
International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

33

Simulator for Performance Evaluation of Process
Scheduling Policies for Embedded Real-Time

Operating Systems

Rajesh Kumar Garg
Lecturer,Electronic & Communication

Engg.
Seth Jai Parkash Polytechnic

Damla, Yamuna Nagar-135001
Haryana (INDIA)

Vikram Singh
Professor

Deptt of Computer Science &
Applications

Chaudhary Devi Lal University, Sirsa
 Haryana (INDIA)

ABSTRACT: The embedded systems work on real

time operating systems (ERTOS). There are many

CPU scheduling policies in general operating systems

out of which ERTOS most commonly follow the

priority and round robin scheduling. The aim of this

research work is to evaluate performance of these

scheduling policies. Simulation is adopted as tool to

find the best policy that can be implemented to boost

the performance of the ERTOS. This model is in the

form of a set of assumptions concerning operation of a

system. The simulator designed accesses the

performances of Round Robin, Priority preemptive

and non preemptive scheduling policies in terms of

average waiting time and average turnaround time for

a number of processes.

Key words: - Simulator, Scheduling, Round Robin,

Priority Scheduling, Embedded Real Operating system

 I INTRODUCTION

 Scheduling is the activity of selecting the next request

to be handled by a server. In the classical view of

scheduling in operating systems, the server is the CPU

of the system and requests represents executions of

user computations. The quality of service provided to

requests and utilization of resources in the system is

determined by the manner and the order in which the

requests are serviced. This fact gives rise to two

fundamental techniques used in servers. (Tannenbaum

et. al, 2003) 1. Preemption of requests- A request

being processed is preempted in order to provide fair

service to all the requests and 2.Reordering of

requests:- Requests are reordered to improve the

average quality of service provided by a server. In

some environments servicing shorter requests first

increases the rate at which a server completes

requests. Scheduling decision for embedded software

play an important role on system performance. The

designer should select the right scheduling algorithm

at high abstraction levels so as to save him from the

error-prone and time consuming task of tuning code

delays or task priority assignments at the final stage of

system design The main objective of this research is to

find out the best Scheduling policy for ERTOS

(Ramamritham & Stankovic, 1994)

CPU SCHEDULER Whenever the CPU becomes

idle; the operating system must select one of the

processes in the ready queue to be executed. The

selection process is carried out by the short-term

scheduler (or CPU scheduler). The scheduler selects

from among the processes in the memory that are

ready to execute, and allocates the CPU to one of them

Fig.1 shows a schematic of scheduling.

Fig 1.

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

34

The ready queue is not necessarily a first-in, first-out

(FIFO) queue. It may be implemented as a FIFO

queue, a priority queue, a tree or simply an unordered

linked list. Conceptually, however, all the processes in

the ready queue are lined up waiting for a chance to

run on the CPU. (Stallings William, 2004)An

operating system must allocate computer resources

among the potentially competing requirements of

multiple processes. In the case of the processor, the

resource to be allocated is execution time on the

processor and the means of allocation is scheduling.

This way, the scheduler is the component of the

operating system responsible to grant the right to CPU

access to a list of several processes ready to execute.

This idea is illustrated in the five-state diagram of

Figure 2. (Galvin et. al, 2001)

Fig 2

In circumstances first and fourth, there is no choice in

terms of scheduling. A new process (if one exists in

the ready queue) must be selected for execution. There

is a choice, however, in circumstances second and

third. When scheduling takes place under

circumstances first and fourth, then the scheduling

scheme is non-preemptive; otherwise, the scheduling

scheme is preemptive.

Under non-preemptive scheduling, once the CPU has

been allocated to a process, the process keeps the CPU

until it releases the CPU either by terminating or by

switching to the waiting state.

II. TYPES OF SCHEDULING

We have designed simulator for two types of CPU

scheduling. One is round robin (RR) and other is

priority type.

