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ABSTRACT 

Prosody modeling has become the backbone of TTS synthesis 

systems. Amongst all the prosodic modeling approaches, phonetic 

methods aiming to predict duration and F0 contour are being very 

praised, thanks to the development of regression tools, such as 

neural networks (NN). Besides, parametric representations like 

Fujisaki model for F0 contour generation help to reduce the 

problem into the approximation of parameters only. But, prior to 

the prediction process, text analysis should be carried out first, to 

select and encode the necessary input features. In our purpose to 

promote Arabic TTS synthesis, an Integrated Model of Arabic 

Prosody for Speech Synthesis (IMAPSS) tool has been designed 

to integrate our developed models for text analysis, NN-based 

phonemic duration prediction and Fujisaki-inspired F0 contour. 

Hence, the yielding parameters provide a command file to be read 

by speech synthesis systems, like MBROLA.     
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1. INTRODUCTION 
Whereas TTS systems have been popularized since several years, 

especially for wide-spread languages such as English, French, 

Chinese...etc., Arabic is still awaiting more interest. Actually, 

though many systems are suggesting TTS tools for Arabic, a few 

of them are based on this language specifically-designed model. 

In fact, any language needs to be processed on its own, in order to 

extract its characteristics and to meet its requirements, and 

especially to model the dynamics of its prosodic features 

variations. 

   Phonologically speaking, prosody stands for the abstract 

phenomena incurring from speech, including accentuation, 

intonation and rhythm. The phonetic realization of these cognitive 

concepts is the physical notions of duration, pitch and intensity 

[1]. Whereas intensity deals with the speech loudness, i.e. the 

speech signal’s energy, duration and pitch are the main 

transmitters of the acoustic information, whether linguistic, 

paralinguistic or non-linguistic [2]. On another side, the prosodic 

parameters could be interpreted physiologically as the duration 

and the frequency of the vibration of the vocal tract. Both 

viewpoints suggest that a quantitative processing of the prosodic 

parameters can provide a reliable model able to generate the 

melodic effect of speech.  

   Many approaches have been investigated to reach this goal. 

Whereas rule-based models aim to take profit of the linguists’ 

know-how to establish computational model for prosodic 

parameters [3][4], the statistical models are based on the analysis 

of a dedicated corpus, to achieve a mapping between input 

features and output targets. Input data are generally extracted 

during corpus analysis through the selection of the most relevant 

features. In contrary, output targets depend on the model’s 

structure. In fact, a variety of prosodic parameters could be 

predicted, such as syllabic or phonemic durations, raw F0 values 

[5] or underlying pitch parameters [6]. Therefore, a preliminary 

study of prosodic parameters should be conducted, to determine 

(a) which parameters to predict (b) at which level, based on the 

language’s characteristics and the prosodic system components. 

Actually, though the modeling goal is the same, the 

parameterization of the model may reduce the task to the 

prediction of the parameters, provided they are phonologically 

significant. This is the cornerstone of Fujisaki model for F0 

contour generation, which suggests a superpositional 

representation of F0 contour based on the physiological 

description of the vocal tract [7]. The advantage of this model is 

the phonological interpretation of its components and parameters, 

i.e. the baseline frequency, the phrase and the accents commands, 

both described by their timing and amplitude. Hence the F0 

contour yields from the superposition of these components in the 

logarithmic domain.  

   To increase the input/output mapping, supervised learning, i.e. 

specific and separate input and output sets, is highly 

recommended. Amongst the supervised statistical learning 

techniques, neural networks are famous for their ability to 

approximate non linear functions [8], thanks to their 

generalization power and their ability to capture the latent 

relationship between the input data and the output targets. 

However, special care should be taken whilst adjusting the neural 

schemes and especially, a clear strategy could help linking the 

predicted parameters in order to use some of them as input 

features to increase the prediction potential of other ones.  

   The obtained models will be the nucleus of the integrated 

prosodic model, which executes successively a series of modules 

responsible for: 

 

 Text analysis, to extract the input features. 

 Phonemic duration prediction 
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 F0 contour generation module 

 The command files generation, to be read by MBROLA 

multi-language speech synthesis system [9]. 

