
International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

17

A Genetic Algorithm based Two Phase Fault Simulator
for Sequential Circuit

Dhiraj Sangwan

Assistant Professor

ECE Department

MITS, Laxmangarh

Seema Verma
 Associate Professor

 Department of Electronics
Banasthali Vidaypeeth

Rajesh Kumar
Associate Professor
Department of EE

MNIT, Jaipur

ABSTRACT

Testing has become an important design step now days in
digital circuit. A gate level fault simulation environment
based on realistic fault models has been presented in this
paper. A Genetic Algorithm (GA) is proposed which allows
having fault simulation with conditional execution of test

vector under 2 phase scheme. By using this approach a
random search of test vectors is possible without being caught
in a local minima or maxima. The award of fitness to the
vector set allows having a selection of test vectors with high
fault coverage and with large fault detection scores.
Experimental results are provided which shows that the
proposed technique can be employed for the detection of
faults in a sequential circuit with high fault coverage.

General Terms

Sequential Circuit, Flip- flop, Algorithms et. al.

Keywords

Genetic Algorithm, Sequential Circuits, Automatic Test
Pattern Generator, Fault coverage, Circuit Under Test, Flip-
flop

1. INTRODUCTION
Digital systems produced today are extremely complex in

nature. With increase in complexity & density of VLSI
networks in almost all Electronics appliances, a very high
demand is put on the reliability of such networks. A fault
simulator is a vital part of Automatic Test Pattern Generator
system (ATPG) system [1, 2]. Various faults might occur
while laying out such VLSI circuits. Common faults found are
the stuck-at fault and gate delay faults [3].

Stuck-at faults are electrical failures due to physical failure

mechanisms. Stuck at faults can be stuck-on(stuck-at-1)or
stuck-open faults(stuck-at-0).Unless there are logical
redundant connections, any stuck-at fault causes electrical
failure of the whole network. Hence physical testability of
VLSI circuits for stuck-at faults is very important [4].

Detection of such faults requires an optimum number of test
vectors to be selected from all possible combinations. A GA
based sequential circuit fault simulator is employed to

evaluate fitness of each candidate vector and select best vector
to apply in each time frame [5, 6]. We experimented with
various GA parameters namely population size, number of
generations, probability of crossover and mutation, fitness
award value, different crossover schemes and adaptive and
non-adaptive crossover and mutation strategy. The good fault
coverage is achieved in both test circuits namely 4 bit parallel
load shift register and vending machine controller with

relatively less execution times. The implementation of the
proposed algorithm is done using MATLAB.

1.1 Genetic Algorithm Basics
GA uses a method of inheritance to solve various problems,

such as those involving adaptive systems. Of course, since

GAs are heuristic procedures, they are not guaranteed to find

the optimum, but experience has shown that they are able to

find very good solutions for a wide range of problems. GA

work by evolving a population of individuals over a number

of generations. Since selection is biased toward more highly

fit individuals, the average fitness of the population tends to

improve from one generation to the next. The fitness of the

best individual is also expected to improve over time, and the

best individual may be chosen as a solution after several

generations [7].

The initial population is typically generated randomly, but it

may also be supplied by the user. A highly fit population is

evolved through several generations by selecting two

individuals, crossing the two individuals to generate two new

individuals, and mutating characters in the new individuals

with a given mutation probability. Selection is done

probabilistically but is biased toward more highly fit

individuals, and the population is essentially maintained as an

unordered set. Distinct generations are evolved, and the

process of selection, crossover, and mutation are repeated

until all entries in a new generation are filled. Then the old

generation may be discarded. New generations are evolved

until some stopping criterion is met. The GA may be limited

to a fixed number of generations, or it may be terminated

when all individuals in the population converge to the same

string or no improvements in fitness values are found after a

given number of generations [8]. Since selection is biased

toward more highly fit individuals, the fitness of the overall

population is expected to increase in successive generations.

However, the best individual may appear in any generation.

GA uses probabilistic rules and an initial random population.

Thus, early on, the search may proceed in any direction and

no major decision is made in the beginning. Later on, when

population has converged in some locations the search

direction narrows and a near-optimal solution is found. This

nature of narrowing the search space as generation progresses

is adaptive and is a unique characteristic of GAs [8].

