
International Journal of Computer Applications (0975 – 8887)

Volume 12– No.12, January 2011

47

A Modified Algorithm for Buffer Cache Management

ABSTRACT
A fundamental challenge in improving file system

performance is to design effective block replacement

algorithms to minimize buffer cache misses. In this paper an

algorithm is proposed for buffer cache management with

prefetching. The buffer cache contains two units, the main

cache unit and prefetch unit. The sizes of both the units are

fixed. The total sizes of both the units are a constant. Blocks

are fetched in one block look ahead prefetch principle. The

block placement and replacement policies are defined. The

replacement strategy depends on the most recently accessed

block and the defined miss count percentage or hit count

percentage of the blocks. FIFO algorithm is used for the

prefetch unit.

KEYWORDS
Buffer cache management, prefetching, data access. File

systems management, operating systems performance.

1. INTRODUCTION
Buffer cache management is a widely studied topic. Many

algorithms have been proposed to improve the same. LFU,

LRU-k, 2Q, FBR, LRFU, C-LRU (Cooperative -LRU), D-LRU

(Distributed-LRU), N-Chance, RobinHood are some of them.

In LFU, the least frequently used block is replaced. In LRU-k

the algorithm keeps track of the last k references to a page.

The page which has shortest interarrival time is retained in the

cache. In 2Q two queues are maintained to place pages as

either hot or cold. On a re-reference to a page in a queue, it is

treated as more likely to be referenced. In FBR, the blocks are

maintained in LRU order but are replaced in least frequently

used order. In LRFU, a function involving the time of access to

the blocks is taken into account to determine the block to be

replaced. Prefetching has also been proven to be effective as

discussed in [3, 4, 6 and 7]. An alternative to LRU

replacement was suggested in [9]. C-LRU, RobinHood

algorithm is cooperative algorithm. C-LRU based on the D-

LRU et. al [8], the idea is that when a client requests a chunk

from another client, a new copy of this chunk will be created

by this the importance of the chunk in both clients should be

reduced and also RobinHood is based on the N-Chance

algorithm, N-Chance for singlet evicted but RobinHood, a

singlet (i.e. “poor” chunk) is forwarded to a peer that has a

chunk that is cached at many clients (i.e. “rich” chunk). The

File system speed has impact on buffer cache management [1].

In [3] an algorithm called W2 R algorithm proposes a method

for prefetching in an aggressive manner. The authors propose a

method where the cache is considered to be of two units –

Weighing and Waiting whose sizes can be changed

dynamically. The waiting room has blocks that are prefetched.

The weighing room has blocks that have been accessed. The

algorithm follows one block look ahead (OBL) for prefetching.

The sizes of the two rooms are adjusted based on the time of

access of a block from the time it is brought into the Waiting

compartment. This paper proposes an algorithm to place and

replace blocks in the buffer cache based on OBL principle. The

buffer cache consists of two parts – prefetch unit and main

cache. The sizes of the two units are fixed. Model with

variable sizes is a topic of future research. On a miss, the block

is fetched into the main cache. The next sequential block is

fetched into the prefetch unit. On a hit in prefetch, the block is

brought into the main block. The block with maximum number

of misses which is not the most recently accessed is replaced

by the algorithm of et al[1] but by this algorithm the

maximum miss percentage miss count/(miss count + hit count)

* 100) and which is not the most recently accessed is replaced

by the new block or maximum hit percentage block is

continue. It means which block has the higher hit count, its

more chance to in main cache so continue first. On every hit,

the corresponding block’s hit count is incremented.

Simultaneously, the miss count of all the other blocks in the

main cache is incremented. This is to say that the rest of the

blocks are not useful at that point of time. It is not possible for

two blocks to have same hit and miss counts as they are

fetched at different points of time. The algorithm keeps track

of most recently accessed and the relative usage of the blocks

over a period of time. The rest of the paper is organized as

follows. Section 2 gives motivating example, section 3 gives

the algorithm, section 4 the conclusion, and section 5

references.

2. MOTIVATING EXAMPLE
Consider a list of references. In W2 R algorithm the LRU

algorithm is used for replacing blocks in the weighing room.

Consider the following scenario. A block b1 is brought in at

time t1. It has 20 misses and 40 hits. It has been in the cache

for 60 units of time. Let block b2 have 30 misses and 70 hits

and block b3 have 7 miss and 20 hit. Let the LRU block is b1.

If the size of the cache is three blocks, then if block b4 is

needed, then block b1 is evicted. If the future references were

for block b1, then there would be a miss. The et. al[1]

algorithm finds the block with maximum number of misses

which is not most recently accessed,b2 is that block. Hence it

replaces b2 Hence the request for b1 is a hit, but this algorithm

the maximum miss percentage is b1 (33.3%) and b2 has 30% or

just opposite the hit percentage of b1 is 66.7% and b2 is 70%

and not most recently accessed block replace. So it replace the

b1. The algorithm is based on the concept that blocks with

maximum amount of non access over their life in the cache till

the current point is good candidates for replacement. This is

the motivation.

