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ABSTRACT
Feature usability index is introduced here as a measure for evaluat-
ing classification efficacy of features. It is defined using measures
of homogeneity, class specificity, and error in decision making.
Homogeneity measures the extent of outlying observations, class
specificity assesses the separation between distributions of differ-
ent labeled classes, and error in decision making is computed using
overlap in posteriori decision boundary. This is followed by feature
ranking and optimal feature subset selection through ordering of
features based on feature usability index and involves a complexity
of O(D logD) for D features. The results validating classifier in-
dependent feature ranking and optimal feature subset selection are
also presented aong with a comparative analysis using χ2 statistics
for feature selection.

General Terms
Pattern Reconition, Machine Intelligence, Data Mining

Keywords
Feature ranking, feature selection, knowledge discovery, knowl-
edge engineering, pattern recognition

1. INTRODUCTION
Pattern recongition is defined as an act of taking in raw data and
making an action based on the representative pattern in it [6, 22].
Over the past millions of years, humans have evolved an astound-
ingly complex process that underlies this act of perception and de-
cision [4]. Accordingly there have been manifold developments in
building human like intelligent decision making machines, along
with greater exploration and understanding of salient concepts in-
volved in naturally existing pattern recognition systems.

Traditionally, the process of pattern recognition starts with iden-
tification of linguistic features by heuristic inspection of an ap-
plication expert. These linguistic features are measured appropri-
ately using analytical methods for creating a library of features (at-
tributes) to be used in pattern recognition applications. Every an-

alytical method used for quantifying a linguistic feature indicates
at a specific physical essence. Unless explicitly specified, given
an object, its linguistic feature, is expressed in an attribute vec-

tor x =
[
x(1),x(2), · · · ,x(d), · · · ,x(D)

]
, where each element x(d) of x

is an analytical value contributed by measurement of the dth fea-
ture. The N samples of x are x1,x2, · · · ,xN , and their correspond-
ing class labels are y1,y2, · · · ,yN . These class labels are finite and
yn ∈ {ω1,ω2, · · · ,ωK} for a K class classification problem.

In a classification or discrimination process we assume that we have
a set of patterns of known class {(xn,yn) ,n = 1,2, . . . ,N} referred
to as the training or design set and is used to design the classifier.
A classifier is mathematically expressed as a hypothesis or a com-
bination of hypotheses used for mapping an input pattern x̂n to a
label ŷn.

hζ : x̂n → ŷn (1)

This hypothesis
(

hζ

)
is referred to as an inducer in the training

phase and as predictor in testing and deployment phase. Proper
classification is achieved when ŷn ≡ yn. Contrary to this action, an
improper classification is associated with a loss due to error in deci-
sion making. Proper training of the inducer using a salient training
set of data ensures reduction in loss due to error in decision mak-
ing. For a given architecture, this involves selecting the best sub-

set of features x̂ for which J
(

hζ : x̂
)
= max

{x̂}

{
J
(

hζ : x̂
)}

, where

J (·) is the performance measure of a hypothesis or classifier and
includes either of error rates, accuracy, estimates of probability of
class membership to true probability, etc. In a training set with D

features, the dimension of the hypotheses
(

hζ : x̂ → ŷ
)

to be in-

duced for testing to obtain the best perfroming feature subset is
D

∑
d=1

(
D
d

)
� 2D. Thus a linear change in the dimension of the fea-

ture vector x̂ leads to an exponential change in dimension of the
hypotheses space.
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1.1 Dimensionality Reduction and Feature Se-
lection

Since linear reduction in feature space leads to an exponential de-
cline in size of the inducer training set, there has been considerable
developments in this respect. Methods of dimensionality reduc-
tion includes principal component analysis, which seeks to project
data in a least square sense through linear kernel transformaton.
This method performs well with statistically dependent measure-
ments [6,22]. Another approach for reduction in dimension of fea-
ture space is through feature slection [10–13].

Feature selection as an area of interest within pattern recognition,
deals with selection of a subset or list of attributes or variables
used in construction of a model describing observations. The pur-
pose of this stage includes reducing data dimensionality through
removal of irrelevant and redundant features, reducing the amount
of data needed for learning, improving predictive accuracy of a
classification hypothesis, and increasing comprehensibility of the
constructed hypothesis [10].