This generational process is repeated until a termination

condition has been reached. If the termination criterion is not

satisfied, the population of solutions is modified by three main

operators and a new (and hopefully better) population is

created. The generation counter is incremented to indicate that

one generation of GA is completed.

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

18

Generate Initial Population

Randomly

Evaluate the Performance of Each

Population Element

Select Np individuals with repetition, such that the probability of

selection of each individual is proportional to its fitness

Pair the individuals randomly to form parents

With a high probability, Pc perform crossover on the pairs to generate

two offspring.

Mutate the offspring with a small probability, Pm

Replace all Individuals of the previous generation with

the new offspring

Stopping

Criteria Met

Yes

No

Test Vector test

Obtained

Yes

 Figure 1. Flow chart showing GA based fault Detection

1.2 Genetic Algorithm in Design Process
Deterministic test generation algorithms for combinational

circuits and sequential circuits have been used in the past, but

execution times are often long, due to the large number of

backtracks that often occur. Simulation-based approaches

have also been used and are effective in reducing execution

time. However, fault coverage is often lower. The use of GAs

for simulation-based test generation has been shown to

provide better fault coverage than deterministic algorithms in

some cases and lower execution times. A simple GA with

non-overlapping populations has been used, due to the

irregular search space.

Furthermore, in contrast to other applications, the GA is

invoked repeatedly for test generation, and the objective with

each invocation is to generate a vector or sequence of vectors

to aid in detecting one or more faults. Because of the large

number of invocations of the GA and the high cost of accurate

fitness evaluation, the GA parameters must be set to reduce

the computation time to a reasonable level, at the expense of

solution quality. In addition, approximate fitness functions

can be used to further reduce the computation time.

GA encoding for the test generation problem has been

straightforward. A simple string representation is typically

used in which each gene represents the logic value to be

applied to a particular input of the circuit at a specific time.

The GA contains non-overlapping population of binary coded

strings which undergo the evolutionary process of selection,

crossover and mutation.

2. PROBLEM FORMULATION
In order to generate a test for a fault condition it is necessary

to model the fault condition and simulate the circuit operation

with the modeled fault condition present. By using a fault

model the physical defect can be represented by altering the

characteristics of a circuit to enable it to perform as if a fault

condition were present.

Detection of faults in a circuit made of such logic gates can be

done by making the individual modules for the gates and then

propagating the fault condition to the main output of the

circuit. For a given input combination if the true output and

the output due to the faulty condition differ then the fault can

be easily detected by that input combination.

The procedure involves the application of a sequence of

patterns and the states of the Circuit under Test (CUT)

advances step by step for time frames according to the applied

test vector patterns. Initially the states of the flip-flops of the

circuits are at the unknown state “X”. As the patterns are

continued to be applied, the states of the flip-flops will

gradually be set to the known states „1‟ or „0‟ and the faults

are detected and dropped by simulated patterns. The elapsed

time for first several patterns will be higher than those of the

latter due to the fact that many faults are activated and fault

effects propagate along the circuits are mainly difficult to

detect and their propagation to the primary output is most time

consuming. Since for a sequential circuit, there is dependence

between test patterns, the state of the circuit depends on

previous patterns [9, 10].

3. PROBLEM IMPLEMENTATION

Sequential circuit test generation using deterministic

algorithm is a complex process and time consuming. The

technique involves the excitation of each target fault and the

fault effects need to be propagated to a primary output. Back

tracing is a critical step and is used to determine component

input values required to obtain a particular output value [11,

12]. A fault simulator is used to select the best vector to apply

in each time frame from a set of random vectors. By using

GA test vector streams are repeatedly generated in every

generation of GA. GA generates each test vector with a

random initial population; each bit of an individual string

represents the value applied to primary input. The objective

function is used to evaluate fitness of each candidate test

vector and best vector evolved in each generation is selected

to act as an element of final test vector set. The problem

specific knowledge has been used in fitness evaluation

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

19

allowing studying the effectiveness of Gas alone for the test

generation application.

When the fault detection process is started during the first few

generations we always have the maximum number of faults

detected but the number of faults detected drops off with

successive vectors. The GA based test generator is shown

below as flow chart [13].

