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ABSTRACT 

Testing has become an important design step now days in 
digital circuit. A gate level fault simulation environment 
based on realistic fault models has been presented in this 
paper. A Genetic Algorithm (GA) is proposed which allows 
having fault simulation with conditional execution of test 

vector under 2 phase scheme. By using this approach a 
random search of test vectors is possible without being caught 
in a local minima or maxima. The award of fitness to the 
vector set allows having a selection of test vectors with high 
fault coverage and with large fault detection scores. 
Experimental results are provided which shows that the 
proposed technique can be employed for the detection of 
faults in a sequential circuit with high fault coverage. 
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1. INTRODUCTION 
Digital systems produced today are extremely complex in 

nature. With increase in complexity & density of VLSI 
networks in almost all Electronics appliances, a very high 
demand is put on the reliability of such networks. A fault 
simulator is a vital part of Automatic Test Pattern Generator 
system (ATPG) system [1, 2]. Various faults might occur 
while laying out such VLSI circuits. Common faults found are 
the stuck-at fault and gate delay faults [3]. 

Stuck-at faults are electrical failures due to physical failure 

mechanisms. Stuck at faults can be stuck-on(stuck-at-1)or 
stuck-open faults(stuck-at-0).Unless there are logical 
redundant connections, any stuck-at fault causes electrical 
failure of the whole network. Hence physical testability of 
VLSI circuits for stuck-at faults is very important [4]. 

Detection of such faults requires an optimum number of test 
vectors to be selected from all possible combinations. A GA 
based sequential circuit fault simulator is employed to 

evaluate fitness of each candidate vector and select best vector 
to apply in each time frame [5, 6]. We experimented with 
various GA parameters namely population size, number of 
generations, probability of crossover and mutation, fitness 
award value, different crossover schemes and adaptive and 
non-adaptive crossover and mutation strategy.  The good fault 
coverage is achieved in both test circuits namely 4 bit parallel 
load shift register and vending machine controller with 

relatively less execution times. The implementation of the 
proposed algorithm is done using MATLAB.  

1.1 Genetic Algorithm Basics 
GA uses a method of inheritance to solve various problems, 

such as those involving adaptive systems. Of course, since 

GAs are heuristic procedures, they are not guaranteed to find 

the optimum, but experience has shown that they are able to 

find very good solutions for a wide range of problems. GA 

work by evolving a population of individuals over a number 

of generations. Since selection is biased toward more highly 

fit individuals, the average fitness of the population tends to 

improve from one generation to the next. The fitness of the 

best individual is also expected to improve over time, and the 

best individual may be chosen as a solution after several 

generations [7]. 

The initial population is typically generated randomly, but it 

may also be supplied by the user. A highly fit population is 

evolved through several generations by selecting two 

individuals, crossing the two individuals to generate two new 

individuals, and mutating characters in the new individuals 

with a given mutation probability. Selection is done 

probabilistically but is biased toward more highly fit 

individuals, and the population is essentially maintained as an 

unordered set. Distinct generations are evolved, and the 

process of selection, crossover, and mutation are repeated 

until all entries in a new generation are filled. Then the old 

generation may be discarded. New generations are evolved 

until some stopping criterion is met. The GA may be limited 

to a fixed number of generations, or it may be terminated 

when all individuals in the population converge to the same 

string or no improvements in fitness values are found after a 

given number of generations [8]. Since selection is biased 

toward more highly fit individuals, the fitness of the overall 

population is expected to increase in successive generations. 

However, the best individual may appear in any generation. 

GA uses probabilistic rules and an initial random population. 

Thus, early on, the search may proceed in any direction and 

no major decision is made in the beginning. Later on, when 

population has converged in some locations the search 

direction narrows and a near-optimal solution is found. This 

nature of narrowing the search space as generation progresses 

is adaptive and is a unique characteristic of GAs [8]. 