Although literatures suggest several existing methods of feature se-
lection [13] yet, Forman states “. . . feature selection is still in its
infancy and major opportunities await” [10].

1.2 Organization of the Paper
The paper presents feature usability index as a measure of clas-
sification efficacy of features in Section 2. This measure is conse-
quently used for feature ranking followed by optimal feature subset
selection in Section 3. Experimental validation of the technique us-
ing three classifier architectures and two dataset are also presented
along with a comparison of feature subset selction using χ2 statis-
tics based test in Section 4. Section 5 discusses the performance of
experimental trials and their outcomes. Finally we conclude about
the properties of our method and scope for further development in
Section 6.

2. FEATURE USABILITY INDEX
In this work a fusion of several methods used by domain experts
from statistics, image processing and decision theory are used for
reducing complexity of the hypotheses space by reducing dimen-
sionality of the feature space. Feature usability index presented in
this section is used as a measure of expressing classification ef-
ficacy of a feature. We represent usability index of the dth fea-
ture F (d) as f (d), computed using measures of homogeneity, class
specificity, and error in decision making. The following subsec-
tions elaborate further.

2.1 Homogeneity
An important aspect of data quality analysis not addressed in fea-
ture selection approaches till data [11] is in understanding homo-
geneity of observations. Observations are more homogeneous if
they have less density of outliers. Although they are not completely
nonexistant, yet complete lack of outliers in a set of observations
can lead to model misspecifications, and incorrect results [3]. Vari-
ous approaches in outlier identification and their subsequent rejec-
tion are generally categorized for data generated out of univariate
and multivariate distributions [3], parametric and non-parametric
methods of identification [3], and predictable [18, 23] as well as
unpredictable [1, 2, 7] number of outliers.

The method of expressing homogeneity of observations is based
on [23] and starts with computing the one-outlier scatter ratio of a

sample

s(d)n =
|a(d)|
|a(d)n |

(2)

where |a(d)| is the internal scatter of samples belonging to each

of the K classes, and |a(d)n | is the analogous quantity with the nth

observation omitted.

Literatures have used higher order statistics based on one-outlier
scatter ratio for rejecting outlying observations [2]. Here we de-
fine and use one outlier ratio as the ratio of the number of outlying
observations to the number of coherrent observations for identify-
ing density of outlying observations.

O(d) =
card

{(
|s(d)n −1|> 0.01

)}

card
{(

|s(d)n −1| ≤ 0.01
)} ∀n = 1,2, · · · ,N (3)

where card{·} denotes the set cardinality opeartor. O(d) provides
an essence of the density of outlying observations with respect to
the dth feature extraction technique.

The numerical expression of this measure has a theoretical bound of
[0,∞) with the minimum value pertaining to observations with no
outliers. Higher values tending towards maximal boundary indicate
at abundance of outliers in the data.

2.2 Class Specificity
Class specificity of observations for a particular feature indicates its
discrimination potential. It is generally associated with a high value
of between class scatter and a low value of within class scatter [6].
This characteristic of a feature is inspired by [17], and for a multi-
class problem it is expressed as the minimum of the ratio of between
class scatter to within class scatter of the observations analyzed
over all classes. For the dth feature, it is expressed as,

S(d) = min
(y j ,yk)

⎧⎪⎨
⎪⎩

∣∣∣μ(d)|y j −μ(d)|yk

∣∣∣2∣∣∣(σ (d)|y j

)2
+
(
σ (d)|yk

)2
∣∣∣

⎫⎪⎬
⎪⎭ (4)

where
(
y j,yk

) ∈ {ω1,ω2, · · · ,ωK} and y j �= yk; μ(d)|yk and σ (d)|yk

are the mean and standard deviation of the observations corre-
sponding to the dth feature having class label yk.

Expression bound of this measure is [0,∞) with minimum indicat-
ing at complete overlap of the distributions and the value tending
towards maximum due to large separation between them.