 

This paper starts by describing the speech corpus, and then 

duration prediction using neural networks is investigated. The 

following section shows the F0 contour generation through the 

prediction of Fujisaki parameters. Finally, the integration of these 

components is described to evaluate the obtained results and to 

discuss the incurring issues. 

2. CORPUS ANALYSIS  

2.1 Speech material 
For this survey, we used a 200-Arabic-sentence corpus recorded 

by a male voice, with a 16-Khz sampling rate and 16-bit 

encoding, including the entire Arabic alphabet, composed by 28 

consonants, 3 short vowels and 3 long vowels. In addition, 

amongst the 6 types of Arabic syllables, the most used ones are 

present in the corpus, i.e. /CV/, /CVV/, /CVC/ and /CVVC/ [10].  

This corpus was first translated into phonetics, then segmented 

and labeled using spectrogram and waveform tools. The 

segmented data was stored in a database containing two levels: the 

predictors, i.e. the input features and the observations, i.e. the 

actual segmented targets. Then the main task while shaping the 

input space consists in classifying these features. Therefore, a 

twofold classification was suggested. The first part is processed 

linguistically, where segmented data are divided according to their 

linguistic, contextual, and phonological aspects, and the second is 

achieved statistically, as input data can be categorical or 

continuous. This classification generates a 2-dimension array 

where every factor is described according to its linguistic and 

numeric classes (Cf. Annex2).   

2.2 Fujisaki parameters extraction 
The Fujisaki model describes F0 as a function of time in the 

logarithmic domain by achieving a linear superposition between: 

1. The baseline frequency, which doesn’t alter along the 

sentence 

2. The phrase component 

3. The accent component 

The phrase and accent components are the outputs of 2 second-

order linear systems, called the phrase and the accent commands 

[11]: 

)]T-t(G-)T-t(G[AΣ

)T-t(GAΣ)F(Ln))t(F(Ln

2ja1jaaj
J

1j

0ippi
I

1ib0

=

=

+

+=
    (1) 

Where { >
=

else0

0tifteα
(t)G

tα-2

p         (2) 

  

{ >+
=

else0

0tif)γ,e).tβ1(-1min(
)t(G

tβ

a  (3) 

The parameters Ap, T0, Aa, T1, T2, α, β and γ are called the 

Fujisaki parameters. 

As inferred by the formulation of Ln(F0), Fb denotes the 

asymptotic value of F0 in absence of accent commands. 

Fujisaki constants, α, β and γ of the recorded voice were set at, 

respectively, 2/s, 20/s and 0.9 [12]. The variable Fujisaki 

parameters were obtained by Mixdorff’s tool [13] which applies a 

multi-stage process called ‘Analysis-by-Synthesis’. This process 

allows extracting the baseline frequency Fb, the phrase and the 

accent commands parameters through the minimization of the 

minimum square error between the optimal synthetic F0 contour 

and the natural F0 contour [14]. 

The first step consists in quadratic stylization to interpolate the 

unvoiced segments and the short pauses within the F0 curve, and 

to smooth the microprosodic variations due to sharp noises. Then, 

a high-pass filter is used to separate the phrase and the accent 

components through the subtraction of the filter output from the 

interpolated contour. This yields a low frequency contour 

containing the sum of phrase components and Fb. The third step 

consists in initializing the command parameters, i.e. Ap, T0, Aa, T1 

and T2. Finally, the synthesized contour is optimized, considering 

the interpolated contour as a target and the mean square error 

minimization as a criterion [14]. 

3. PROSODIC PARAMETERS MODELS  

3.1 Duration analysis 
This core is built upon a model which was developed using 

statistical learning and based on the analysis of a phonetically 

balanced Arabic speech corpus [15]. The first step consists of the 

analysis of speech material to optimize the learning process. 

Actually, many decisions have to be taken before presenting the 

input features to the statistical learning tool. 

