
International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

18

An Agent based Distributed Security System for

Intrusion Detection in Computer Networks

Arun Saxena
Amity University
Malhor Campus
Lucknow, India

A.K.Sharma
Y.M.C.A. Institute of Engineering

Sector-6
Faridabad, India

ABSTRACT

Intruders damage or steal valuable information by either

bypassing security tools or penetrating through them,

necessitating the need to detect such intrusion attempts

especially in case of multi-event based distributed attacks

spanning over a considerable amount of time. In this paper

ecology of agents is being suggested that uses class hierarchy

to define complex intrusions. The source and target containers

produced thereof are analyzed for possible intrusion attempts

thereby rendering the proposed system self-monitoring, robust,

secure and reliable.

Keywords

Agents, Agent Based Intrusion Detection System,

Distributed Intrusion Detection System, Network Security.

1. INTRODUCTION
Even after adapting best protection practices network

security remains a challenge for system administrators because

unknown security bugs always exist in a system, network

configuration is continuously changing leading to creation of

unknown security bugs and the easy availability of

sophisticated tools and techniques to attackers for exploiting a

system. To counter these challenges continuous monitoring and

supervision of the infrastructure and security tools used is

required.

Intrusion Detection Systems (IDS) detect and possibly

prevent activities that may compromise system security, or an

intrusion attempt in progress including reconnaissance/data

collection phases that involve for example, port scans. The

unusual activity detected is notified to the administrators so

that a suspected connection can be blocked [1].

Intrusion detection can be broadly classified into two

categories [30]. First is misuse detection model where

detection is performed by looking for the exploitation of known

weak points in the system, which can be described by a

specific pattern or sequence of events or data. Second is

anomaly detection model where detection is performed by

detecting changes in patterns of utilization or behavior of the

system. It is performed by building a model that contains

metrics derived from system operation and flagging as

intrusive any observations that have a significant deviation

from the model [31].

The above models can be applied to either host-based

systems or network-based systems. Host based systems base

their decisions on information obtained from a single host

(usually audit trials), while network based systems obtain data

by monitoring the traffic of information in the network to

which hosts are connected [30]. Further IDS can be arranged as

either centralized (physically integrated with a firewall) or

distributed. A distributed IDS consists of multiple IDS over a

large network, all of which communicate with each other.

More sophisticated intrusion detection systems are created

using agent structure principle or multi-agent architecture.

Use of agents and mobile agents can improve the

performance of IDS in several ways [20][24]. In this paper a

distributed agent based architecture following an object-

oriented approach to detect intrusions is proposed where a

collection of agents is used to determine any ongoing intrusion

attempt. Each agent has an independent job to do and is

monitored by a designated agent so that any attempt to

compromise the system itself can be quickly identified, a

deviation from other existing systems as it does not use a

hierarchy of agents to identify intrusions.

The rest of the paper is organized as follows. Section 2

covers the related work done in this area. Section 3 covers

comprehensive explanation of the proposed system. Section 4

explains the capabilities and working of the system with the

help of examples followed by conclusion.

2. RELATED WORKS
Intrusion detection can be traced back to publication of a

technical report in 1980 [32] and has become a well-

established research area after the introduction of a model

[31]. These IDS are available as research prototypes or

commercial products. Early example of these IDS includes

ASAX [29], DIDS [22], NSTAT [26] and Net STAT [21]. The

drawback of these systems is their limited scalability due to

their centralized nature.

To overcome scalability limitation of these systems, later

systems such as Emerald [25], GriDS [27] and AAFID [24]

deployed IDS at different locations and organized them into a

hierarchy such that low-level IDS’s send designated

information to higher level IDS’s. The main problem with such

an approach is that for two or more IDS’s which are far apart

in the hierarchy detect a common intrusion, the detection

cannot be correlated until messages coming from different

IDS's reach a common high level IDS. This will require

messages to traverse multiple IDS’s resulting in

communication overheads.