The Abstract form of the algorithm is presented below

1. Phase I

Perform the good circuit simulation i.e. Initialize

the flipflops with a set of input vectors.

End;

2. Phase II

While (stop ==0 | Remaining faults > 0)

 Apply the stream of input

vectors to circuit inputs

Perform the simulation for the input sequences

Compare the obtained responses with the true

responses

end loop;

end Phase II;

end GA;

The proposed algorithm consists of two phases. In the first

phase, test vectors are generated to initialize the flip-flops.

Then test vectors are generated to detect as many faults as

possible in phase 2. Hence by first performing the true value

simulation for several or group of patterns and then followed

by performing the fault simulation for the latter patterns, the

time consuming faults can be dropped in the initial runs and

thereby saving the total simulation time [14].

The main purpose of doing phase I simulation is to initialize

the flip-flops so the fitness of test vector can be found by

considering the number of flip-flops set to a known state. So

the vector, which causes an increase in fraction of flip-flops

set or reset, is awarded higher fitness value. It can also be

called as a good circuit simulation. In phase II, the objective is

to detect the maximum number of faults as possible so the

fitness of the test vector in this phase is a measure of number

of previously undetected faults in previous generations. In

order to have fault detection at the output the propagation of

fault effects is to be accomplished [15, 16].

The overall computation effort is depending heavily on fitness

evaluation function. The GA operations (selection, crossover

and mutation) are not very time consuming. The computation

time can be improved by using a less accurate fitness function

which is easy to evaluate but this technique has an adverse

effect on the quality of the simulation i.e. it may result in

more test vectors and lower fault coverage.

A flow chart showing the steps involved in the fault

simulation process is shown below

Start

Generate Initial Random Population

of given size and lchrom

Phase I

Evaluate each input sequence

Evaluate Stuck at faults

Assign fault fitness values

Phase II

Evaluate each input sequence

Intoduce the modification in

Stfaultinftab

Evaluate Stuck at faults

If new fault is detected

Fitness = Fitness + 10

If previously detected

fault is detected

Fitness = Fitness + 1

If no fault is detected

Fitness = Fitness

Introduce changes in

stfaultinftab

Perform Crossover with

Prob Pc

Perform mutation with

prob Pm

Replace the Individuals of previous

generation with new population

generated after performing above

operations

Calculate remaining stuck

at faults

Stop

Stopping Criteria

Yes

No

Figure 2. Flow Chart Showing the Detection

Procedure

The two phase fault simulation technique has been

successfully applied over two sequential circuits namely 4 bit

parallel load Shift Register and Vending Machine Controller.

Test Circuit First (TCI): 4 Bit Parallel Load Shift Register

Figure 3. 4 bit Parallel load Shift Register

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

20

Statistics: 4 inputs; 4 output; 13 gates excluding flip-flop

gates.

Function: It will allow having a parallel load of inputs to be

transferred at the output.

The circuit has been fully evaluated for the possible stuck at

faults instances and the proposed simulator produces complete

fault coverage.

Test Circuit Second (TCII): Vending Machine Controller

Figure 4. Vending Machine Controller: Top view

Figure 5. Vending Machine Controller Block View

Statistics: 9 inputs; 4 outputs; 51 logic gates excluding

gates in flip-flops

Function: It is a state machine and allows having different

output states for different input combinations.

The circuit has been fully evaluated for the possible stuck at

faults instances and the proposed simulator produces complete

fault coverage.

4. EXPERIMENTAL RESULTS AND

DISCUSSION
The technique has been successfully applied to detect faults in
two test circuits. It has been shown with the help of figures
below that complete fault coverage is achieved for test circuits
considered. Apart from this some experiments are also
performed to find out the effect of varying various GA
parameters given below on the detection rate. The Parameters

used for analysis are: Population size: Pop size, Probability of
Crossover: Pc, Probability of Mutation: Pm, Length of the
chromosome: Lchrom, Maximum number of generations:
Maxg, Fitness Award Value: AN and Type of Crossover
(CT): 1point (1pt), 2point (2pt), Uniform crossover (uc)

4.1 Plots for 4 bit Parallel Register(Test

Circuit I)

