2) $S(x,y) \leq S(x,z)$ if $y \leq z$

(S3) S(x,y) = S(y,x)

(S4) S(x, S(y,z)) = S(S(x,y),z), for all x,y,z ε [0,1].

 $\label{eq:statement} \begin{array}{ll} \mbox{Proposition 2.7: For a S-norm, then the following} \\ \mbox{statement holds} & S(x,y) \geq max\{x,y\}, \mbox{ for all } \\ x,y \ \epsilon \ [0,1]. \end{array}$

Definition 2.8: Let 'S' be a s-norm. A fuzzy set 'A' in 'R' is said to be sensible with respect to 'S' if Im(A) c Δs , where $\Delta s = \{ s(\alpha, \alpha) = \alpha / \alpha \epsilon [0,1] \}.$

3. PROPERTIES OF ANTI Q- FUZZY LEFT M-N SUBGROUPS

Proposition 3.1: Let 'S' be a s- norm. Then every imaginable anti Q- fuzzy left M-N subgroup ' μ ' of a near ring ' R' is a Q-fuzzy left M-Nsubgroup of R.

Proof: Assume ' μ ' is imaginable anti Q- fuzzy left M-N subgroup of 'R', then we have

 $\mu (m(x-y), q) \leq S \{ \mu(mx,q), \mu(my,q) \} and \ \mu (xn, q) \leq \mu$ (x,q) for all x,y in R.

Since ' μ ' is imaginable, we have

max { $\mu(mx,q)$, $\mu(my,q)$ }

= $S\{\max\{\mu(mx,q), \mu(my,q)\}, \max\{\mu(mx,q), \mu(my,q)\}\}$

 \geq S ($\mu(mx,q)$, $\mu(my,q)$)

 $\geq \max \{\mu(mx,q), \mu(my,q)\}$

And so S($\mu(mx,q)$, $\mu(my,q)$)

 $= \max \{ \mu(mx,q) , \mu(my,q) \}. It follows that \qquad \mu(m(x-y), q) \le S(\mu(mx,q) , \mu(my,q))$

= max { $\mu(mx,q)$, $\mu(my,q)$ } for all x,y ϵ R. Hence ' μ ' is a Q-fuzzy left M-N subgroup of R.

Proposition 3.2: If ' μ ' is anti Q- fuzzy left M-N subgroups of a near ring 'R' and ' Θ ' is an endomorphism of R, then $\mu[\Theta]$ is a anti Q- fuzzy left M-N sub group of 'R'.

Proof: For any $x, y \in R$, we have

(i) $\mu[\Theta]$ (m(x-y),q) = μ (Θ (m(x-y), q))

= $\mu (\Theta(mx,q), \Theta(my,q))$

 $\leq S \{ \mu(\Theta(mx,q)) , \mu(\Theta(my,q)) \}$

 $\ = \ S \ \{ \ \mu[\Theta] \ (mx,q) \ , \ \ \mu[\Theta] \ (my,q \) \ \}$

(ii) $\mu[\Theta](xn, q) = \mu(\Theta(xn, q))$

 $\leq \mu \left(\Theta(\mathbf{x},\mathbf{q}) \right)$

 $\leq \mu \left[\Theta
ight] \left(x,q
ight)$.

Hence $\mu[\Theta]$ is a anti Q- fuzzy left M-N subgroup of R.

Proposition 3.3: An onto homomorphism's of anti Q-fuzzy left M-N subgroup of near ring 'R' is anti Q-fuzzy left M-N subgroup.

Proof: Let $f : R \rightarrow R^1$ be an onto homomorphism of near rings and let ' ξ ' be anti Q- fuzzy left M-N subgroup of R^1 and ' μ ' be the pre image of ' ξ ' under 'f', then we have

(i) $\mu(m(x-y), q) = \xi(f(m(x-y), q))$

= ξ (f(mx,q) , f(my,q))

 $\leq S(\xi(f(mx,q)),\xi(f(my,q)))$

 \leq S ($\mu(mx,q)$, $\mu(my,q)$)

Proposition 3.4: An onto homomorphic image of a anti Qfuzzy left M-N subgroup with the inf property is anti Qfuzzy left M-N- subgroup.