2.3 Error in Decision Making
Error in decision making generally arise due to overlap in posteriori
decision boundary. This is directly associated with the risk involved
in misclassifying observationa. Here class overlap in Bayesian pos-
teriori decision boundary [6, 22], to the strength of decision mak-
ing, involved in deciding based on the dth feature is expressed as
the risk factor and is quantified accordingly.
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R(d) =

∫
x(d)

Pmin

(
yk|x(d)

)
dx(d)∫

x(d)
Pmax

(
yk|x(d)

)
dx(d)

(5)

where Pmin

(
yk|x(d)

)
= min

yk∈{ω1,ω2,··· ,ωK}

{(
P
(

yk|x(d)
))}

,

Pmax

(
yk|x(d)

)
= max

yk∈{ω1,ω2,··· ,ωK}

{(
P
(

yk|x(d)
))}

, and P
(

yk|x(d)
)

is the Bayesian posteriori probability of belongingness of an obser-
vation x(d) to a class with label yk ∈ {ω1,ω2, · · · ,ωK}.

This measure has an expression bound of [0,1] with maximum in-
dicating at complete overlap in posteriori decision boundary while
maximum indicating at zero overlap.

2.4 Feature Usability Index
Classification efficacy of a feature is expressed using usability in-
dex computed using the prior evaluated characteristics of features.
The form of expression is simple and presented as in Eq. 6 in con-
sideration of bounds of the prior expressions.

f (d) =
S(d)

O(d)×R(d)
(6)

where O(d), S(d), and R(d) are respective measures reflecting homo-
geneity of observations, their class specificity, and error in decision
making based on posteriori decision boundary.

Feature usability index expressed based on these three measures
has an expression bound of [0,∞) with minimum corresponding to
the worst feature and vice-versa.

3. FEATURE RANKING AND OPTIMAL FEA-
TURE SUBSET SELECTION

3.1 Ranking using Feature Usability Index
A hypothesis designed using features with observations which ex-
hibit a high degree of homogeneity and class specificity, and are
less plagued with error in decision making, performs the best. How-
ever, since all of these characteristics are not expressed with equal
potential in all the features, we devise a ranking scheme based on
feature usability index. For every feature F (d), its usability in-

dex is associated as
{(

F (d)| f (d)
)}

∀ d = 1,2, · · · ,D. This is fol-

lowed by ranking of features based on feature usability index using
m-ordering system [2].

F
(d)
ordered = arg

{
Φm-order

({
f (d)

})
|F (d)

}
(7)

The ranked features are accordingly available based on their clas-
sification efficacy. In this application the ranked set is the ordered

set of features F
(d)
ordered and is used as the guiding criteria for feature

subset generation for subsequent selection using wrapper model [16].

3.2 Optimal Feature Subset Selection

Wrapper model of optimal feature subset selection presented here is
specific to the hypothesis used. This method includes subset gener-
ation using SFS and subset evaluation is done based on the accuracy
of experiments tried out with the chosen hypothesis. Algorithm 1
illustrates the wrapper model used in this application.

Input: Ordered feature set
{

F
(d)
ordered

}

Output: Optimal feature subset
{

G (d)
}

specific to a classifier

Initialization: Shift the top element of
{

F
(d)
ordered

}
to

{
G (d)

}
,

and set A0 = 0;

Compute the classifier accuracy A1 = J
(

hζ : x → y|
{

G (d)
})

with current
{

G (d)
}

;

while Ak > Ak−1 do

Shift the top element of
{

F
(d)
ordered

}
to

{
G (d)

}
;

Compute the classifier accuracy

Ak+1 = J
(

hζ : x → y|
{

G (d)
})

;

if Ak+1 > Ak then
increment k;

else
end process and exit;

end
end

Algorithm 1: Optimal feature subset selection

The optimal feature subset
{
G (d)

}
obtained using this method is

specific to a classifier of choice and hence varies across different
classifier models.

4. EXPERIMENTS
The results are presented for experiments conducted for feature
ranking based optimal feature subset selection using two data sets.
The data sets are obtained from the UCI Machine Learning repos-
itory [http://archive.ics.uci.edu/ml/], and pertain to dis-
ease diagnosis. Validation of this idea of classifier specific opti-
mal feature subset selection is substantiated using results of exper-
iments performed using Bayesian Classifier with multivariate nor-
mal distribution and minimum risk rule(Bayesian MVN), Fisher’s
Linear Discriminant Analysis (FLDA), and a Support Vector Ma-
chine with linear kernel and least square separating hyperplane(SVM) [6,
22].