The CIDF [23] goes one step further as it aims to enable

different intrusion detection and response components to

interoperate and share information and resources in distributed

manner. CARDS [19] another IDS aims at detecting attacks

that cannot be detected using data collected from any single

location CARDS decompose global representation of

distributed attacks into smaller units that corresponding

distributed events indicating the attacks. It then executes and

coordinates the decomposed smaller units in places where

corresponding units are observed. Also in CARDS one

component sends message to another only when the message is

required by the later IDS to detect certain attacks. The

communication cost is therefore reduced. DSOC [7] is another

security architecture in which a local intrusion detection

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

19

engine analyzes the data collected by one or several data

collection boxes to find the intrusion patterns. Afterwards a

global intrusion detection engine to find more complex

intrusions and to give a global view of network security

processes all generated alerts. However the functionalities of

the global analyzer are not defined and security of individual

elements is also not addressed exhaustively.

In the recent years many intrusion detection systems making

use of agents and mobile agents have been proposed.

Laocoonte [3], a novel mobile based distributed intrusion

detection system [5], LAMAIDS [6], mobile agents for network

intrusion resistance [8], design of a multi-agent based

intelligent intrusion detection system [9], IDSUDA [12],

MSABIDS [13], agent based network intrusion detection

system [14], APHIDS [15], an adaptive intrusion detection and

defense system based on mobile agents [16] and intelligent and

mobile agent for intrusion detection system [18] are examples

of systems which make use of mobile agents to perform

distributed intrusion detection. However there are many

disadvantages [20] of using agents and the mobile agent based

systems have failed to address them.

A critical look at the available literature [20] [17] [11] and

an early report [28] laying the requirements of an IDS indicate

the following issues related to an IDS that needs to be

addressed:

 Agents used in an IDS must be protected against

malicious code, modification or eavesdropping

during their transit over network.

 Code size of the agents must be small so that

they incur less communication overheads and

can be transferred in small amount of time over

the network.

 Agent code execution must be fast.

 It must have a generic structure.

 It must be efficient in the way that it obtains

audit data from various distributed sources and

distributes the information processing and

intrusion detection effort.

 It must be upgradeable, maintainable and easy

to test.

 It must meet performance benchmarks.

 It must run continually without human

intervention.

 It must be fault tolerant in the sense that it must

be able to recover from system crashes and

initialization.

 It must resist subversion. The IDS must be able

to monitor itself and detect if an attacker has

modified it.

 It must impose a minimal overhead on the

system where it is running.

 It must be able to be configured according to the

security policies of the system that is being

monitored.

 It must be able to adapt to changes in system

and user behavior over time.

All these issues except the last have been addressed and the

proposed work is given in the next section. The proposed

system also provides an automated approach to handle security

events that are irrelevant to the targeted host by efficiently

deducing false positives using system profiling [2].

3. PROPOSED SYSTEM
The proposed system uses two components namely, LIDM

(local intrusion detection module) and GIDA (global intrusion

detection agent). LIDM is deployed at a local site of the

network if it has multiple segments and is responsible for

detecting intrusion, raising alerts at the site where it is

installed. It also analyzes the data of one of its neighboring

sites. GIDA collects alerts from LIDM of various sites and

identifies distributed attacks attempted from various sites. It

also receives a message from any LIDM if an attempt to

compromise it has been done and facilitates the recovery of the

crashed LIDM. However it is not necessary to install both

components if the network is not divided into subnets or

segments. In such case only LIDM may be installed to achieve

the desired objective.

3.1 Local Intrusion Detection Module
LIDM contains various agents to do specific tasks, namely

 Data Collection Agents (DCA)

 Master Data Collection Agent (MDCA)

 Remote Data Collection Agents (RDCA)

 Analyzing Agent (AA)

 Critical Data Analyzing Agent (CDAA)

Data from various sensors of the site is collected by DCAs

and send to AA of that site for analysis after converting it into

a standard format. MDCA is responsible for spawning various

DCAs and itself is spawned by AA of the site. RDCA is

responsible for collecting data from critical sensors only and

gives this data to AA of a neighboring site for analysis. CDAA

is responsible for analyzing the data of a neighboring site. The

alerts generated by CDAA are sent to AA and alerts generated

by AA are sent to GIDA for storage and further analysis. The

composition of LIDM is show in Fig 1 and detailed description

of these agents is given subsequent sections.

 3.1.1 Data Collection Agent (DCA)
The implementation of this system requires it to capture

various events generated by sensors like firewall. This requires

creation of several classes corresponding to the sensor events

that may be generated. The event classes should provide for

methods so that event listeners can be associated to them.

DCA is a listener that is associated with several event types.