Proof: Let f: $R \rightarrow R^1$ be an onto homomorphism of near rings and let 'µ' be a inf property of anti Q-fuzzy left M-N subgroups of 'R'.

Let x^1 , $y^1 \in \mathbb{R}^1$, and $x_0 \in f^1(x^1)$, $y_0 \in f^1(y^1)$ be such that

 $\mu(x_0, q) = \inf \mu(h,q), \mu(y_0,q) = \inf \mu(h,q)$

$$(h,q) \varepsilon f^{1}(x^{1})$$
 $(h,q) \varepsilon f^{1}(y^{1})$

Respectively, then we can deduce that

(i) $\mu^{f}(m(x^{1}-y^{1}), q) = \inf \mu(mz,q)$ $(mz,q) \in f^{-1}(m(x^{1}-y^{1}),q)$ $\leq \max\{\mu(mx_0,q), \mu(my_0,q)\}$ It follows that $= \max\{\inf \mu(mh,q), \inf \mu(mh,q)\}$ $(h,q) \epsilon f^{1}(x^{1},q)$ $(h,q) \epsilon f^{1}(y^{1},q)$ $= \max \{ \mu^{f}(mx^{1},q), \mu^{f}(my^{1},q) \}$ (ii) $\mu^{f}(xn,q)$ = inf $\mu(zn,q)$ $(zn,q) \in f^{-1}(r^1x^1n,q)$ $\leq \mu(y_0, q)$ inf $\mu(hn,q)$ = $(h,q) \in f^{-1}(y^{1},q)$ $=\mu^{f}(y^{1},q).$ Hence ' μ^{f} ' is a anti Q- fuzzy left M-N subgroup of R¹.

International Journal of Computer Applications (0975 – 8887) Volume 12-No.1, December 2010

Proposition 3.5: Let 'S' be a continuous s-norm and let 'f' be a homomorphism on a near ring 'R'. If ' μ ' is anti Qfuzzy left M-N subgroup of R, then μ^{f} is anti Q- fuzzy left M-N subgroup of f(R).

Proof: Let $A_1 = f^{-1}(y_1,q)$, $A_2 = f^{-1}(y_2,q)$ and $A_{12} = f^{-1}(y_2,q)$ $^{1}(n(y_{1}-y_{2}), q)$ where $y_1, y_2 \in f(S), q \in Q.$ Consider the set

 $A_1 - A_2 = \{ x \in S / (x,q) = (a_1,q) - (a_2,q) \}$ for some $(a_1,q) \in A_1$ and $(a_2,q) \in A_2$.

If $(x,q) \in A_1-A_2$, then $(x,q) = (x_1,q) - (x_2,q)$ for some $(x_1,q) \in A_1$ and $(x_2,q) \in A_2$

so that we have

$$f(x,q) = f(x_1,q) - f(x_2,q)$$

$$= y_1 - y_2$$

 $(x,q) \in f^{-1}((y_1,q) - (y_2,q))$

$$= f^{-1}(n(y_1-y_2), q) = A_{12}$$

Thus A_1 - A_2 c A_{12} .

(i) $\mu^{f}(m(y_1-y_2), q)$

 $= \inf \{ \mu(mx,q)/(mx,q) \in f^{1}(my_{1},q) - (my_{2},q) \}$

= $\inf \{ \mu(mx,q) / (x,q) \in A_{12} \}$

 $\geq \inf \{ \mu(mx,q)/(x,q) \in A_1-A_2 \}$

 $\geq \inf \{ \mu((mx_1,q)-(mx_2,q)) / (x_1,q) \in A_1 \text{ and } (x_2,q) \in A_2 \}$

 \geq inf { S($\mu(mx_1,q)$, $\mu(mx_2,q)$)/ (x₁,q) ϵ A₁ and (x₂,q) ϵ A₂}

Since 'S' is continuous. For every $\varepsilon > 0$, we see that if

inf { $\mu(mx_1,q) / (x_1,q) \in A_1$ } - (mx_1^*, q) } $\geq \delta$ and

inf { $\mu(mx_2,q) / (x_2,q) \in A_2$ } - (mx_2^*,q)} $\geq \delta$

 $S{\inf{\mu(mx_1,q) / (x_1,q) \in A_1}}, \inf{\mu(mx_2,q) / (x_2,q) \in A_2}$ - S ((mx₁*,q), (mx₂*,q) $\geq \varepsilon$