(a) Effect of Population Size:
Specifications: Pop size: 3,6,10,12,15, Pc: 0.6, Pm: 0.25,

lchrom: 5,Maxg: 30,AN: 1:10,CT: 2pt and Stuck fault

remaining: 6,3,0,0

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45
Effect of varying the population size on fault detection

Number of Generations

R
em

ai
ni

ng
 f

au
lts

Remaining faults with popsize 3

Remaining faults with popsize 6

Remaining faults with popsize 10

Remaining faults with popsize 12

Remaining faults with popsize 15

Figure 6. Effect of changing population size on fault

detection

The figure 6 shows that if we vary the population size

parameter of GA it will have a direct effect on the number of

iterations used to have a full fault coverage. In order to reduce

the number of Generations we have to increas the population

size. The increased population size will basically gives a

probability of starting with some good some solutions

without having a need to generate and to converge to them in

future iterations and it has a direct impact on the number of

iterations required to have a complete fault detections .

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

21

(b) Effect of Maximum Number of Generations:
Specifications: Pop size: 4, Pc: 0.6, Pm: 0.25,

lchrom:5,Maxg: 5,10,15,20,AN:1:10,CT:2pt and Stuck fault

remaining: 19, 10, 3, 0

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Number of Generations

R
e
m

a
in

in
g
 f

a
u
lt
s

Remaining faults with Number of Generations as 5

Remaining faults with Number of Generations as 10

Remaining faults with Number of Generations as 15

Remaining faults with Number of Generations as 20

Figure 7. Effect of changing the number of generations on

fault detection.

The figure 7 shows that if we don‟t change the GA parameters

like Pc, Pm and Popsize. In order to have a full fault coverage

the algorithm have to be run for extra runs to explore the

search space for the undetected faults. It has been found that

without having a chance of optimizing the GA parameters

during course of fault detection the GA has to be re run for

greater number of loops to find a better solution. However ,

with the help of later graphs it has been prooved that with an

intelligent optimization of some GA parameters the algorithm

can be converged to a good solutions with less number of

iterations required.

(c) Effect of Probability of Crossover:
Specifications: Popsize: 7, Pc: 0.4,0.5,0.55,0.65,0.8, Pm: 0.1,

lchrom: 5,Maxg: 25,AN: 1:10,CT: 2pt and Stuck fault

remaining: 6, 4,2,0,0

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45
Effect of varying the Crossover Rate on fault detection

Number of Generations

R
em

ai
ni

ng
 f

au
lts

Remaining faults with Probability of crossover 0.4

Remaining faults with Probability of crossover 0.5

Remaining faults with Probability of crossover 0.55

Remaining faults with Probability of crossover 0.65

Remaining faults with Probability of crossover 0.8

Figure 8. Effect of varying the crossover rate

The figure 8 shows that the probability of crossover will need
to be higher if we want to have a faster convergence to the
solution. The probability of crossover has a direct impact on
the quality of future generations, if we start with a higher
crossover probability or if we modify during the course of run

then there are better chances that good qualities of some better
parents will be transferred to future mating pools and it will
help to achieve good detection rates.

(d) Effect of Probability of Mutation:

Specifications: Popsize: 7, Pc: 0.6, Pm: 0.01,0.1,0.3, lchrom:

5,Maxg: 25,AN: 1:10,CT: 2pt and Stuck fault remaining: 8,

3,0

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45
Effect of varying the Mutation Rate on fault detection

Number of Generations
R

em
ai

ni
ng

 fa
ul

ts

Remaining faults with Probability of mutation 0.01

Remaining faults with Probability of mutation 0.1

Remaining faults with Probability of mutation 0.3

Figure 9. Effect of varing mutation rate on fault detection

The figure 9 clearly demonstrate that by merely a reversal of

a bit in a vector stream may lead to generationto new test

sequences to have better fault coverage in lesser number of

generations. Mutation basically helps to have some alteration

in the basic character of a test vector which otherwise would

be difficult to achieve by crossover operator. It has been tried

that by selectively manipulating the bit patterns the fitness

value of a test vector can be enhanced.