The functions of this component include sensing events,

identify the protocol to which the event belongs, converting

them into message object and sending it to AA. It is a simple

reflex agent whose agent function is implemented using a table

to store the percept sequence (i.e. event type) and routine

names corresponding to source type to perform correct

conversion. Agent performs a table lookup to call the correct

routine for converting the message into standard format

Fig.1 The Component Agents Of LIDM

DCA

AA

RDC

A

MDCA

CDA

A

DCA

 DCA

Messages To Another Subnet

Messages From Another

Subnet

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

20

according to protocol. This approach is feasible because the

size of the table required for this purpose is not too large. This

agent would also require a parser, which would parse the

incoming message to extract information from it. The extracted

information would be used in the creation of message objects.

The log information gathered by DCA may be large and

obtained at a high speed so to synchronize DCA with the log

generation rate of sensors use of a buffer is recommended.

Whenever a new DCA is started by MDCA it is given a

table containing various event names, protocols and their

corresponding routine names along with the list of network

addresses that it has to monitor. This list of addresses is stored

in a configuration file by DCA and is used by DCA to receive

only the messages, which are meant for it.

Any DCA must be able to monitor itself and report to

MDCA if it is modified or an attempt to modify it has been

done. So if attacker tries to read or write the configuration file,

DCA sends a message containing information about the

incidence to MDCA, which takes appropriate action [described

in 3.2] depending on agent’s current configuration. To further

strengthen the security of DCAs MDCA polls all DCAs at

short intervals and checks the contents of configuration file and

agent function table, this would facilitate detection of attack on

any DCA if for some reason DCA is not able to communicate

MDCA that it is tampered.

 Standard Data Objects Used In System

It can be easily observed that data would be collected from

different sources and transmitted via different protocols. Hence

the system requires standard objects to give source and target

information, sensor information, protocol details, port details

and standard message object to provide information about

intruders to different components of the system. The class

diagrams of these standard objects and their relationships have

been discussed in this section.

Source And Target Objects

For intrusion detection purposes the source and target

objects should be uniquely identified. The need for

standardization of these objects appears because sensors may

transmit host information in the IP address format or FQDN

(Fully Qualified Domain Name) format, multi homing

techniques provides multiple addresses for the same physical

system, virtual host techniques provides multiple FQDN for

the same physical system and finally reverse DNS lookup may

be performed for each new (IP address) FQDN detected in logs

[7]. Besides unique identification protocol and port

information have to be added to these objects, as it would be

useful in analysis of intrusions later by intrusion detection

engine. These objects have same attributes except for their

type so a single host class would be sufficient to define them.

This class is a subclass of component class (explained in

section 3.1.4.3), which has a tag attribute. The value of this tag

attribute id used to distinguish between the two objects. The

class diagram corresponding to standard host object is shown

in Fig 2.

Message Object
The message object contains reference to sensor object, source

object, target object and user object. Besides these the message

object has attributes for unique message identification, date,

time, a description of intrusion attempt as given by logs and

intrusion type. The sensor_id attribute of sensor is a unique

number given to each sensor for identification purpose. Other

attributes of sensor object include sensor name and sensor

description. The source and target objects can be created from

the same host class as explained earlier. User object gives

information about the user who has performed the action and

has two attributes namely, user name and real name.. Other

attributes of message object are message id, message type,

date, and time info and intrusion type. The function and

implementation of objects, their attributes and methods is

trivial and should not need further explanation. The class

diagram in Fig 3 shows relationship between this object and

other objects.

Host

Host ID: Int

IP Address: Int

FQDN: String

Protocol: String

Port: Int

Set_Host (

Host ID: Int,

IP Address: Int,

FQDN: String,

Protocol: String,

Port: Int): Null

Get_Host_ID (): Int

Get_Host_IP (): Int

Get_Host_FQDN (): String

Get_Host_Protocol (): String

Get_Host_Port (): Int

Fig. 2 Class Diagram Of Host

Message

Sensor Target User Source

Fig. 3 Composition Of Message

Object

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

21

3.1.2 Master Data Collection Agent (MDCA)
The function of this would be to oversee the operations of

all DCAs, exert control over running DCAs by having the

ability to start agents, stop agents and send configuration to

agents. The configuration information can be stored in a

configuration file.

At the system startup AA generates a configuration file

containing addresses of the network to be monitored and gives

it to MDCA. On the basis of this file the MDCA determines

number of DCAs that would be required to monitor the

network. This is advantageous as it deploys the DCAS

according to the network size to be monitored and the number

of messages that a single DCA can handle. It then assigns a set

of addresses to each DCA for monitoring.