3.1.1 Analysis level 
First, which level should be considered to predict duration? Or in 

other words, which segment should be considered as the duration 

unit? This controversial question was the topic of many 

researches. While Campbell [16] and Barbosa [17] have opted for 

the syllable, arguing that all phonemes within a syllable are 

stretched or shortened by the same factor and suggesting that it’s 

crucial to determine the syllable’s duration to decide about the 

phoneme’s one, Van Santen [18] has shown that it’s rather the 

phoneme’s duration which influences the syllable’s one, since the 

latter one is actually the sum of the earlier ones.  Thus we opted 

for the phoneme as a duration unit. 

3.1.2 Analysis domain 
Also, while examining the phonemes durations available at the 

corpus, we noticed that their distribution is not normal. In fact, the 

duration distribution is deviated to the side of short durations, so 

that the mean duration and the standard deviation are also located 

at that side. This means one can easily obtain negative predicted 

duration values after learning. The solution is to switch to the 

logarithmic domain, which offers the following advantages:  

1. It increases the resolution of small values, and since 

they are more frequent, 

2. The logarithmic domain will help getting rid of negative 

values. 

It normalizes the duration distribution by moving the mean value 

and the standard deviation to the center. 
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3.2 F0 contour analysis 
The analysis of the Fujisaki parameters allows a twofold study of 

their variation: 

A. The morphological side: Which level should be 

considered as a framework for the parameters 

estimation, i.e. the phoneme, the syllable or the phrase 

group?  

B. The strategic side: Which parameters should be 

determined first? and which ones could be highly 

correlated in order to define a stepwise strategy, where 

some predicted parameters could contribute as input 

features in the estimation process of other ones ? 

Every Fujisaki parameter is predicted using NN by training the 

input features extracted from Text. Whereas all parameters could 

be sorted out together using a single NN, delivering many outputs 

simultaneously, a stepwise prediction based on a linked scheme 

could better the prediction performance. Hence: 

1. Phrase and accent components are processed separately. 

2. For every component, timing parameters are estimated 

firstly, to be used later as input features for magnitude 

parameters prediction. 

Actually, this choice could be explained by: 

1. Longer phrase groups require closer T0 to the beginning 

of the phrase group and higher Ap to carry the phrase 

component as far as possible, to avoid its declination 

before reaching the end of the phrase group.  

2. Longer accent groups, i.e. higher (T2-T1), are usually 

associated to the most accented syllables, i.e. which Aa 

is higher. 

This strategy aims to increase the prediction power of NN by 

introducing extra-linguistic features, i.e. T0, T1 and T2.  

3.3 Selected input features 
These features are extracted by the first module. Nevertheless, 

every prosodic parameter was trained with its own features set. 

This set is selected after the analysis stage, which is achieved by 

studying the distribution of phonemes duration according to every 

single feature. Those which effect on phoneme’s duration seems 

important are kept. Nevertheless, the contribution of each feature 

should be weighted to check its relevance. Actually, some features 

may not be useful, or worse, they may struggle the learning 

performance. The final set of features was selected after such a 

contribution evaluation yielding the following set. 

3.4 Neural networks training 
If the NN is fed with all features which may have a significant 

influence on phonemic duration, and if its architecture allows 

learning the effect of each factor, by matching it to the 

corresponding corpus-extracted duration, then it should be able to 

set a model able to estimate the outputs of new speech segments 

wherever they come from, i.e. the test base or the user’s input text. 

Therefore, focus was held to select the optimal architecture of the 

NN. Actually, many neural schemes were tested to check out their 

prediction performance. For every scheme, several architectures 

were tried by changing the network’s parameters, such as the 

structure of hidden layers, the number of nodes and the transfer 

functions.  

Neural networks rely on the total connection of nodes of every 

couple of successive layers. These weighted connections allow 

encoding features during their transfer through the network. The 

first layer, i.e. the input layer, contains features issued from the 

analysis stage. Thus, the number of nodes of this layer is not 

subject to any change, as it’s equal to the number of input 

features. Furthermore, to ensure a quick convergence, or at least a 

finite-time convergence of the NN, input features were normalized 

into the interval [0,1].  

The next stage is handling the NN black box, i.e. its hidden part, 

which includes the number of intermediate layers, the number of 

nodes and the transfer function of each one. Though this is mainly 

an empirical task, some rules have been followed to guide training 

trials [19]: 

 If the input/output relationship is too complex, it would 

be better to increase the hidden elements, including the 

number of hidden layers.  