This generational process is repeated until a termination 

condition has been reached. If the termination criterion is not 

satisfied, the population of solutions is modified by three main 

operators and a new (and hopefully better) population is 

created. The generation counter is incremented to indicate that 

one generation of GA is completed. 
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selection of each individual is proportional to its fitness
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two offspring.

Mutate the offspring with a small probability, Pm

Replace all Individuals of the previous generation with 

the new offspring 

Stopping 
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Yes

No

Test Vector test 

Obtained

Yes

 Figure 1.  Flow chart showing GA based fault Detection 

1.2 Genetic Algorithm in Design Process 
Deterministic test generation algorithms for combinational 

circuits and sequential circuits have been used in the past, but 

execution times are often long, due to the large number of 

backtracks that often occur. Simulation-based approaches 

have also been used and are effective in reducing execution 

time. However, fault coverage is often lower. The use of GAs 

for simulation-based test generation has been shown to 

provide better fault coverage than deterministic algorithms in 

some cases and lower execution times. A simple GA with 

non-overlapping populations has been used, due to the 

irregular search space.  

Furthermore, in contrast to other applications, the GA is 

invoked repeatedly for test generation, and the objective with 

each invocation is to generate a vector or sequence of vectors 

to aid in detecting one or more faults. Because of the large 

number of invocations of the GA and the high cost of accurate 

fitness evaluation, the GA parameters must be set to reduce 

the computation time to a reasonable level, at the expense of 

solution quality. In addition, approximate fitness functions 

can be used to further reduce the computation time.  

GA encoding for the test generation problem has been 

straightforward. A simple string representation is typically 

used in which each gene represents the logic value to be 

applied to a particular input of the circuit at a specific time. 

The GA contains non-overlapping population of binary coded 

strings which undergo the evolutionary process of selection, 

crossover and mutation. 

2. PROBLEM FORMULATION 
In order to generate a test for a fault condition it is necessary 

to model the fault condition and simulate the circuit operation 

with the modeled fault condition present. By using a fault 

model the physical defect can be represented by altering the 

characteristics of a circuit to enable it to perform as if a fault 

condition were present. 

Detection of faults in a circuit made of such logic gates can be 

done by making the individual modules for the gates and then 

propagating the fault condition to the main output of the 

circuit. For a given input combination if the true output and 

the output due to the faulty condition differ then the fault can 

be easily detected by that input combination. 

The procedure involves the application of a sequence of 

patterns and the states of the Circuit under Test (CUT) 

advances step by step for time frames according to the applied 

test vector patterns. Initially the states of the flip-flops of the 

circuits are at the unknown state “X”. As the patterns are 

continued to be applied, the states of the flip-flops will 

gradually be set to the known states „1‟ or „0‟ and the faults 

are detected and dropped by simulated patterns. The elapsed 

time for first several patterns will be higher than those of the 

latter due to the fact that many faults are activated and fault 

effects propagate along the circuits are mainly difficult to 

detect and their propagation to the primary output is most time 

consuming. Since for a sequential circuit, there is dependence 

between test patterns, the state of the circuit depends on 

previous patterns [9, 10]. 

3. PROBLEM IMPLEMENTATION 

Sequential circuit test generation using deterministic 

algorithm is a complex process and time consuming. The 

technique involves the excitation of each target fault and the 

fault effects need to be propagated to a primary output. Back 

tracing is a critical step and is used to determine component 

input values required to obtain a particular output value [11, 

12]. A fault simulator is used to select the best vector to apply 

in each time frame from a set of random vectors. By using 

GA test vector streams are repeatedly generated in every 

generation of GA. GA generates each test vector with a 

random initial population; each bit of an individual string 

represents the value applied to primary input. The objective 

function is used to evaluate fitness of each candidate test 

vector and best vector evolved in each generation is selected 

to act as an element of final test vector set. The problem 

specific knowledge has been used in fitness evaluation 
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allowing studying the effectiveness of Gas alone for the test 

generation application. 