MDCA has to ensure that all DCAs work according to the

configuration set by it. So upon receiving message about a read

or write attempt from any DCA on its configuration file,

MDCA should stop that DCA, reconfigure it and restart the

monitoring.

AA starts a MDCA using a routine to create it first and then

to configure it according to networks requirement. If the

attacker tries to read this routine or modify it or perform a read

or write the configuration file, MDCA sends a message to AA,

which after checking the current status of MDCA reconfigures

it, if required. AA also polls MDCA at regular intervals to

detect any changes made MDCAs configuration by matching

its current configuration against its original configuration.

3.1.3 Critical Data Collection Agent (CDCA)

This agent is same as DCA but is different from the DCA in

the sense that it collects data only from critical sensors and

from sensors hosting security tools on any site. This sends the

received message to the CDAA of another site, which are used

to give approximate security level of the concerned site in real

time.

3.1.4 Analyzing Agent (AA)

This is the knowledge-base agent, which is responsible for

intrusion detection on any site by analyzing a sequence of

message objects. It receives these message objects from several

DCAs. The message objects can be stored in a buffer from

where the latest received object goes to the duplicates

identification engine. The duplicates identification engine

checks whether this new object is unique or not. If the object is

duplicate then it discards it otherwise it sends it to intrusion

detection engine for further processing and stores this object in

message object repository. The intrusion detection engine

analyzes the message object and creates objects used in

intrusion detection and intrusion detection process is described

in subsequently in this section.

Another job of AA is to compact alerts by merging similar

ones. When attacked by intruder it sends a signal to GIDA,

which creates a replica of this AA. Other functions that GIDA

will perform when an AA is attacked are explained in section

3.2. AA consists of a local knowledge base, intrusion detection

engine and an analysis engine. The architecture of AA is

shown in Fig 5.

3.1.4.1 Local Knowledge Base
It contains information about known security breaches

systems, which are exposed to various vulnerabilities,

configuration of systems and security policy related

information. A detailed discussion of these contents is as

follows

Message DCA

Analysis Engine Intrusion Detection

Engine

Duplicates

Identification Engine

 Local Knowledge Base

Analyzing Agent

Fig. 5 Structure of Analyzing Agent

Vulnerability

Database

Vulnerable

Systems Database

Security Policy

Object Repository

Configuration

Objects

Repository

Message Objects

Repository

Intrusion Objects

Repository

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

22

Vulnerability Database
This database holds objects, which contain information

about security breaches and insecure behavior that would

either impact the overall security, level or that could be

exploited by an attacker in order to perform an intrusion. The

database format must make it possible to include structural

vulnerabilities, functional vulnerabilities and topology-based

vulnerabilities [7]. Moreover the database format must

accommodate newly discovered vulnerabilities. Moreover this

should be consistent with class hierarchy discussed in section

3.1.4.3. This database can be created by analyzing intrusions

available from various sources like CERT, Bugtraq, and

ArachNIDS etc.

Configuration Objects Repository
This object repository contains various resources of

organization and their configuration details. Various objects in

the database should represent resources/resource catalogs,

their capabilities and some qualitative or quantitative value

signifying the importance of these assets. The database format

must make it possible for addition or modification of objects

representing resources of the organization. However

vulnerability systems database has to be updated to reflect

changes in the configuration of the system.

Vulnerability Systems Database
 This database contains a detail of exposure of various

resources or assets to different vulnerabilities and the impact

that that an intrusion can have on that resource and other

resources attached to it. The creation of this database is done

by analysis engine by correlating objects in vulnerability

database and configuration objects repository.

Security Policy Objects Repository
While the above three components of local knowledge base

represent the technical inventory of the organizational assets,

this repository represents the structural inventory of the

organization with the privileges given to users at each level.

This helps in distinguishing between the legitimate users such

as system administrators and an unauthorized user who tries to

access the system to misuse it or steal important information

from it.

Message Objects Repository
It is a collection of messages whose structure is already

explained. Some criteria for deleting the messages in this

repository can be defined on the basis of network traffic, which

is being monitored.