 Hidden layers should be added only if the modeling 

process is separable into many stages. Otherwise the 

extra hidden layers will be used to memorize the 

network’s output, including exceptions, instead of 

learning how to generate the suitable output. This may 

increase the risks to generalize the exceptional cases.  

 A feed-forward NN is preferred to a recurrent NN as 

outputs are totally independent. In addition, a MLP 

having 2 hidden layers has been proved to be able to 

model any continuous function, provided the right 

inputs [8]. 

 The first hidden layer should include more nodes than 

the input layer to capture local features, which are more 

frequent; while the second hidden layer should focus on 

capturing global features by bearing fewer nodes. 

Transfer functions are used to project features from one layer 

to another until they reach the last weighted sum stage at the 

output. Through this process, every feature contributes to the 

modeling process. Therefore, the transfer functions should be 

carefully selected to keep the features significance. In fact, 

the involved features have different types, and consequently, 

transfer functions should take care of this diversity. Hence 

the transfer functions should be: 

1. Heterogeneous: So that when different transfer functions 

are aligned, they may be able to capture more types of 

features. 

2. Symmetric: Such transfer functions help increasing the 

resolution and offer a larger range for the next layer’s 

transfer function. 

3. Non linear: This is necessary to model the real world 

phenomena. 

Therefore, we opted for: 

A. The Sigmoid and hyperbolic tangent transfer functions, 

respectively in the first and the second hidden layers for 

each NN. Both functions are continuous and strictly 

croissant, so that they are able to approximate any non 

linear function using MLP. 

B. The Levenberg-Marquardt training algorithm to 

minimize the least square estimation error as it allows a 
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faster convergence than the gradient descendant 

algorithm. 

C. The cross-validation technique, which helps early 

stopping of the training process, when the validation 

error starts to increase, even if the maximum epochs 

number is not reached yet, to avoid the generalization of 

the exceptions. Cross-validation could be achieved 

either in a regular way, by allocating half of the training 

set to it, or in a random way, using the bootstrapping 

technique. Both methods were tested, giving nearly the 

same performance.   

Input layer Output layer

1st hidden layer

with  sigmoid 

transfer  function

2nd hidden layer

with  hyperbolic 

tangent transfer  

function

Input layer Output layer

1st hidden layer

with  sigmoid 

transfer  function

2nd hidden layer

with  hyperbolic 

tangent transfer  

function  

FIGURE 1. MLP scheme used for prosodic parameters 

prediction 

 

4. EVALUATION 

4.1 Statistical evaluation 
For both prosodic features, statistical evaluation is carried out (a) 

to assess the generalization performance of the trained neural 

models (b) weigh the contribution of every single input feature (c) 

measure the impact of the generated F0 contour.  

Hence 20 % of the corpus data is allocated for the test stage. 

Statistical coefficients are calculated involving original and 

predicted parameters: 
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X and Y are the actual and the predicted values, either for 

phonemic duration or for Fujisaki parameters (cf. Table 1). 

In comparison to other languages, the difference could be 

explained by the difference of the corpus size. Nevertheless, 

results are very encouraging. Actually, far beyond the theoretic 

assessment, test data distribution can also tell about the accuracy 

of the model, since the normal distribution of data has been kept 

inside the same range, implying that the developed models have 

succeeded to (a) generalize the training data (b) capture the effect 

of input features on the variation of output parameters. In fact, 

this is primary goal of the neural modeling, which through the 

training stage, aims to detect the implicit relationship between 

features and targets, to be able to predict, as accurately as 

possible, the output of any new coming sample. 