When the fault detection process is started during the first few 

generations we always have the maximum number of faults 

detected but the number of faults detected drops off with 

successive vectors. The GA based test generator is shown 

below as flow chart [13]. 

The Abstract form of the algorithm is presented below 

 

1. Phase I 

Perform the good circuit simulation i.e. Initialize 

the flipflops with a set of input vectors. 

End; 

2. Phase II 

While (stop ==0 | Remaining faults > 0) 

  Apply the stream of input 

vectors to circuit inputs 

Perform the simulation for the input sequences  

Compare the obtained responses with the true 

responses 

end loop; 

end Phase II; 

end GA; 

The proposed algorithm consists of two phases. In the first 

phase, test vectors are generated to initialize the flip-flops. 

Then test vectors are generated to detect as many faults as 

possible in phase 2. Hence by first performing the true value 

simulation for several or group of patterns and then followed 

by performing the fault simulation for the latter patterns, the 

time consuming faults can be dropped in the initial runs and 

thereby saving the total simulation time [14]. 

The main purpose of doing phase I simulation is to initialize 

the flip-flops so the fitness of test vector can be found by 

considering the number of flip-flops set to a known state. So 

the vector, which causes an increase in fraction of flip-flops 

set or reset, is awarded higher fitness value. It can also be 

called as a good circuit simulation. In phase II, the objective is 

to detect the maximum number of faults as possible so the 

fitness of the test vector in this phase is a measure of number 

of previously undetected faults in previous generations. In 

order to have fault detection at the output the propagation of 

fault effects is to be accomplished [15, 16]. 

The overall computation effort is depending heavily on fitness 

evaluation function. The GA operations (selection, crossover 

and mutation) are not very time consuming. The computation 

time can be improved by using a less accurate fitness function 

which is easy to evaluate but this technique has an adverse 

effect on the quality of the simulation i.e. it  may result in 

more test vectors and lower fault coverage. 

A flow chart showing the steps involved in the fault 

simulation process is shown below 

 

Start

Generate Initial Random Population 

of given size and lchrom

Phase I

Evaluate each input sequence

Evaluate Stuck at faults

Assign fault fitness values

Phase II

Evaluate each input sequence

Intoduce the modification in 

Stfaultinftab

Evaluate Stuck at faults

If new fault is detected 

Fitness = Fitness + 10

If previously detected 

fault is detected

Fitness = Fitness + 1

If no fault is detected 

Fitness = Fitness

Introduce changes in 

stfaultinftab

Perform Crossover with 

Prob Pc

Perform mutation with 

prob Pm

Replace the Individuals of previous 

generation with new population 

generated after performing above 

operations

Calculate remaining stuck 

at faults 

Stop

Stopping Criteria

Yes

No

 

Figure 2. Flow Chart Showing the Detection 

Procedure 

The two phase fault simulation technique has been 

successfully applied over two sequential circuits namely 4 bit 

parallel load Shift Register and Vending Machine Controller. 

 

Test Circuit First (TCI): 4 Bit Parallel Load Shift Register 

 

Figure 3.  4 bit Parallel load Shift Register 
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Statistics: 4 inputs; 4 output; 13 gates excluding flip-flop 

gates. 

Function: It will allow having a parallel load of inputs to be 

transferred at the output.  

The circuit has been fully evaluated for the possible stuck at 

faults instances and the proposed simulator produces complete 

fault coverage. 

Test Circuit Second (TCII): Vending Machine Controller  

 

Figure 4. Vending Machine Controller: Top view 

 

Figure 5. Vending Machine Controller Block View 

Statistics: 9 inputs; 4 outputs; 51 logic gates excluding 

gates in flip-flops 

Function: It is a state machine and allows having different 

output states for different input combinations. 

The circuit has been fully evaluated for the possible stuck at 

faults instances and the proposed simulator produces complete 

fault coverage. 