 Round-Robin Scheduling The CPU scheduler goes

around the ready queue allocating the CPU to each

process for a time interval of up to one time slice or

time quantum. A small unit of time, called a time

quantum (or time slice), is defined. A time quantum is

generally from 10 to 100 milliseconds. The ready

queue, which is treated as a circular queue, is kept as

First in First out (FIFO) queue of processes. The CPU

scheduler goes around the ready queue, allocating the

CPU to each process for a time interval of up to 1 time

quantum. One of the two things will happen. The

process may have a CPU burst of less than 1 time

quantum. In this case, the process itself will release

the CPU voluntarily. The scheduler will then proceed

to the next process in the ready queue. (Yaashuwanth

et.al, 2010)] New processes are added at the tail of the

ready queue and CPU scheduler picks the process

from the head of the queue. After expiry of the time

quantum the process is preempted and placed at the

tail of the ready queue. In real systems, however, the

Context switching would take place on expiry of each

time slice. RR scheduling achieves equitable sharing

of system resources. Short processes may be executed

within a single time quantum and thus exhibit good

response time. Long processes may require several

quanta and thus be forced to cycle through the ready

queue for a longer time before completion Otherwise,

if the CPU burst of the currently running process is

longer than 1 time quantum; the timer will go off and

will cause an interrupt to the operating system. A

context switch will be executed, and the process will

be put at the tail of the ready queue. The CPU

scheduler will then select the next process in the ready

queue.

 Priority Scheduling There are two types of priority

scheduling. It can be preemptive or Non-preemptive.

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

35

Preemptive Priority Scheduling In this type of

scheduling the CPU is allocated to the process with

the highest priority immediately upon the arrival of the

highest priority process. If the equal priority process is

in running state, after the completion of the present

running process CPU is allocated to this even though

one more equal priority process is to arrive. When a

process arrives at the ready queue, its priority is

compared with the priority of the currently running

processes. A preemptive priority scheduling algorithm

will preempt the CPU if the priority of the newly

arrived process is higher than the priority of the

currently running process. (Deital,1984)] and

(Dhamdhere,2003). Priorities are generally some fixed

range of numbers and low numbers represents high

priority. (Liu and Layland, 1973) were perhaps the

first to formally study priority-driven algorithms.

Non-preemptive Priority Scheduling In this type of

scheduling the CPU is allocated to the process with

the highest priority after completing the present

running process. A non preemptive priority-scheduling

algorithm will simply put the new process at the head

of the ready queue

III. DESIGN OF SIMULATOR

 RTOS Scheduling Algorithm Simulator (RSAS) has

been developed using C++ language under windows

operating system on an Intel compatible machine with

a view to develop a software tool, which can be used

for the study and evaluation of CPU scheduling

algorithms in real time operating systems. The system

discussed here is stochastic and dynamic in nature.

(Robinsatein et.al.,1998). The next –event discrete

simulation model (Averill M, 2008). has been used

for conducting simulation experiment. RSAS has been

developed as a comprehensive software package

which runs a simulation in real time, generates useful

data to be used for evaluation and provides a user-

friendly environment. It reads simulation data

generated randomly into a linear array. In accordance

with the data it makes Process Control Blocks (PCB)

and develops ready queue in memory. On user

instruction, the control is then handed over to relevant

simulation module RR gives intermediate wait and

turnaround time. In software, it is needed to consider

the effect of context switching on the performance of

RR scheduling. Thus, it is wanted that the time

quantum to be large with respect to the context-switch

time. Turn around time also depends on the size of the

time quantum. The burst time is generated using

exponential distribution with mean arrival rate of 5.

The processes arrival time is also generated using

same distribution but with inter arrival rate 6.5.The

priority of the process is generated using formula

P(i)=4*(i+1)/6 and substituting this value into

exponential distribution in place of mean arrival .

IV RESULTS AND DISCUSSIONS

 Table 1 shows the no. of processes; CPU burst time,

arrival time and priority of 20 processes. Table 5

shows the no. of processes; CPU burst time, and

arrival time and priority of 30 processes. The time

quantum for round robin is taken as 7. Tables show

the output of Simulator for different types of

scheduling techniques. First 20 and second 30

processes are considered and out put are taken. The

parameter like average waiting time and average

turnaround time is measured (see Tables 2, 3, 4) and

for 30 (see Tables 5, 6, 7, 8) The average waiting time

for preemptive scheduling is 38.1 ms and average

turnaround time is 45 ms. For 30 processes these

values are 40.13 ms and 46.16 ms. For 20 processes

the average waiting time for non preemptive

scheduling is 38.1 ms and average turnaround time is

45 ms. For 30 processes these values are 39.66 ms and

45.7 ms.