4.1 About the Datasets
4.1.1 Dataset 1: Wisconsin Diagnostic Breast Can-

cer
The Wisconsin Diagnostic Breast Cancer database was originally
contributed by the University of Wisconsin, Madison. It consists
of ten real valued attributes used for diagnosis of breast cancer into
benign and malignant classes nuclear features extracted from using
cytological images of fine needle aspirates of breast lesions. Past
usage involves [14, 21].

4.1.2 Dataset 2: Pima Indian Diabetes
The Pima Indian Diabetes database was originally contributed by
the National Institute of Diabetes and Digestive and Kidney Dis-
eases. It consists of eight characteristic real valued attributes per-
taining to genetic pedigree, clinical and biochemical investigation
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and used for diagnosis of diabetes. Past usage involve aftificial in-
telligence based techniques for predicting onset of diabetes [20].

4.2 Design of Experiment
Generally a large sample size results in better performance of a
complex classifier. Several literatures suggest the ratio of sample
size to number of features in the design of a pattern recognition sys-
tem giving the general guidance of having 5-10 times more samples
per class than number of features [8, 9, 22].

Once sufficient observations are gathered, they are partitioned into
train and test sets. This is done to serve two purposes: one in which
a train set is used in hypothesis design for tuning of parameters,
and the other in which a classifier’s performance is independently
assessed using a test set. Generally the hypotheses assessed with
the best performance using the train set are used in deployment on
the classifier.

An important point worth mention is randomization of data col-
lection. This is done to reduce the effect of bias. A general ap-
proach is randomization of the order of data, rather than collecting
all data from all classes in experimentation. A well adopted method
of experimentation used for reporting of classifier performance is
through multiple randomized experimentation, followed by report-
ing of the average performance metric as a result of such random
experiments [15, 22]. In this work multiple number of experiments
are conducted, with randomly chosen training and testing samples.
One trial consists of 10,000 randomized experiments done in order
to avoid experimental bias. The accuracy with a feature subset for
a particular classifier is the mean of the accuracy obtained from all
the experiments.

4.3 Results
4.3.1 Dataset 1: Wisconsin Diagnostic Breast Can-

cer
The ten features are ranked using a classifier independent method,
followed by selection of the optimal feature subset specific to a
classifier. Figure 1 presents a consolidated account of the values
of O(d), S(d) and R(d) for each feature, along with f (d). These
are arranged according to their ranks based on feature usability
index, and optimal performing feature subsets are selected using
Algorithm 1 for a specific classifier. The average performance of
three different classifiers over 10,000 random trials using subsets
selected are presented in Figure 2.

4.3.2 Dataset 2: Pima Indian Diabetes
The eight features are ranked using a classifier independent method,
followed by selection of the optimal subset specific to a classifier.
Figure 3 presents a consolidated account of the values of O(d), S(d)

and R(d) for each feature, along with f (d). These are arranged ac-
cording to their ranks based on feature usability index, and optimal
performing feature subsets are selected using Algorithm 1 for a spe-
cific classifier. The average performance of three different classi-
fiers over 10,000 random trials using subsets selected are presented
in Figure 4.

5. DISCUSSION
Cover [5] has observed that statistical dependence among measure-
ments (features) can cause the best k-element subset not to be com-
posed of the k best measurements, and even conditionally indepen-
dent measurements (features) can exhibit such behavior. Ideally
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Figure 1: Plot illustrating feature usability index and con-
stituent criteria for ten different features in Dataset 1

0 1 2 3 4 5 6 7 8 9 10 11
88

89

90

91

92

93

94

95

Features

A
cc

ur
ac

y

 

 

Bayesian
FLDA
SVM

Figure 2: Accuracy of the experimental trials obtained with
feature ranking based subset selection with Dataset 1. Perfor-
mance of the different classifiers are color coded corresponding
to legends. The independent axis (x-axis) of the plot presents
number of features in a subset formed by incremental inclusion
of ranked features starting from the best ranked feature (con-
cave points), following (concave points, perimeter), and similarly
to form incrementally increasing feature subsets.

a feature ranking scheme should be such that the k best features
would form the best k. Under such circumstances, during the SFS
stage the accuracy levels achieved increase monotonically for first
k iterations to reach the global maxima. Any further addition to the
subset give accuracy lower than the global maximum. So, while
evaluating the performance of a ranking scheme, the observed be-
havior of accuracy achieved in SFS should be compared with this
ideal situation.