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 
The technique has been successfully applied to detect faults in 
two test circuits. It has been shown with the help of figures 
below that complete fault coverage is achieved for test circuits 
considered. Apart from this some experiments are also 
performed to find out the effect of varying various GA 
parameters given below on the detection rate. The Parameters 

used for analysis are: Population size: Pop size, Probability of 
Crossover: Pc, Probability of Mutation: Pm, Length of the 
chromosome: Lchrom, Maximum number of generations: 
Maxg, Fitness Award Value: AN and Type of Crossover 
(CT): 1point (1pt), 2point (2pt), Uniform crossover (uc) 
 

4.1 Plots for 4 bit Parallel Register(Test 

Circuit I) 
 

(a) Effect of Population Size: 
Specifications: Pop size: 3,6,10,12,15, Pc: 0.6, Pm: 0.25, 

lchrom: 5,Maxg: 30,AN: 1:10,CT: 2pt and Stuck fault 

remaining: 6,3,0,0 
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Figure 6. Effect of changing population size on fault 

detection 

The figure 6 shows that if we vary the population size 

parameter of GA it will have a direct effect on the number of 

iterations used to have a full fault coverage. In order to reduce 

the number of Generations we have to increas the population 

size. The increased population size will basically gives a 

probability  of starting with some good some solutions 

without having a need to generate and to converge to them in 

future iterations and it has a direct impact on the number  of 

iterations required to have a complete fault detections . 
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(b) Effect of Maximum Number of Generations: 
Specifications: Pop size: 4, Pc: 0.6, Pm: 0.25, 

lchrom:5,Maxg: 5,10,15,20,AN:1:10,CT:2pt and Stuck fault 

remaining: 19, 10, 3, 0 
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Figure 7.  Effect of changing the number of generations on 

fault detection. 

The figure 7 shows that if we don‟t change the GA parameters 

like Pc, Pm and Popsize. In order to have a full fault coverage 

the algorithm have to be run for extra runs to explore the 

search space for the undetected faults. It has been found that 

without having a chance of optimizing the GA parameters 

during course of fault detection the GA has to be re run for 

greater number of loops to find a better solution. However , 

with the help of later graphs it has been prooved that with an 

intelligent optimization of some GA parameters the algorithm 

can be converged to a good solutions with less number of 

iterations required. 

(c) Effect of Probability of Crossover: 
Specifications: Popsize: 7, Pc: 0.4,0.5,0.55,0.65,0.8, Pm: 0.1, 

lchrom: 5,Maxg: 25,AN: 1:10,CT: 2pt and Stuck fault 

remaining: 6, 4,2,0,0 
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Figure 8. Effect of varying the crossover rate 

 
The figure 8 shows that the probability of crossover will need 
to be higher if we want to have a faster convergence to the 
solution. The probability of crossover has a direct impact on 
the quality of future generations, if we start with a higher 
crossover probability or if we modify during the course of run 

then there are better chances that good qualities of some better 
parents will be transferred to future mating pools and it will 
help to achieve good detection rates. 

 

(d) Effect of Probability of Mutation: 

Specifications: Popsize: 7, Pc: 0.6, Pm: 0.01,0.1,0.3, lchrom: 

5,Maxg: 25,AN: 1:10,CT: 2pt and Stuck fault remaining: 8, 
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Figure 9. Effect of varing mutation rate on fault detection 

The  figure 9 clearly demonstrate that by merely a reversal of 

a bit in a vector stream may lead to generationto new test 

sequences to have better fault coverage in lesser number of 

generations. Mutation basically helps to have some alteration 

in the basic character of a test vector which otherwise would 

be difficult to achieve by crossover operator. It has been tried 

that by selectively manipulating the bit patterns the fitness 

value of a test vector  can be enhanced. 

(e) Effect of Fitness Award Value: 
Specifications: Pop size: 7, Pc: 0.6, Pm: 0.1, lchrom: 5,Maxg: 

15,AN: 1:2,1:4,1:8,1:10,CT: 2pt and Stuck fault remaining: 

8,4,2,0 
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Figure 10. Effect of varying fault detection value on 

number of  generations. 