Intrusion Objects Repository
This is a collection of objects created during ongoing

intrusion detection process and objects, which signify an

intrusion attempt. It not only stores the intrusion objects of its

own subnet but also contains intrusion objects corresponding

to intrusion attempts at the other subnet, which is being

analyzed by CDAA of this subnet.

3.1.4.2 Analysis Engine
Its purpose is to correlate vulnerability database and

configuration objects repository to produce vulnerability

systems database. This vulnerability systems database

produced contains details of configuration of different systems

in the organization and their exposure to various existing

vulnerabilities. This database helps intrusion detection engine

in determining whether to create a container object

corresponding to the newly received message object. It will

create an object only if the source system is vulnerable to

intrusion attempt indicated in the message object. This may

help in reduction of false alarms generated by the system.

3.1.4.3Intrusion Detection Engine
Its purpose is to analyze messages to determine intrusion

attempts. It has to create intrusion objects, create role object,

add role objects to intrusion objects, add intrusion objects to

appropriate container object, perform port and protocol

analysis, perform time and date pattern analysis, perform

system exposure and analyze the impact of intrusion and

perform security policy matching. It also has to decide about

the status of an intrusion object.

Various features of language to define an intrusion

suggested in Common Intrusion Specification Language (CISL)

[23] could also be met using an object-oriented approach. The

suggested object oriented approach requires a class hierarchy.

One or more objects participate in an intrusion attempt and

each of these objects performs a specific role in the same.

These would be referred to as role objects hereafter. An

abstract class at the top of the class hierarchy has to be defined

which encapsulates all general attributes of the role objects.

This class is referred as component class in the suggested class

hierarchy. All types of role objects that may exist should be

then defined as subclasses of the component class. Any new

role object detected can be easily added to the existing class

hierarchy as a subclass of component class. This allows for

accommodation of new role objects corresponding to newly

discovered intrusions. Since the topmost class in the hierarchy

is abstract so all its subclasses would necessarily inherit the

mandatory attributes of an intrusion. One attribute of

component class is tag attribute, which gives semantic clue

about the role object. Since the abstract class at the top of the

hierarchy has this attribute so all its subclasses will necessarily

have it. Host object, sensor object and user objects are

subclasses of this class.

The next class in the level of class hierarchy is referred as

container hereafter. It is a subclass of component class and

provides additional methods that allow an object of this class

to contain various role objects. Moreover several container

objects can be stored in a container object since they

themselves are instances of container and this allows for

multilevel containment system.

Next in the class hierarchy are four subclasses of container

class. These are basically four different types of containers

meant for different purposes namely intrusion, source

container and target container. The tag attribute of an object of

intrusion class gives a semantic clue about the intrusion

attempt and other role objects i.e. contained within it will give

details e.g. source, time, user etc of this intrusion attempt.

Source container object will contain all intrusion objects

matching a source and target container object will contain all

intrusion objects matching a target. The class hierarchy is

analogous to the one used by Java AWT and is shown in Fig 6.

Intrusion Detection

It is carried out in three phases: -

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

23

Phase 1: Object Creation, Protocol, Port and

Time Analysis

This first step in intrusion detection involves the creation of

an intrusion object on the basis of intrusion_type field of the

message object. The tag field of intrusion object will contain

the value of intrusion_type field of the message object. Then

one or more role objects are created and added to this object of

intrusion class. The tag attribute of the role objects defines the

role of the object and other attributes describe the object itself.

After the creation of intrusion object the source object

contained within this object is compared with the objects in the

queue of active source objects if a match is found then this

source object is added to the source container object

corresponding to the matching source object otherwise target

object of this intrusion object is compared with objects in the

queue of active target container object so that it can be added

to the matching object. If the newly created intrusion object

does not match with any of the objects in source container

object and target container object queues then a new source

container object can be created for further analysis.

This newly created object or the source container object or

the target container object should be subjected to protocol and

port analysis. This analysis will help to identify various steps

of intrusion e.g. a port scan followed finger printing /version

identification on open ports followed by an exploit launched on

vulnerable systems.

After protocol and port analysis these objects are subjected

to an analysis based on time. This is used for slow and

distributed intrusion processes e.g. a distributed denial of

service attack against a same host and occurring at the same

time can be determined using a time based analysis.