TABLE 1. Prosodic parametric statistical evaluation 

Prosodic 

parameter 

Linear 

correlation 

γ 

Mean 

absolute 

error µ 

Standard 

deviation 

σ 

Corpus 

mean 

value 

Phonemic 

duration 
0.615 

 

33.825

ms 

43.938ms 

 

114.484 

ms 

T0
1 0.431 

0.072 
0.508 

- 0.409 

ms 

Ap 0.968 0.326 0.912 0.779 

T1 0.81 0.367 0.531 0.925 ms 

T2 0.784 0.415 0.584 1.074 ms 

Aa 0.791 0.095 0.130 0.307 

 

4.2 Input features’ relevance evaluation 
The feature selection stage is a key step in the prediction process, 

since the value and the interaction between the selected features 

may increase or decrease the model’s performance. Actually, the 

selection of the input features is achieved in a preliminary study, 

based on linguistic rules and on previous modeling approaches of 

Arabic prosody modeling [15] [20] [21]. 

Also, the interaction between the output targets and input features 

may be used as a referee to include or exclude some features. Yet, 

the features selection is mainly theoretical, since their impact on 

the neural model couldn’t be assessed before the relevance test. 

This test is made after the neural model is trained, yielding the 

relative variance of each input feature. Then this survey is 

necessary to (a) measure the contribution of analysis features (b) 

check the linguistic rules which had suggested them (c) optimize 

                                                                 

1 Negative values for T0 are due to the fact that the corpus 

sentences were separate, as the phrase command is launched 

slightly before the beginning of each sentence. 
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the input space size, and consequently the NN size, by getting rid 

of the least relevant features. 

5. SYSTEM INTEGRATION 
IMAPSS is an integrated environment aiming to provide, from the 

SAMPA code transcription of Arabic, a command file readable by 

a synthesis system, containing the text phonemes, the duration and 

a F0 sequence for each phoneme. This integrated system is 

presented as a Graphic User Interface (GUI) developed under 

MATLAB, to allow the following tasks (cf. Annex 1): 

1. Open existing or type and save Arabic text transcribed 

in SAMPA code. 

2. Select the prediction models for duration and F0 contour 

and adjust their parameters 

3. Generate a command file for a speech synthesis system. 

4. Plot phonemes durations, the F0 contour and its phrase 

and accent components.  
 

This prosody generator is the result of the integration of 5 

modules, having each a special task. Meanwhile, these modules 

are closely connected, as shown in Figure 2. 

 

Phonemes

segmentation

Features

analysis

Text in SAMPA code transcription

Phonemes Durations F0 values

Command file for speech synthesis system

Phonemes

segmentation

Features

analysis

Text in SAMPA code transcription

Phonemes Durations F0 values

Command file for speech synthesis system
 

FIGURE 2. IMAPSS’ block-diagram 

5.1 Text analysis module 
This module has a twofold task:  

 It is used for the text segmentation into phonemes, to be 

included in the synthesis-ready command file. 

 It performs a full-text analysis to provide the necessary 

features to the duration and F0 contour prediction models. 

These features are extracted from different levels, i.e. the 

phoneme, the syllable and the phrase. Besides, they describe 

different aspects of the text, such as its syntax, its context and its 

phonology. In fact, each prosodic parameter has its own strand of 

features, previously selected during the neural network’s learning. 

Thus, these features are neither identical, nor homogeneous. In 

addition, some of them are extracted from the output of other 

modules, as this integrated prosody model works as a linked 

structure, where some predicted parameters are used as inputs for 

other ones. 

Nevertheless, the feature extraction from text is performed in an 

optimal way, to avoid redundancy. Actually, some features are 

commonly used to estimate most prosodic parameters. Therefore, 

we have defined an extraction strategy, which takes care of the 

prediction order. Hence, duration features are extracted first for 

each phoneme, the phrase command features, and at last, the 

accent command features, which are related to syllables.  

 In addition, the features coding is related to their nature. Thus, 

discrete features mostly describing syntax and phonologic have 

categorical coding, while other ones, mainly contextual and 

positional, are considered as ordinal. 
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FIGURE 3. Features analysis strategy 

5.2 Duration prediction module 
This module uses the general features and those extracted at the 

phonemes level to be presented as inputs for the duration 

prediction model.  

Then, the models yielding from the learning process of both 

methods were incorporated to the integrated prosody generator. 

Actually, one of the greatest advantages of using learning tools, is 

that once learning is over, whatever the time it takes, the 

prediction becomes an immediate operation, provided the right 

inputs are available.  