(e) Effect of Fitness Award Value:
Specifications: Pop size: 7, Pc: 0.6, Pm: 0.1, lchrom: 5,Maxg:

15,AN: 1:2,1:4,1:8,1:10,CT: 2pt and Stuck fault remaining:

8,4,2,0

0 5 10 15
0

5

10

15

20

25

30

35

40

45
Effect of varying the Fitness Award Value on fault detection

Number of Generations

R
em

ai
ni

ng
 fa

ul
ts

Remaining faults with Award Number 1:2

Remaining faults with Award Number 1:4

Remaining faults with Award Number 1:8

Remaining faults with Award Number 1:10

Figure 10. Effect of varying fault detection value on

number of generations.

The figure 10 have been plotted to illustrate the effect of

fitness award value on the number of iterations required. It

has been clearly shown that as the algorithm progresses if we

award a higher fitness value to those test vectors which have

detected newer faults as compared to the already detected

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

22

faults then we may have a better solution is fewer

generations.

(f) Effect of Adaptive Crossover and Mutation Rate:
Specifications: Pop size: 7, Pc: 0.4 -0.8, Pm: 0.01-0.3,

lchrom:5, Maxg: 25,AN:1:2,CT:2pt and Stuck fault

remaining: 0

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Generation counter

F
a
u
lt
s
 C

o
v
e
re

d

Without Adaptive Crossover and Mutation

With Adaptive Crossover and Mutation

Figure 11. Effect of varying crossover and mutation rate

on number of generations.

By using Adaptive Crossove and Mutation rate we can

actually allow the GA to explore the newer regions of the

search space and hence will prevent it to be caught in local

minima. In the algorithmic implementation by varying these

rates during the course of the run newer individuals will have

a better chance of generation.

(g) Effect of Different Crossover Techniques
Specifications: Pop size: 7, Pc: 0.5 , Pm: 0.1, lchrom:5,Maxg:

25,AN:1:2,CT:1pt,2pt,uc and Stuck fault remaining: 0

The figure has been plotted to demonstrate that it is possible

to change the number of generations required for full fault

detection by merely changing the crossover style.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

Number of Generations

R
em

ai
ni

ng
 f

au
lts

Remaining faults with 1pt

Remaining faults with 2pt

Remaining faults with uc

Figure 12. Different crossover rates used and their effect

on rate of fault detection.

Figure 12 clearly shows that different crossover techniques

require different number of iterations to have complete fault

coverage. It has been found that instead of following a fixed

approach to have a crossover between two parents more

realistic results will be obtained if some rule based technique

is adopted to have a offspring generation just like what has

been shown by the uniform crossover plot.

4.2 Plots Vending Machine Controller (Test

Circuit II)

(a) Effect of Population Size:
Specifications: Pop size: 10,20,30,50, Pc: 0.6, Pm: 0.25,

lchrom: 8, Maxg: 30, AN: 1:10, CT: 2pt and Stuck fault

remaining: 19,9,0,0

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350
Effect of varying the population size on fault detection

Number of Generations

R
em

ai
ni

ng
 f

au
lts

Remaining faults with popsize 10

Remaining faults with popsize 20

Remaining faults with popsize 30

Remaining faults with popsize 50

Figure 13. Effect of varying population size on fault

detection rate.

The effect of varying the population size on the number of

generations required is clearly demonstrated by the above

figures. By increasing the population size the GA will find

more number of test vectors to operate with and stands a good

chance to quickly converging to good solution in lesser time.

(b) Effect of Maximum Number of Generations:
Specifications: Popsize: 8, Pc: 0.5, Pm: 0.15, lchrom:

8,Maxg: 19,45,80,AN: 1:10,CT: 2pt and Stuck fault

remaining: 40,19,0

The effect of varying the number of generations on the totals
faults detected in that time frame is shown in the figure 14.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350
Effect of varying the Number of Generations on fault detection

Number of Generations

Re
m

ai
ni

ng
 fa

ul
ts

Remaining faults with Number of Generations as 19

Remaining faults with Number of Generations as 45

Remaining faults with Number of Generations as 80

Figure 14. Effect of varying the number of generations on

fault detection

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

23

It has been depicted that if the GA is allowed to run for
greater number of generations then without even changing the
GA parameters it will converge to a good solution.