The figure 10 have been plotted to illustrate the effect of 

fitness award value on the number of iterations required. It 

has been clearly shown  that as the algorithm progresses if we 

award a higher fitness value to those test vectors which have 

detected newer faults as compared  to the already detected 
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faults then we may have a better solution  is fewer 

generations. 

(f) Effect of Adaptive Crossover and Mutation Rate: 
Specifications: Pop size: 7, Pc: 0.4 -0.8, Pm: 0.01-0.3, 

lchrom:5, Maxg: 25,AN:1:2,CT:2pt and Stuck fault 

remaining: 0 
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Figure 11. Effect of varying crossover and mutation rate 

on number of generations. 

By using Adaptive Crossove and Mutation  rate we can 

actually allow the GA to explore the newer regions of the 

search space and hence will prevent it to be caught in local 

minima. In the algorithmic implementation by varying these 

rates during the course of the run newer individuals will have 

a better  chance of generation. 

(g) Effect of Different Crossover Techniques  
Specifications: Pop size: 7, Pc: 0.5 , Pm: 0.1, lchrom:5,Maxg: 

25,AN:1:2,CT:1pt,2pt,uc and Stuck fault remaining: 0 

The figure has been plotted to demonstrate that it is possible 

to change the number of generations required for full fault 

detection by merely changing the crossover style. 

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

Number of Generations

R
em

ai
ni

ng
 f

au
lts

 

 

Remaining faults with 1pt

Remaining faults with 2pt

Remaining faults with uc

 

Figure 12.  Different crossover rates used and their effect 

on rate of fault detection. 

Figure 12 clearly shows that different crossover techniques 

require different number of iterations to have complete fault 

coverage. It has been found that instead of following a fixed 

approach to have a crossover between two parents more 

realistic results will be obtained if some rule based technique 

is adopted to have a offspring generation just like what has 

been  shown by the uniform crossover plot. 

4.2 Plots Vending Machine Controller (Test 

Circuit II) 
 

(a) Effect of Population Size: 
Specifications: Pop size: 10,20,30,50, Pc: 0.6, Pm: 0.25, 

lchrom: 8, Maxg: 30, AN: 1:10, CT: 2pt and Stuck fault 

remaining: 19,9,0,0 
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Figure 13. Effect of varying population size on fault 

detection rate. 

The effect of varying the population size on the number of 

generations required is clearly demonstrated by the above 

figures. By increasing the population size the GA will find 

more number of test vectors to operate with and stands a good 

chance to quickly converging to good solution in lesser time. 

(b) Effect of Maximum Number of Generations: 
Specifications: Popsize: 8, Pc: 0.5, Pm: 0.15, lchrom: 

8,Maxg: 19,45,80,AN: 1:10,CT: 2pt and Stuck fault 

remaining: 40,19,0 

The effect of varying the number of generations on the totals 
faults detected in that time frame is shown in the figure 14. 
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Figure 14. Effect of varying the number of generations on 

fault detection 
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It has been depicted that if the GA is allowed to run for 
greater number of generations then without even changing the 
GA parameters it will converge to a good solution.  
 

 (c) Effect of Probability of Crossover: 

Specifications: Popsize: 15, Pc: 0.4,0.6,0.8, Pm: 0.1, lchrom: 

8,Maxg: 30,AN: 1:10,CT: 2pt and Stuck fault remaining: 18, 

7, 0 
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Figure 15. Effect of varying probability of crossover on 

fault detection rate. 

The figure 15 have been plotted to show that by varying the 
crossover probability there is a great effect on number of 

generations required. Depending on the number of crossover 
performed in a GA, it has been found that parents with good 
fitness values stand a good chance of transferring their 
properties to greater number of offspring‟s and lesser are the 
chances of losing their goodness in future generations. But 
care needs to be taken that the probability of crossover cannot 
be increased to maximum as it may lead GA to a temporary 
bad solution. 