5.1 Computational Complexity of the Method
Computational complexity involved in optimal feature subset selec-
tion is an important analysis requirement for comparing across dif-
ferent feature selection algorithms. Table 1 presents a consolidated
account of the complexities involved in different algorithms, as a
function of the total number of features (D). The m-ordering stage
being a sorting mechanism limits the complexity to O(D logD).

The method described here achieves the minimum complexity as
compared to other popular feature selection algorithms for classifi-
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Figure 3: Plot illustrating feature usability index and con-
stituent criteria for eight different features in Dataset 2

0 1 2 3 4 5 6 7 8 9
72

72.5

73

73.5

74

74.5

75

75.5

76

76.5

Features

A
cc

ur
ac

y

 

 

Bayesian
FLDA
SVM

Figure 4: Accuracy of the experimental trials obtained with
feature ranking based subset selection with Dataset 2. Perfor-
mance of the different classifiers are color coded corresponding
to legends. The independent axis (x-axis) of the plot presents
number of features in a subset formed by incremental inclu-
sion of ranked features starting from the best ranked feature
(diabetes pedigree function), following (diabetes pedigree func-
tion, no. of times pregnant), and similarly to form incrementally
increasing feature subsets.

cation with labeled samples.

5.2 Experimental Observations

5.2.1 Dateset 1: Wisconsin Diagnostic Breast Can-
cer

During SFS stage it has been observed that the accuracy levels
achieved with Bayesian MVN and FLDA increase monotonically
to achieve global maximum accuracy with a subset upto third and
fourth features respectively, after which it decreases to levels lower
than the global maxima. For Bayesian MVN three best features
form the optimal feature subset with 91.62% accuracy, while for
FLDA four best features form the optimal feature subset with 91.79%
accuracy. Whereas for SVM the accuracy levels achieved increase
monotonically to achieve global maxima with 94.35% accuracy
when the entire feature set is used for classification; thus the en-
tire feature set forms the optimal subset here.

40 60 80 100 120 140 160 180

0.003

0.01

0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98

0.99

0.997

Perimeter

P
ro

b
a

b
ili

ty

Normal Probability Plot

Benign

Malignant

Figure 5: Log-normal probability plot for the class labeled ob-
servations of the feature Perimeter in Dataset 1

For the purpose of comparing performance of the proposed method
with an existing method, χ2 test of significance for feature selec-
tion is choosen. The method is based on [11, Chapter 14]. χ2 index
with 95% margin and 1 degree of freedom is used here for selecting
the optimal subset of features containing the five features texture,
perimeter, area, smoothness, and, concave points. The compari-
tive performance is presented in Table 2. Overall average accuracy
with this subset through one trial of 10,000 random experiments
is 86.27% for Bayesian MVN, 89.66% for FLDA, and 82.87% for
SVM. The optimal feature subset selected through this method has
concave points, perimeter, and area as the constituents increasing
accuracy of the feature set while texture, and smoothness lead to
detrioration of performance.

In figures 5 and 6 we provide the log-normal probability distribu-
tion of the observations for best and worst ranked features, viz.,
Perimeter and Fractal Dimension respectively. These figures pro-
vide visual representations of the characteristics that are quantified
by class homogeneity, class specificity, and probability of error in
misclassification. Ideally the cumulative probability of observa-
tions obeying a normal distribution follows the dashed line. It is
observed that for both the features, observations for both the la-
beled classes follow normal distribution, except at the tails. These
observations which deviate from the normal distribution at the ex-
tremities are statistically termed as outliers, and are responsible for
erroneous inference. For the best ranked feature Perimeter, number
of such observations is less than that for the worst ranked feature
Fractal Dimension. It can also be seen that the observations of the
labeled classes are widely separated for Perimeter, while they com-
pletely overlap for Fractal Dimension.

5.2.2 Dataset 2: Pima Indian Diabetes
In experiments on this dataset, it has been found that two best
ranked features form the optimal subset for Bayesian MVN with
75.55% accuracy, and SVM with 75.51% accuracy, whereas for
FLDA the four best features form the optimal subset with 76.11%
accuracy.