 (c) Effect of Probability of Crossover:

Specifications: Popsize: 15, Pc: 0.4,0.6,0.8, Pm: 0.1, lchrom:

8,Maxg: 30,AN: 1:10,CT: 2pt and Stuck fault remaining: 18,

7, 0

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350
Effect of varying the Crossover Rate on fault detection

Number of Generations

R
em

ai
ni

ng
 fa

ul
ts

Remaining faults with Probability of crossover 0.4

Remaining faults with Probability of crossover 0.6

Remaining faults with Probability of crossover 0.8

Figure 15. Effect of varying probability of crossover on

fault detection rate.

The figure 15 have been plotted to show that by varying the
crossover probability there is a great effect on number of

generations required. Depending on the number of crossover
performed in a GA, it has been found that parents with good
fitness values stand a good chance of transferring their
properties to greater number of offspring‟s and lesser are the
chances of losing their goodness in future generations. But
care needs to be taken that the probability of crossover cannot
be increased to maximum as it may lead GA to a temporary
bad solution.

(d) Effect of Probability of Mutation:
Specifications: Popsize: 14, Pc: 0.6, Pm: 0.01,0.1,0.3,

lchrom: 8,Maxg: 35,AN: 1:10,CT: 2pt and Stuck fault

remaining: 25, 9, 0

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350
Effect of varying the Mutation Rate on fault detection

Number of Generations

R
em

ai
ni

ng
 fa

ul
ts

Remaining faults with Probability of mutation 0.01

Remaining faults with Probability of mutation 0.1

Remaining faults with Probability of mutation 0.3

Figure 16. Effect of varying the mutation rate on fault

detection.
The effect of varying mutation rate on the fault detection is
clearly shown in the figure 16. Probability of mutation will try
to introduce some new qualities in the nature of test vectors
and sometimes it may lead to the generation of test vectors
which are difficult to be generated by only adopting other GA
operators, but care must be taken that it should not be used

with greater values as it may lead to loss of overall quality of
solution.

(e) Effect of Fitness Award Value:
Specifications: Popsize: 20, Pc: 0.6, Pm: 0.1, lchrom:8,Maxg:

30,AN:1:2,1:10,1:20,CT:2pt and Stuck fault remaining:

12,0,0

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350
Effect of varying the Fitness Award Value on fault detection

Number of Generations

R
em

ai
ni

ng
 fa

ul
ts

Remaining faults with Award Number 1:2

Remaining faults with Award Number 1:10

Remaining faults with Award Number 1:20

Figure 17. Effect of varying the fitness award value on

fault detection rate.

The figure 17 shows that by changing the fitness award
value to test vectors we can change the total number of
iterations required for fault detection. The fitness award
value helps in discrimination those test vectors which

actually detect new undetected faults, so by assigning them
greater values with respect to the total number of faults
detected it has been tried to give them a better chance of
survival to coming generations to be tested for fault
detection.

(f) Effect of Adaptive Crossover and Mutation Rate:
Specifications: Popsize: 15, Pc: 0.4 -0.8, Pm: 0.01-0.3,

lchrom: 8, Maxg: 35, AN: 1:2, CT: 2pt and Stuck fault

remaining: 0

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

Generation counter

F
a
u
lt
s
 C

o
v
e
re

d

Without Adaptive Crossover and Mutation

With Adaptive Crossover and Mutation

Figure 18 . Effect of varying crossover and mutation rate

during fault detection process.

It has been shown in the figure 18 that the adaptive crossover

and mutation rates can actually change the total fault detection

rate. It has been found that something the GA may not be able

to increase the number of faults detected in some iterations at

all so by rapidly monitoring the fault detection rate during the

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.10, January 2011

24

course of run we modify some GA parameters to help GA to

explore some new regions of solution space so as to detect

those faults which have not been detected yet.

(g) Effect of Different Crossover Techniques

Specifications: Popsize: 20, Pc: 0.5 , Pm: 0.1,

lchrom:8,Maxg: 40,AN:1:2,CT:1pt,2pt,uc and Stuck fault

remaining: 0

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

Number of Generations

R
em

ai
ni

ng
 f

au
lts

Remaining faults with 1pt

Remaining faults with 2pt

Remaining faults with uc

Figure 19. Different crossover techniques and its effect on

fault detection process.

If we adopt different crossover strategies then it may affect

the total fault detection rate as it may lead to new individual

generation with better fault detection possibilities. It has been

found that the crossover should be performed by using some

heuristics so as to have some new generations possible which

may lead to good fault detections as has been shown with the

help of uniform crossover plot.