Mukesh Kumar Chaudhary, Manoj Kumar, Mayank Rai and

Rajendra Kumar Dwivedi

Department of Computer Science and Engineering, M. M. M Engineering
College, Gorakhpur, India

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.12, January 2011

48

3. ALGORITHM
This section describes the algorithm for the proposed model.

It derives the time complexity of the algorithm and

differentiates with other algorithms. The algorithm proceeds as

follows the proposed system contain two parts main cache unit

and prefetch unit. The sizes of both the units are fixed. Buffers

main cache unit and prefetch unit hold the cached and

prefetched data. The size of the whole system is a constant.

Each block in the main cache unit has two counters miss and

hit. The miss counter gives the total number of non references

to the block and the hit count gives the total number of

references to the block while it is resident in the cache. The

following are the steps taken on an access to a block. Each

block is identified by its block address.

1 If the block is in main cache its hit count is incremented.

2 If the block is in prefetch unit it is brought into the main

cache unit. The placement/replacement strategy is as

follows. If there are empty slots in the main cache, the block

is placed in it. Else, the block with the maximum miss count

percentage i.e. (miss count / (miss count + hit

count))*100 and which is not the most recently accessed is

replaced. The hit count of the block is set to one and it is

marked as the most recently accessed block.

3 If the block is not in prefetch and main cache, it is fetched

from the disk to the main cache. The Replacement policy is

same as described in step 2, The hit count of the block is set

to one and the Miss count of the block is set to zero. The

next sequential block is fetched into the prefetch unit.

The time complexity of the algorithm is of the order of sizes of

the main and prefetch caches. The worst case is when there is

a miss and the whole of main cache and prefetch cache has to

be searched before placing the block in the main cache. The

following is the conceptual organization of the buffers. The

address stream consists of the generated addresses. Each

address is depicted by 1 in the Figure 1. It is searched for in

the buffer cache depicted by 2. If found, the hit count is

incremented. If not, it is searched for in the prefetch unit

depicted by 3. If found, it is fetched into the main cache

depicted by 4. The hit counter is suitably incremented for the

fetched block. In case of a miss, the data is fetched from main

memory to the main cache unit depicted by 5. The next

physical block is also prefetched into the prefetch unit depicted

by 6.

Figure1: Organization of the buffer and cache and

sequence of steps to fetch an address.

Various kernel components on the path from file system

Operations to the disk by et. al [2] figure 2

File System accesses through various kernel subsystems.

Firstly it accesses the buffer cache which contains two units,

the main cache unit and prefetch unit. The sizes of both the

units are fixed. The total sizes of both the units are a constant.

FIFO is used in prefetch unit .There are two counters which

count miss count and hit count which are useful to calculate

the miss count percentage and hit count percentage. Kernel I/O

makes an I/O request to Kernel I/O clustering unit which then

initiates an disk request to Disk Driver to fetch the block from

disk to main cache unit.

Figure 2: Various kernel components on the path from file

system operation to the disk.

The proposed algorithm ensures the following.

1. The number of misses for any two blocks is not the

same. This is because blocks are fetched at distinct units

of time. While a block is fetched, its hit count is set to

one. The incrementing of the miss count takes place when

the block is not referenced. Suppose there are two blocks

a and b. Let them be fetched at time t1 and t2 respectively.

Let t1 < t2. Then assuming there was only one reference to

a, the miss count of a is t2 – t1- 1. The miss count of b will

start after t2. Hence the result.

2. The proposed algorithm differs from LFU. In Least

frequently used, the block that was referenced minimum

number of times is replaced. In the proposed algorithm,

the block could have maximum number of hits and also

misses. Hence it could be replaced though it is most

frequently used within the time span of its arrival and

Prefetch

Unit

Main

Cache

Unit

Address stream

Main

Memory

1

2 3

4

6
5

File system access through

 various kernel subsystems

 Buffer Cache

 Kernel I/O

 +

 Prefetching

 Kernel I/O Clustering

 Disk Driver

 Disk

Hits Cache for

cached buffer

Cache

misses

I/O requests

Disk requests

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.12, January 2011

49

current interval. For example suppose there is a request

for blocks 1, 4, 5, 1, 5, 5, 4, 4, 5, 5, 4, 1. The following

table gives the statistics for this address trace. Let there

be a request for block number 6. According to LFU, block

number 1 will be replaced. According to the proposed

algorithm, block number 1 has the highest miss count

percentage but it is the most recently accessed. Hence

second block with maximum miss count percentage ,that

is block number 4, will be replaced where miss count

percentage is calculated by the formula: ((miss

count)/(miss count + hit count))*100.