An important aspect of source container or target container

object created is its status. An intrusion object can be active,

inactive or closed. An active object is one, which matches the

criteria defined for ongoing intrusion attempt. An inactive

intrusion object is one which either does not match the criteria

defined for active object or has not received a specific closure

code. This means that this object is not being currently

analyzed but can be reactivated by the next message matching

the same object criteria. Objects having inactive status can be

used to determine slow and distributed attacks. A closed object

status is one whose processing is completed. Whenever a new

container object is created upon receiving a message its status

is set to be active.

When an object goes into closed state it is used to generate

alert objects. These alert objects are send to global analyzing

agent for permanent storage and to user interface for user’s

knowledge or for dissemination. Lastly the intrusion object is

stored in intrusion objects repository.

Phase 2: System Exposure Analysis

This step is performed on the basis of information provided

in phase 1. It evaluates the system exposure to the identified

vulnerability and overall impact of such an intrusion attempt

on the system. This is particularly required so that our system

does not raise false alarms in case the vulnerability does not

affect any resource. In case of unknown intrusion objects

functional analysis facilitates addition of newly discovered

vulnerability-to-vulnerability database if it can affect the

system(s) under scan.

Phase 3: Security Policy Analysis

 This is to differentiate legitimate users and preprogrammed

audits, port scans etc. from intrusion attempts. This is similar

to structural analysis in the sense that it is also sequence

pattern matching which is performed by creating an object

from intrusion object carrying relevant information to be

matched against security policy objects stored in security

object repository.

3.1.5 Critical Data Analyzing Agent (CDAA)
This is a child agent spawned by AA at each site to analyze

messages send vide CDCA of another site. It has all the

capabilities of AA and sends the generated intrusion objects to

its parent AA which stores this intrusion object in its intrusion

object repository and can use this information to detect

distributed attacks at the concerned site. CDAA reduces the

load of AA of remote site, which is required, as AA has to

analyze complex intrusions at its own site.

In case an attacker tempers this CDAA it sends a message

related to this to its parent AA that after checking the current

status of CDAA creates a new agent and installs it, if required.

3.2 Global Intrusion Detection Agent
The structure of GIDA is shown in Fig 7. It receives various

alerts generated by different LIDM and stores them in its

knowledge base through alert knowledge base interface. It

analyzes alerts stored in its knowledge base to detect

intrusions occurring due to coordinated attacks and stores the

generated alert on distributed alert repository. It also

Container

Target

Container

Component

Fig. 6 Class Hierarchy For Container

Objects

Source

Container

Intrusion

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

24

merges them if possible to generate optimized outputs. It

assigns a unique number to each subnet where an LIDM would

be employed and LIDM are required to specify the subnet

number in the alert sent by it. This arrangement is required to

store alerts in an organized way so that they can be searched at

a faster rate when coordinated attacks are to be determined. It

monitors various LIDM as it may receive a message from AA

of any LIDM whenever any attempt of read or write is made on

it so that system administrators can take

appropriate action. If an attacker is successful in crashing the

AA of an LIDM located at say subnet j then GIDA can create

the knowledge base of the crashed AA using the vulnerability

database, subnet j security policy object repository (SUBNET J

SPOR), subnet j configuration object repository (SUBNET J

COR) and generating intrusion objects using the alerts of

subnet j stored in its knowledge base to create intrusion object

repository. After building the knowledge base it installs the

crashed AA in the right subnet. This new AA will the create

other components of LIDM to start monitoring of the

concerned subnet.

One or more replica of GIDA can be produced for backup

purpose and installed at various sites depending upon the

network\organization specifications. Moreover to further

prevent it from attacks we choose a mobile agent for this job,

which changes location after random amount of time along

with its replica. The advantage of having one or replica is also

to handle coordinated attacks without requiring the agents to

move from one location to another.

4. BEHAVIOUR OF PROPOSED

 SYSTEM IN DIFFERENT

 ATTACK SCENARIOS
The capabilities of the proposed system are understood from

following examples. Scenario 4.1 describes how the

components of the proposed system are installed and work in

coordination to detect distributed attacks. Scenario 4.2

describes how the proposed system can be used to detect slow

and coordinated attacks. In scenario 4.2 both LIDM and GIDA

 Knowledge Base

 AA Configuration Knowledge Base

Fig. 7 Components of GIDA

LIDM Alert

Intrusion Detection Engine

LIDM Creation Module

Vulnerability Database

Subnet 1 Spor

Subnet 2 Cor

Subnet N Spor

Subnet N Cor

AA Tampered Message

Global Intrusion Detection Agent

Subnet 1

Subnet 2

Subnet N

Alert Knowledge Base Interface

Distributed Alerts Repository

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

25

can be installed at one location and only LIDM can also be

used if organization is not willing to protect AA of the LIDM.