(d) Effect of Probability of Mutation:  
Specifications: Popsize: 14, Pc: 0.6, Pm: 0.01,0.1,0.3, 

lchrom: 8,Maxg: 35,AN: 1:10,CT: 2pt and Stuck fault 

remaining: 25, 9, 0 

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350
Effect of varying the Mutation Rate on fault detection

Number of Generations

R
em

ai
ni

ng
 fa

ul
ts

 

 

Remaining faults with Probability of mutation 0.01

Remaining faults with Probability of mutation 0.1

Remaining faults with Probability of mutation 0.3

 

Figure 16. Effect of varying the mutation rate on fault 

detection. 
The effect of varying mutation rate on the fault detection is 
clearly shown in the figure 16. Probability of mutation will try 
to introduce some new qualities in the nature of test vectors 
and sometimes it may lead to the generation of test vectors 
which are difficult to be generated by only adopting other GA 
operators, but care must be taken that it should not be used 

with greater values as it may lead to loss of overall quality of 
solution. 

 

(e)  Effect of Fitness Award Value: 
Specifications: Popsize: 20, Pc: 0.6, Pm: 0.1, lchrom:8,Maxg: 

30,AN:1:2,1:10,1:20,CT:2pt and Stuck fault remaining: 

12,0,0 
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Figure  17. Effect of varying the fitness award value on 

fault detection rate. 
 
The figure 17 shows that by changing the fitness award 
value to test vectors we can change the total number of 
iterations required for fault detection. The fitness award 
value helps in discrimination those test vectors which 

actually detect new undetected faults, so by assigning them 
greater values with respect to the total number of faults 
detected it has been tried to give them a better chance of 
survival to coming generations to be tested for fault 
detection. 
 

(f) Effect of Adaptive Crossover and Mutation Rate: 
Specifications: Popsize: 15, Pc: 0.4 -0.8, Pm: 0.01-0.3, 

lchrom: 8, Maxg: 35, AN: 1:2, CT: 2pt and Stuck fault 

remaining: 0 
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Figure 18 . Effect of varying crossover and mutation rate 

during fault detection process. 

It has been shown in the figure 18 that the adaptive crossover 

and mutation rates can actually change the total fault detection 

rate. It has been found that something the GA may not be able 

to increase the number of faults detected in some iterations at 

all so by rapidly monitoring the fault detection rate during the 
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course of run we modify some GA parameters to help GA to 

explore some new regions of solution space so as to detect 

those faults which have not been detected yet. 

(g) Effect of Different Crossover Techniques  

Specifications: Popsize: 20, Pc: 0.5 , Pm: 0.1, 

lchrom:8,Maxg: 40,AN:1:2,CT:1pt,2pt,uc and Stuck fault 

remaining: 0 
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Figure 19. Different crossover techniques and its effect on 

fault detection process. 

If we adopt different crossover strategies then it may affect 

the total fault detection rate as it may lead to new individual 

generation with better fault detection possibilities. It has been 

found that the crossover should be performed by using some 

heuristics so as to have some new generations possible which 

may lead to good fault detections as has been shown with the 

help of uniform crossover plot. 

5. CONCLUSION 
In this paper a 2-phase fault simulator has been proposed with 

this technique a true simulation followed by fault simulation 

is performed to identify the possible stuck at fault instances. 

Simulation based techniques can be effectively used for 

sequential circuits. Genetic algorithm provides a probabilistic 

based selection and random search of points in a large 

solution space. The technique adopted has been successfully 

applied to the two sequential circuits and all faults have been 

detected. It has been found that instead of concentrating on 

fixed crossover and mutation rates if variable assignment is 

used then the detection rate can be considerably increased. For 

both of our test circuits the GA produced effective test sets 

with high fault coverage. The GA based test generator is not 

limited to single stuck at fault model and other fault models 

can be accommodated with appropriate fitness functions. 
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