<u>International Journal of Computer Applications (0975 – 8887)</u> Volume 12– No.1, December 2010

Choose $(a_1,q) \mathrel{\epsilon} A_1$ and $\; (a_2,q) \mathrel{\epsilon} A_2$ such that

 $\label{eq:eq:entropy} \inf \left\{ \left. \mu(mx_1,q) \, / \, (x_1.q) \, \epsilon \; A_1 \; \right\} \text{-} \; \left. \mu(ma_1,q) \, \geq \delta \right. \qquad \text{and} \quad$

inf { $\mu(mx_2,q) \; / \; (x_2,q) \; \epsilon \; A_2 \}$ - $\mu(ma_2,q) \; \geq \delta.$ Then we have

$$\begin{split} &S\{\inf\{\;\mu(mx_1,q) \; / \; (x_1,q) \; \epsilon \; A_1\}, \; inf \; \{\mu(mx_2,q) \; / \; (x_2,q) \; \epsilon \; A_2 \; \} \\ &- \; S(\mu(ma_1,q), \; \mu(ma_2,q) \geq \epsilon \; consequently, \; we \; have \; \mu^f(m(y_1-y_1,q) \; \alpha_1,q) \geq inf\{\; S(\mu(mx_1,q), \; \mu(x_2,q)) \; / \; (x_1,q) \; \epsilon \; A_1 \; , (x_2,q) \; \epsilon \; A_2\} \end{split}$$

 $\leq S \, (\inf\{\mu(mx_1,q) \, / \, (x_1,q) \, \epsilon \, A_1\}, \, \inf\{\mu(mx_2,q) \, / \, (x_2,q) \epsilon A_2\}$

 $\leq S(\mu^{f}(my_{1},q), \mu^{f}(my_{2},q))$

Similarly we can show $\mu^{f}(xn,q) \leq \mu^{f}(y,q)$. Hence ' μ^{f} ' is anti Q- fuzzy left M-N subgroup of 'f(R)'.

Proposition 3.6: Let μ be anti Q fuzzy M-N subgroup of R. Then the Q- fuzzy subset $\langle \mu \rangle$ is a anti Q- fuzzy M-N subgroup of S generated by. More over $\langle \mu \rangle$ is the smallest anti Q- fuzzy M-N subgroup containing μ .

Proof; Let x,y ϵ N and let μ (x,q) = t, μ (y,q) = t₂ and μ (m(x-y), q) = t

----- (1)

Now let , if possible, $t_3 = \langle \mu \rangle (xn,q)$ $\leq \langle \mu \rangle (xn,q) = t_1$

Hence $t_3 = \langle \mu \rangle (xn,q) \leq \langle \mu \rangle (xn,q) = t_1$

----- (2)

Consequently conditions (1) and (2) yield that $<\mu>$ is a anti Q- fuzzy M-N subgroup of R. Finally, to show that $<\mu>$ is the smallest anti Q- fuzzy M-N subgroup containing μ , let us assume that θ to be anti Q- fuzzy M-N subgroup of R such that $\mu C \theta$ and show that $<\mu> C \theta$.

Let it possible, $t = \langle \mu \rangle (x,q) \ge \theta (x,q)$ for some $x \in N$, $q \in Q$. Let $\varepsilon > 0$ be given, then $t = \mu_t = \sup \{ k / x \in \langle \mu_k \rangle \}$. Therefore there exists K such that $x \in ,\mu_k \rangle$ and $t \cdot \varepsilon \ge k \ge t$ so that $x \in \langle \mu_k \rangle C < \mu t \cdot \varepsilon \rangle$, for all $\varepsilon > 0$. Now $x = \dot{\alpha}_1 x_1 + \dot{\alpha}_2 x_2 + \dots \dot{\alpha}_n x_n$, $\dot{\alpha}_i \in N$, x_i belongs to $t \cdot \varepsilon$. $X_i \in \mu_{t \cdot \varepsilon}$ implies $\mu (x_{i,q}) \le t \cdot \varepsilon$, that is $\theta(x_{i,q}) \le t \cdot \varepsilon$ for all $\varepsilon > 0$. Therefore

$$\theta$$
 (x,q) \leq S { θ (x₁,q), θ (x₂,q) ... θ (x_n,q)}

 \leq t- ϵ for $\epsilon > 0$

Hence θ (x,q) = t which is a contradiction to our supposition.