3. The proposed algorithm differs from first in first out

(FIFO) algorithm. In FIFO, the block that is fetched first

is replaced first irrespective of its last time of reference.

In the proposed algorithm if the block is the most recently

accessed, it is not replaced.

Table 1: Example for comparison of proposed

algorithm with LFU algorithm.

S.NO.

Block

No.

Miss

count

Hit

count

% Miss

count

 1

 1

 7

 3

70

 2

 4

 8

 4

66.67

 3

 5

 7

 5

58.33

4. The proposed algorithm differs from LRU. In

5. LRU, the least recently used block is placed. In the

proposed algorithm it could be the case that the LRU

block has lesser misses than others. Hence it won’t be

replaced in this case.

6. The proposed algorithm differs from MRU. In MRU, the

most recently used block is replaced. This is not the case

in the proposed algorithm. Consider the mathematical

aspects of the proposed model. The input stream can be

a. Sequential

b. Random

c. Mixed

For sequential input, if a block bi is in main cache unit; its

successor bi+1 will be in the prefetch unit. Hence there will be

miss only for the first block and odd numbered blocks. All

other accesses are hits in the prefetch unit. For random input,

suppose that block bi in the main cache unit. Let the probability

of the next reference being bi+1 be p1, bi-1 be p3, bj where j>i+1

be p2, bk, k<i-1 be p4. Then the probability of the next block is a

hit is p1+p3 and miss is p2+p4.Based on the random function

used, these can be determined.

4. CONCLUSION
A new algorithm to achieve buffer cache management based on

prefetching has been proposed in this paper. The algorithm

assumes two units main cache unit and prefetch unit in the

memory. The main cache unit is the buffer cache and the

prefetch unit has the prefetched blocks. The algorithm

increments the hit count of a block on every access and

increments the miss count of a block for every non reference to

it. The most recently accessed block is not chosen for

replacement. The block with maximum miss count percentage

that is not the most recently used is used for replacement in

case of conflict. The time taken to execute the algorithm is

O(fetch time + prefetch time) in the worst case of a miss in the

main and prefetch units. For the W2R algorithm the time

complexity is also O(fetch time + prefetch time) and the time

complexity of et. al [1] is also O(fetch time + prefetch time).

The algorithm has been compared with W2R algorithm. The

algorithm gives the same performance as W2R algorithm for

sequential inputs and performs better in terms of number of

hits for random inputs.

5. ACKNOWLEDGEMENTS
We (all three members) are very thankful to our eminent

teacher Lect. Rajendra Kumar Dwivedi, who has inspired and

motivated us to achieve such type of daunting work, He has

constantly accelerated us to finish our work within time.

6. REFERENCES
[1] S.Subha, An Algorithm for Buffer Cache

Management, Sixth International Conference on

Information Technology: New Generations, 2009.

[2] Ali R.Butt, Charis Gniady and Y. Charlie Hu,The

Perfomance Impact of kernel Prefetching on Buffer Cache

Replacement Algorithms, ACM SIGMETRICS, 2005.

[3] H. Seok Jeon, Sam H.noh, A Database Disk Buffer

Management Algorithm based on Prefetching,

Proceedings of the seventh international conference of

Information and Knowledge Management 1998 pp-167-

174 .

[4] Hui Lei, Dan Ducha mp, An Analytical Approch to

File Prefetching, Proceedings of the USENIX 1997

Annual Technical Conference, pp-275-288, 1997.

[5] Mark palmer, Stanley B. Zdonik, FIDO, A Cache that

learns to Fetch, Proceeding of 17th International

Conference on Very Large Databases, pp-255-264, 1991.

[6] Pei Cao, Edward W. Felten, Anna R. Karlin, Kai Li, A

Study of Integrated Prefetching and Caching Strategies,

Measurement and Modeling of Computer Systems, 1995.

[7] Pei Cao, Edward W. Felten, Anna R. Karlin, Kai Li,

Implementation And Performance of Integrated

Application-Controlled File Caching, Prefetching and

Disk Scheduling, ACM Transactions on Computer

Systems, 1996.

[8] Eric Anderson, Christopher Hoover, Xiaozhou Li,

New Algorithm for File System Cooperative Caching,

ACM International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication

Systems, 2010.

[9] Theodore Johnson, Dennis Shasha, 2Q: A Low

Overhead High Performance Buffer Management

Replacement Algorithm, Proceedings of the Twentieth

International Conference on Very Large Databases, 1994.

[10] Song Jiang, Xiaodong Zhang, Workloads: A Novel

Replacement Algorithm to Improve Buffer Cache

Performance, Transactions on Computers, 2005.