Yet, the model selection is not specific to the duration prediction, 

as it will be shown later that it’s also extended to the F0 contour 

components. The importance of this module is not restricted to 

phonemes duration prediction. Actually, this step is crucial to 

localize syllables, and then pitch accents. Also, it calculates the 

phrase duration, which is necessary to estimate the F0 contour 

components. 

5.3 F0 contour generation module 
F0 contour is generated from text using Fujisaki model and 

statistical learning. Fujisaki has relied on the earlier works of 

Ohman about the physiological description of speech production 

[11], to develop a parametric model describing F0 as the 

superposition of two components, each being the response to a 

second order filter resulting from a impulsion command, i.e. the 

phrase command and a step wise command, i.e. the accent 

command.  

Since both components are parametric, statistical learning 

techniques, such as NN, are used to predict their parameters, i.e. 

timing and magnitude, from text-extracted features, to generate 

the corresponding F0 contour as a sum of both components in the 

logarithmic domain. Meanwhile, this integration requires the 

adjustment of some constants, too. Nevertheless, each component 

has its own model, and then its own feature set. Therefore, the 
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Fujisaki parameters prediction is executed as a step-wise process, 

starting by estimating the timing parameters for each component, 

i.e. T0 and (T1, T2), to be used as extra features for the estimation 

of the magnitude parameters, respectively Ap and Aa 

5.4 Command file generation module 
This is the ultimate output of the integrated prosody system. All 

the previously mentioned modules are executed to generate a 

command file containing:  

 The text segmentation into phonemes in SAMPA code 

transcription 

 The duration of each segmented phoneme 

 A sequence of F0 value extracted from the contour for 

the voiced phonemes 

Such a file should be read by a speech synthesis system to 

generate intelligible and natural sounding Arabic speech.  

This module receives the outputs of the other ones to organize 

tasks in a structured way, as follows: 

 Selection of the statistical learning method according to 

the user’s choice, whether NN or CART. 

 Segmentation of the input text into phonemes. 

 Extraction of the general features. 

 Extraction of duration’s specific features. 

 Estimation of the duration of every single phoneme. 

 Extraction of the phrase command’s specific features. 

 Estimation of the phrase command’s timing and 

magnitude 

 Extraction of the accent command’s features 

 Selection of accented syllables. 

 Estimation of accent command’s timing and magnitude. 

 Generation of F0 contour by the application of 

Fujisaki’s formula. 

 Generation of the speech synthesis command file.  

 

6. CONCLUSION AND DISCUSSION 
During the implementation of IMAPSS system, different prosodic 

aspects of Arabic were investigated, since prosody is the phonetic 

realization of phonological concepts, i.e. accentuation, intonation 

and rhythm. Therefore, duration and pitch were analyzed to 

determine which way could provide the best prediction of their 

values. Neural networks were selected amongst many other 

regression tools, since they offer a generalized approximation of 

such non linear problems, especially by using MLP. 

Both prosodic parameters’ models were integrated to the IMAPSS 

system, in order to use the input features issued from the text 

analysis module. The final result is a command file ready for 

speech synthesis, providing the text segmentation in SAMPA 

code, the duration and a set of F0 values, predicted for every 

phoneme. 

Though tests have shown satisfactory results, in terms of 

statistical assessment, as good correlation have been noticed 

between generated and original parameters, some issues were 

revealed by this study, mainly: 

 The relevance of some input features: This is still a 

problematic issue, since these features were selected upon 

previous studies of Arabic prosody modeling and according 

to their interaction with the target parameters. Though 

relevance evaluation could help erasing the less contributory 

features, focus should be held to investigate other unknown 

features which could be more correlated with outputs 

parameters, including non-linguistic features. 

 Fujisaki parameters analysis: Output targets are provided 

by Fujisaki analysis tool, FujiParaEditor [13]. However, this 

tool hasn’t been specifically designed for Arabic speech. 

Though some adjustments were introduced, such as for  the 

Fujisaki constants α and β, and the extension of accent 

magnitude Aa to the negative domain, and also despite the 

good approximation of the generated contour with the 

original one, we believe that a dedicated tool for Arabic 

could provide better targets’ values, henceforth more 

accurate training models. 