Proposition3.7: Let ' μ ' be a anti Q- fuzzy M-N subgroup of a near ring R and let μ * be a Q- fuzzy set in N defined by μ *(x,q) = μ (x,q) +1- μ (0,q) for all x, ϵ N. Then μ * is a normal anti Q- fuzzy M-N subgroup of R containing μ .

Proof: For any x, y \in R and q \in Q we have

 $\mu^*(m(x-y),q) = \mu(m(x-y),q) + 1 - \mu(0,q) \qquad \leq S(\mu(mx,q) + 1 - \mu(0,q), (\mu(my,q) + 1 - \mu(0,q))$

= T ($\mu^*(mx,q)$, $\mu^*(my,q)$). $\mu^*(xn,q) = \mu(xn,q) + 1 - \mu(0,q)$ $\leq \mu(x,q) + 1 - \mu(0,q)$ $= \mu(x,q)$

<u>International Journal of Computer Applications (0975 – 8887)</u> Volume 12– No.1, December 2010

Proposition 3.8: Let μ be anti Q- fuzzy left M-N subgroup of near ring R. Let μ^+ be a fuzzy α -cut set in R defined by $\mu^+(x,q) = \mu(x,q) + 1 - \mu(0,q)$ for $x \in R$, $q \in Q$. Then μ^+ is α cut normal anti Q- fuzzy left M-N subgroup of R which contains μ .

 $\label{eq:proof: For any x,y ϵ R, we have $\mu^+(x,q) + 1 - \mu(0,q)$ and $\mu^+(x,q) \le \alpha$ for all x ϵ R, m ϵ M. }$

 $\mu^{+}(m(x-y), q) = \mu(m(x-y), q) + 1 - \mu(0,q)$

 $\leq \max \{ \mu(m_{x,q}), \mu(m_{y,q}) \} + 1 - \mu(0,q)$

 $= \max\{\mu(m_{x,q}) + 1 - \mu(0,q), \mu(m_{y,q}) + 1 - \mu(0,q)\}$

= max { $\mu^+(m_{x,q}), \mu^+(m_{y,q})$ }

 $\leq \max \{ \alpha, \alpha \} \leq \alpha$

```
\mu^+(xn,q) = \mu(xn,q) + 1 - \mu(0,q)
```

$$\leq \mu(\mathbf{x},\mathbf{q}) + 1 - \mu(0,\mathbf{q})$$
$$= \mu^+(\mathbf{x},\mathbf{q})$$
$$\leq \alpha$$

Therefore, μ^+ is a α -cut normal Anti Q-fuzzy left M-N subgroup of R.

Definition 3.9: Let u and v be Q-fuzzy subsets in R. Then the S-product of u and v written as $[u,v]_S(x,q) =$ S(u(x,q),v(x,q)) for all $x \in R, q \in Q$.

Proposition 3.10 : If u and v be Anti Q-fuzzy left M-N subgroups of R, then the S-product of Anti Q-fuzzy left M-N subgroups of R is Anti Q-fuzzy left M-N subgroups of R.

Proof: For any x,y ε R, q ε Q

 $[u,v]_S(m(x-y),q)$

 $= S\{u(m(x-y),q),v(m(x-y),q)\}$

 $\leq S\{\max\{u(m_x,q),u(m_y,q)\},\max\{v(m_x,q),v(m_y,q)\}\}$

 $\leq \max \{S\{u(m_x,q),v(m_x,q)\},S\{v(m_y,q),v(m_y,q)\}\}$

 $\leq \max\{[u,v]_{S}(m_{x},q),[u,v]_{S}(m_{y},q)\}$

```
\begin{split} [u,v]_S(x_n,q) &= S\{u(x_n,q),\,v(x_n,q)\} \\ &\leq S\{u(x,q),\,v(x,q)\} \\ &\leq [u,v]_S(x,q) \end{split}
```

Hence S-product of Anti Q-fuzzy left M-N subgroups of R is Anti Q-fuzzy left M-N subgroups of R.