The eight different features in the PIMA Indian Diabetes dataset
exhibit large variations in their characteristic properties. It can be
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Figure 6: Log-normal probability plot for the class labeled ob-
servations of the feature Fractal Dimension in WDBC

inferred from the characteristics of the features presented in Fig.
4.4 that class specificity varying in the range of 10−6 to 100 plays
an important role in deciding the value of feature usability index.
However, other factors error in decision making and homogeneity
which vary in a limited range of 0 to 1, also have their relevant
effects. Accordingly in Fig. 4.5 it is observed that large variations
in homogeneity and error in decision making between the features
age, triceps skin fold thickness, diastolic blood pressure, 2hr serum
insulin affect the performance of the feature groups at 6, 7, 8. It can
be observed that performance of FLDA decreases between 6 and 7
while increases between 7 and 8, due to associated increase and
subsequent decrease in error in decision making and homogeneity
respectively. Similar behavior for other classifiers viz., Bayesian
MVN and SVM are also evident.

6. CONCLUSION
Feature usability index is presented as an objective measure for
evaluating classification efficacy of features. This measure is evalu-
ated based on available observations and using measures of homo-
geneity, specificity, and error in decision making computed inde-
pendently for each feature. Homogeneity has an expression bound
of [0,∞) with the minimum value corresponding to the feaures with
no outlying observations. Class specificity has an expression bound
of [0,∞) with minimum value corresponding to completely over-
lapped distributions. Error in decision making has an expression
bound of [0,1] with maximum value corresponding to completely
overlapped decision boundary. Feature usability index is accord-
ingly expressed based on these three measures and for the dth fea-
ture is represented as F (d) with an expression bound of [0,∞)
where minimum value corresponding to the worst feature and vice-
versa. The method of feature ranking uses a m-ordering scheme
for ranking of features based on objective score represented by fea-
ture usability index. Optimal feature subset contributing to maxi-
mum performance of a classifier is selected from the ranked feature
set using SFS. The overall complexity of searching for an optimal
feature subset from a candidate set of D features is O(D logD),
which is the minimum when compared to other existing techniques
proposed in literature. Experimental validations of the claim are
also provided in this chapter and are based on disease diagnostic
database sourced from UCI Machine Learning repository.

For the purpose of adequacy and sample sufficiency, the ratio of
sample size to the number of features in computing the measures of
individual features is about 5 - 10 times more samples per class than
the total number of features [8, 9, 22]. This criteria introduces lim-
itation in usage of the proposed feature usability index in datasets
with number of features far higher than the number of observations.
Subtle modifications may be incorporated appropriately for usage
in such experimental conditions.

7. ACKNOWLEDGMENTS
The authors acknowledge pedaogical contributions from Prof. Ajoy
K. Ray, Dr. Chandan Chakraborty and Prof. Pranab K. Datta from
Indian Institute of Technology Kharagpur in development of this
conjecture, and support of M/s Texas Instruments (I) Pvt. Ltd.,
Bangalore, India in supporting this work in part under the Texas
Instruments (India) and Indian Institute of Technology Research
Scheme.

8. REFERENCES
[1] F. J. Anscombe and Irwin Guttman. Rejection of outliers.

Technometrics, 2(2):123–147, May 1960.
[2] V. Barnett. The ordering of multivariate data. Journal of

Royal Statistical Society, 139(3):318–355, 1976.
[3] Irad Ben-Gal. Outlier detection. In O. Maimon and

L. Rockach, editors, Data Mining and Knowledge Discovery
Handbook: A Complete Guide for Practitioners and
Researchers. Kluwer Acad. Pub., 2005.

[4] P. M. Churchland. Chimerical colors: Some novel
predictions from cognitive neuroscience. In A. Brook and
K. Akins, editors, Cognition and the Brain, pages 309–335.
Cambridge University Press, 2005.

[5] T. M. Cover. The best two independent measurements are not
the two best. Systems, Man and Cybernetics, IEEE
Transactions on, SMC-4(1):116–117, Jan 1974.

[6] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification. Wiley, 2001.

[7] Ali S. Hadi. Identifying multiple outliers in multivariate data.
Journal of Royal Statistical Society, 54(3):761–771, 1992.