The average waiting time for 20 processes round robin

scheduling is 77.4 ms and average turnaround time is

53.4 ms. For 30 processes these values are 94.6333 ms

and 49.9 ms.

Total No. Processes=20
Table 1 Different parameters of
Priority Scheduling

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

36

Table 2 Different parameters of Preemptive
 Priority Scheduling

Table 3 Different parameters of Non Preemptive
 Priority Scheduling

Table 4
Different parameters of Round Robin
Scheduling

Total No. Processes=30

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

37

Table 5 Different parameters of Priority
Scheduling

Table 6
Different parameters of Preemptive Priority
Scheduling

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

38

Table 7

Different parameters of Non Preemptive Priority
Scheduling

Table 8

Different parameters of Round Robin Scheduling

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

39

Table 9 Different Waiting Times different of different
Scheduling

The Table 9 and Table 10 show the waiting time and

turnaround time for total no of 10, 20 and 30

processes.

The output for three different scheduling processes has

been shown. The round robin takes max average time

and turnaround time. Figure 4 shows the bar diagram

for different values of processes and their respective

values for average waiting times.

Figure 4 Average Waiting Times of different

Scheduling Process

Table 10 Different Turnaround Times different of

different Scheduling

Table 10 shows the value of turnaround time for

different no of processes. The turnaround time is max

for round robin scheduling and approximately equal

for non preemptive and preemptive. Fig 5 shows the

bar diagram for average turnaround time for 10, 20

and 30 processes.

Figure 5 Average Turnaround Times of different

Scheduling Process

V. CONCLUSION

Simulator (RSAS) has been developed. Ready queue

is maintained as a FIFO queue in RR scheduling

module. Processes are selected from the head of the

ready queue. Processes being executed are preempted

on expiry of time quantum, which is a user- defined

data. A preempted process is linked at the tail of the

ready queue. Process completing CPU burst before the

expiry of time quanta either terminates. Priority

scheduling module compares the priorities of

processes where the priorities are the user-defined

data. The process having highest priority is given the

processor first and then the next level priority and so

on up to the completion of the workload. Preemptive

Scheduling response for the highest priority process is

very good. But starvation may be possible for the

lowest priority processes. The average waiting time

under the Round Robin policy is often quite long.

REFERENCES

[1]Ramamritham, K.Stankovic,J.A. ,“Scheduling

algorithms and operating systems support for real-time

systems”, January 1994

[2] Tannenbaum Andrew S. and Woodhull Albert S.,

“Operating Systems: Design and Implementation”,

2nd Edition, Prentice Hall, India, 2003

International Journal of Computer Applications (0975 – 8887)
Volume 12– No.3, November 2010

40

[3]Stallings William, “Operating Systems: Internals

and Design Principles”, 4th Edition, Prentice Hall,

India, 2004

[4] Yaashuwanth .C, Dr. R. Ramesh, “Design of Real

Time scheduler simulator and Development of

Modified Round Robin architecture”, IJCSNS

International Journal of Computer Science and

Network Security, VOL.10 No.3, March 2010

[5]Deital H. M. 1984, “An Introduction to Operating

Systems”, Rev. 1st ed. Reading, MA: Addition-Wesley

 [6] C. L. Liu and J. Layland, “Scheduling algorithms

for multiprogramming in a hard real-time

environment,” J. Amer. Compt. Mach., vol. 20, no. 1,

pp. 4M1, 1973.

[7]Silberschatz, A., P. B. Galvin et. al., “Operating

System Concepts”, 6th Edition, 2001

[8]Dhamdhere D.M., “Operating Systems: Concept

based Approach”, 2nd Edition, Tata

McGraw Hill, India, 2003

[9] Law, Averill M., Simulation modeling and
Analysis, 4th ed., McGraw-Hill, New York, 2008