Definition3.11: Anti Q-fuzzy left M-N subgroup near ring R is said to Anti Q-fuzzy characteristic, if $A^{f}(x,q) = A(x,q)$ for all $x \in R, q \in Q$.

Proposition 3.12 : Let $f : R \rightarrow R'$ be an epimorphism of 'A' is anti Q-fuzzy left M-N subgroups of R the A^f is anti Q-fuzzy left M-N subgroups of R'.

Proof: Let $x, y \in R$ and $q \in Q$

 $A^{f}(m(x-y),q) = A f(m(x-y),q)$

= A(f(mx) - f(my), q)

 $\leq \max \{ A(f(mx),q), A(f(my),q) \}$

 $\leq \max \{ A^{f}(mx,q), A^{f}(my,q) \}$

 $A^{f}(xn,q) = Af(xn,q)$

$$\leq Af(x,q)$$

 $\leq A^{f}(x,q)$

Therefore, A^f is anti Q-fuzzy left M-N subgroup of R'.

Proposition 3.13 : Let $f : R \rightarrow R'$ be epimorphism. If A^f is anti Q-fuzzy left M-N subgroup of R', then A is anti Q-fuzzy left M-N subgroup of R.

Proof: Let x,y ε R, q ε Q, then there exists a,b ε X such that f(a,q) = x and f(b,q) = y.

It follows that $A(x,q) = A f(a,q) = A^{f}(a,q)$

 $A(m(x-y),q) = A f(a,q) = A^{f}(a,q)$

 $\leq \max \{A^{f}(a,q), A^{f}(b,q)\}$

International Journal of Computer Applications (0975 – 8887) Volume 12– No.1, December 2010

 $= \max \{A(a,q), A(b,q)\}$

 $\leq \max \{A(x,q), A(y,q)\}$

 $A(xn,q) = A f(a,q) = A^{f}(a,q)$

 \leq A f(a,q) \leq A f(x,q)

There fore A is anti Q-fuzzy left M-N subgroup of R.

4. CONCLUSION

Osman kazanci , Sultanyamark and Serifeyilmaz introduced the intutionistic Q- fuzzy R-subgroups of near rings. A.Solairaju and R.Nagarajan investigate the notion of Q- fuzzy left R- subgroup of near rings with respect to Tnorms.In this paper we investigate the notion of anti Qfuzzy left M-N subgroup of near ring with respect to snorm and characterization of them.

5. REFERENCES

1. S. Abou-Zoid , "On fuzzy sub near rings and ideals", Fuzzy sets. Syst. 44 (1991), 139-146.

2. Y.U. Cho, Y.B.Jun, "On intuitionistic fuzzy R-subgroup of near rings", J. Appl. Math. and Computing, 18 (1-2) (2005), 665-677.

3. K.H.Kim , Y.B. Jun, "On fuzzy R- subgroups of near rings, J. fuzzy math 8 (3) (2000), 549-558.

4. K.H.Kim, Y.B.Jun, "Normal fuzzy R- subgroups of near rings", J. fuzzy sets. Syst.121(2001), 341-345.

5. Osman Kazanci, Sultan Yamark and Serife Yimaz " On intuitionistic Q- fuzzy R- subgroups of near rings, International mathematical forum, 2, 2007, 59, (2899-2910).

6. A. Solairaju and R. Nagarajan, "Q-fuzzy left R-subgroups of near rings with respect to T-norm", Antarctica Journal of Mathematics, 5(2)(2008), 59-63.

7. A. Solairaju and R. Nagarajan, "A New structure and construction of Q-fuzzy groups", Advanced Fuzzy Mathematics, 4(1)(2009), 23-29.

8. L.A.Zadeh, Fuzzy set, inform.control 8 (1965) 338-353.