[8] Anil K. Jain and B. Chandrasekaran. Dimensionality and
sample size considerations in pattern recognition practice. In
P. R. Krishnaiah and L. N. Kanal, editors, Handbook of
Statistics, pages 835–855. North Holland, Amsterdam, 1982.

[9] H. M. Kalayeh and D. A. Landgrebe. Predicting the required
number of training samples. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-5(6):664–667,
Nov. 1983.

[10] H. Liu, E.R. Dougherty, J.G. Dy, K. Torkkola, E. Tuv,
H. Peng, C. Ding, F. Long, M. Berens, L. Parsons, Z. Zhao,
L. Yu, and G. Forman. Evolving feature selection. Intelligent
Systems, IEEE, 20(6):64–76, Nov.-Dec. 2005.

[11] Huan Liu and Hiroshi Motoda. Computational Methods for
Feature Selection. CRC Press, 2008.

[12] Huan Liu and Rudy Setiono. Incremental feature selection.
Applied Intelligence, 9:217–230, 1998.

[13] Huan Liu and Lei Yu. Toward integrating feature selection
algorithms for classification and clustering. Knowledge and
Data Engineering, IEEE Transactions on, 17(4):491–502,
April 2005.

[14] Olvi L. Mangasarian, W. Nick Street, and William H.
Wolberg. Breast Cancer Diagnosis and Prognosis Via Linear
Programming. Operations Research, 43(4):570–577, 1995.

International Journal of Computer Applications (0975 – 8887)

34

Volume 12– No.2, December 2010



[15] P. Mitra, C.A. Murthy, and S.K. Pal. Unsupervised feature
selection using feature similarity. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 24(3):301–312,
Mar 2002.

[16] Linda Mthembu and Tshilidzi Marwala. A note on the
separability index. Online, 2008.

[17] Nobuyuki Otsu. A threshold selection method from
gray-level histograms. Systems, Man and Cybernetics, IEEE
Transactions on, 9(1):62–66, Jan. 1979.

[18] E. S. Pearson and C. Chandra Sekar. The efficiency of
statistical tools and a criterion for the rejection of outlying
observations. Biometrika, 28(3/4):308–320, Dec. 1936.

[19] Helene Schulerud and Fritz Albergtsen. Many are called, but
few are chosen. feature selection and error estimation in high
dimensional spaces. Computer Methods and Programs in
Biomedicine, 73:91–99, 2004.

[20] J W Smith, J E Everhart, W C Dickson, W C Knowler, and
R S Johannes. Using the ADAP learning algorithm to
forecast the onset of diabetes mellitus. In Annual Symposium
on Computer Applications in Medical Care, Proceedings of,
pages 261–265, Nov 1988.

[21] W. N. Street, W. H. Wolberg, and O. L. Mangasarian.
Nuclear feature extraction for breast tumor diagnosis. In
R. S. Acharya & D. B. Goldgof, editor, SPIE Conference
Series, Proceedings of, volume 1905, pages 861–870, Jul
1993.

[22] Andrew Webb. Statistical Pattern Recognition. Wiley, 2002.
[23] S. S. Wilks. Multivariate statistical outliers. Sankhya,

25(4):407–426, 1963.

International Journal of Computer Applications (0975 – 8887)

35

Volume 12– No.2, December 2010



Table 1: Computational Complexity of Feature Selection Algorithms
Method Literature Complexity
Sequential selection (SFS) [19] O

(
2D

)
Genetic Algorithm based search [11, Chapter 8] O

(
D2

)
χ2 test based selection [11, Chapter 14] O

(
D2

)
Feature Ranking based Selection Proposed Method O(D logD)

Table 2: Performance Comparison of Feature Selection Techniques for Supervised Classification

Method Bayesian MVN FLDA SVM
Constitutent fea-
tures

Accuracy Constituent
features

Accuracy Constituent
features

Accuracy

χ2 test based texture, perimeter,
area, smoothness,
concave points

86.27% texture, perimeter,
area, smoothness,
concave points

89.66% texture, perimeter,
area, smoothness,
concave points

82.87%

Proposed
method

concave points,
perimeter, area

91.62% concave points,
perimeter, area,
radius

91.79% concave points,
perimeter, area,
radius, concavity,
compactness, tex-
ture, smoothness,
symmetry, fractal
dimension

94.35%
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