5. CONCLUSION
In this paper a 2-phase fault simulator has been proposed with

this technique a true simulation followed by fault simulation

is performed to identify the possible stuck at fault instances.

Simulation based techniques can be effectively used for

sequential circuits. Genetic algorithm provides a probabilistic

based selection and random search of points in a large

solution space. The technique adopted has been successfully

applied to the two sequential circuits and all faults have been

detected. It has been found that instead of concentrating on

fixed crossover and mutation rates if variable assignment is

used then the detection rate can be considerably increased. For

both of our test circuits the GA produced effective test sets

with high fault coverage. The GA based test generator is not

limited to single stuck at fault model and other fault models

can be accommodated with appropriate fitness functions.

6. REFERENCES
[1] Michael S. Hsiao, Elizabeth M. Rudnick, Janak H. Patel,

“ Sequential circuit test generation using dynamic state
traversal”, Proc of European Design and Test
Conference, ED&TC 97, pp 22 – 28, 1997

[2] Pomeranz, I. Reddy, S.M., “On maximizing the fault
coverage for a given test length limit in a synchronous

sequential circuit”, Proc of VLSI Test Symposium, pp
173 – 178, 2003

[3] Pomeranz, I. Reddy, S.M., “TOV: Sequential Test
Generation by Ordering of Test Vectors”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp 454 – 465, 2010

[4] Wen Ching Wu, Chung Len Lee, "A Two-Phase Fault

Simulation Scheme for Sequential Circuits," pp.41, 10th
Anniversary Compendium of Papers from Asian Test
Symposium 1992-2001 (ATScomp'01), 2001

[5] Rudnick, E.M.; Patel, J.H.; Greenstein, G.S.; Niermann,
T.M., “A genetic algorithm framework for test
generation”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pp 1034 – 1044, 1997

[6] Pomeranz, I. Reddy, S.M., “Vector replacement to

improve static-test compaction for synchronous
sequential circuits”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp 336
– 342, 2001

[7] Elizabeth M. Rudnick,Janak H. Patel,Gary S.
Greenstein,Thomas M. Niermann, “Sequential circuit test
generation in a genetic algorithm
framework”,Proceedings of the 31st annual Design

Automation Conference, pp 698-704, 1994
[8] E. M. Rudnick, J. G. Holm, D. G. Saab, and J. H. Patel,

"Application of simple genetic algorithms to sequential
circuit test generation," Proc. European Design and Test
Conf., 1994, pp. 40-45.

[9] M. Srinivas and L. M. Patnaik, "A simulation-based test
generation scheme using genetic algorithms," Proc. Int.
Conf. VLSI Design, pp. 132-135, 1993

[10] Pomeranz, I. Reddy, S.M., “ A built-in self-test method
for diagnosis of synchronous sequential circuits”, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, pp 290 – 296, 2001

[11] Shuo Sheng Hsiao, M.S., “Efficient sequential test
generation based on logic simulation”, IEEE
Transactions On Design & Test of Computers, pp 56 –
64, 2002

[12] Xiaoming Yuy, Jue Wuz, Elizabeth M. Rudnicky,

“Diagnostic Test Generation for Sequential Circuits”,
Proc of International Test Conference 2000 (ITC'00),
pp.225-234, 2000

[13] V.Rajesh, Ajai Jain, “ Automatic Test Pattern
Generation for Sequential Circuits using Genetic
Algorithm”, Proc of Eleventh International Conference
on VLSI Design: VLSI for Signal Processing, pp 270-
273, 1998

[14] Xiaoming Yu Abramovici, M., “Sequential circuit
ATPG using combinational algorithms”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp 1294 – 1310, 2005

[15] Michael S. Hsiao, Elizabeth M.Rudnick and Janak H.
Patel, “Fast static compaction algorithms for sequential
circuit test vectors, IEEE Transactions on Computers, pp
311 – 322, 1999

[16] Ruifeng Guo,Sudhakar M. Reddy ,Irith Pomeranz, “ On
Improving a Fault Simulation Based Test Generator for
Synchronous Sequential Circuits”, Proceedings of the
10th Asian Test Symposium table of contents, pp 82-87,
2001.