 Speech rate influence: In addition to the phonological, 

contextual and positional features, some non-linguistic 

features, which cannot be extracted from text, may increase 

the model accuracy if included to the neural network. 

Amongst them, the speech rate could provide a better 

personalized speech quality. Our concern is how to extract 

such features in standalone real time applications. 
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8. Annex 1: IMAPSS interface 

 

FIGURE 4. The IMAPSS interface: Fujisaki parameters, command file generated from text, phonemic durations, the phrase and 

the accent components and the resulting F0 contour for the Arabic utterance ``Kunta qudwatan lahum’’ (``You were their leader’’) 
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9. Annex 2: INPUT FEATURES INVENTORY 
Parameter Feature Class Coding 

All Phrase Mode Contextual  Categorical 

Duration Previous phoneme’s class Phonological Categorical 

 Actual phoneme’s class Phonological Categorical 

 Following phoneme’s class Phonological Categorical 

 Actual phoneme’s position in the syllable Contextual Ordinal 

 Number of remaining phonemes in the syllable  Contextual Ordinal 

 Total number of phonemes in the syllable Contextual Ordinal 

 Actual phonemes position in the phrase Contextual Ordinal 

 Number of remaining phonemes in the phrase Contextual Ordinal 

 Total number of  phonemes in the phrase Contextual Ordinal 

Duration, Aa, T1 & T2  Actual syllable’s accentuation level Phonological Categorical 

 Actual syllable’s position in the phrase Contextual Ordinal 

 Number of remaining syllables in the phrase Contextual Ordinal 

 Total number of syllables in the phrase Contextual Ordinal 

T0 and Ap 1st syllable’s accentuation level Phonological Categorical 

 1st syllable’s type Linguistic Categorical 

 1st syllable’s nucleus class  Phonological Categorical 

 1st syllable’s relative position in the phrase Contextual Ordinal 

 Number of remaining syllables in the phrase Contextual Ordinal 

 Total number of syllables in the phrase Contextual Ordinal 

 1st syllable’s nucleus relative position in the phrase Contextual Ordinal 

 Number of remaining phonemes in the phrase Contextual Ordinal 

 Total number of phonemes in the phrase Contextual Ordinal 

 Nucleus relative position in the 1st syllable Contextual Ordinal 

 Number of remaining phonemes in the 1st syllable Contextual Ordinal 

 Total number of phonemes in the 1st syllable Contextual Ordinal 

 1st phoneme’s predicted duration Contextual Ordinal 

 1st nucleus predicted duration Contextual Ordinal 

 1st syllable’s predicted duration Contextual Ordinal 

 Phrase predicted duration Contextual Ordinal 

 Phrase baseline frequency (Fb) Non-linguistic Ordinal 

Ap T0 value Non-linguistic Ordinal 

T1, T2 and Aa Previous syllable’s type Linguistic Categorical 

 Actual syllable’s type Linguistic Categorical 

 Following syllable’s type Linguistic Categorical 

 Class of syllable nucleus’ previous phoneme   Phonological Categorical 

 Actual syllables’ nucleus class Phonological Categorical 

 Class of syllable nucleus’ following phoneme   Phonological Categorical 

 Previous syllable’s accentuation level Phonological Categorical 

 Actual syllable’s accentuation level Phonological Categorical 

 Following syllable’s accentuation level Phonological Categorical 

 Number of primary (strong) accents in the sentence Phonological Ordinal 

 Number of secondary (medium) accents in the sentence Phonological Ordinal 

 Number of tertiary (weak) accents in the sentence Phonological Ordinal 

 Actual syllable’s position in the phrase Contextual Ordinal 

 Number of remaining syllables in the sentence Contextual Ordinal 

 Number of syllables in the phrase Contextual Ordinal 

 Nucleus position the phrase Contextual Ordinal 

 Number of remaining phonemes in syllable Contextual Ordinal 

 Number of phonemes in the syllable Contextual Ordinal 

 Last syllable in the sentence (Yes/No) Contextual Categorical 

 Last phoneme in the syllable (Yes/No) Contextual Categorical 

Aa T1 & T2 values Non-linguistic Ordinal 

 