4.1 Scenario 1: Detection of Distributed

Attack
The company infrastructure is for this example is shown in

Fig 8. Subnet 1 and subnet 2 are less secured so attacker is

able to compromise one machine on each of them and

subsequently install a bot [10] on each of them. Core subnet

contains various servers for managing the network and storing

critical information about the company. The attacker objective

is to compromise the main server, which is controlling other

servers in the subnet.

The analyzing agent in subnet1 generates alerts about multiple

attempts done by attacker to compromise the machine. These

included port scan alerts, several authentication failed

messages, an authentication successful message and “su”

privileges gained message. The alerts were sent to GIDA and

stored in alert database of the subnet1. Similar alerts would be

generated by analyzing agent of subnet2 and sent to GIDA.

Core subnet will also generate alerts except of authentication

successful and “su” privileges gained alert.

The CDCA of subnet1 will send data about multiple

intrusion attempts access to CDAA of subnet2. Similarly

CDCA of subnet2 will send its intrusion related data to core

subnet’s CDAA and CDCA of core subnet’s would send its

data to CDAA of subnet1. The CDAA of subnet2 will analyze

data collected from CDCA of subnet1 and will generate

approximate security level of subnet1. Similar analysis would

be done for data collected CDCA of subnet1 and core subnet.

Due to the fact that attacker has compromised one machine

in subnet2 and tried to compromise one machine in core

subnet. The analyzing agent of core subnet suspects a

distributed attack and looks for alerts in global database of

GIDA to find attacks on other subnets. After finding that one

machine of subnet1 has also been comprised and because

attacks on all three subnets have occurred at the same time, it

raises an alert of distributed attack and adds this alert in its

distributed alert repository.

4.2 Scenario 2: Detection of Slow and

Distributed Attack
The scenario is developed from the example of leading

financial security company whose customer account

information was exposed through a breed of attacks on web

services done via SOAP requests. The report was published in

leading newspapers in January 2005[4]. The company

infrastructure and attack scenario is shown in Fig 9.

On day 1 attacker launched a port scan via drone1, which

was detected by corporate firewall. On the basis of log

information sent by corporate firewall the proposed system

created an intrusion object and added this to source container

object. Next several attacks launched at web application level

via drone2 were logged by web server and application firewall.

These logs were sent to proposed system, a new intrusion

object was created corresponding to each attack and added to

source container object. Moreover the source container object

would be destroyed after copying its objects in a new target

container object. This is done because initially system creates a

source container type of object upon receiving the first log but

later as in this intrusion attempts had a common target and not

source so changing the type of container would be required.

After its creation target container object would be added to

the queue of active target container objects. When no further

intrusion attempts were

reported, this new object would be analyzed to determine

whether the target system is vulnerable to intrusion attempts

(represented by intrusion objects in the container object)

indicated by container object. If on analysis target system is

found vulnerable then an alert is raised otherwise no alerts are

raised. Finally the target object is stored in intrusion objects

repository for further reference. In this case since web server

was completely locked and the application firewall was

configured well to filter content based attacks so no alerts were

raised and target container object was stored in intrusion

object repository for further references.

Database

Server

Company

Portal

Application

Web

Application

Firewall

WWW Mail

Firewall

INTERNET

Decoy

Network

Drone 1

Attacker

DMZ

Fig. 9 Infrastructure Of Target Company

Decoy

Network

Drone 2

Decoy

Network

Drone 3

IDS/Sniffer

Firewall

Internet

Attacker

Fig. 8 Infrastructure Of Target Company

Subnet 1

LIDM

Subnet 2

LIDM

Firewall

Firewall

Core

Subnet

G

 I

D

A

LIDM

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

26

On day 2 attacker performed various intrusion attempts via

drone 3. The attacker activity and log where the activity was

recorded is as follows: -

 Web application was crawled to download all links

of web site and this was recorded nowhere

 Successful requests for different wsdl files were

made and these were logged by

 web server.

 Parameter tampering was attempted via SOAP

message to get critical information. These attempts

were logged by web server.

 Execution of xp_cmdshell stored procedure to

enumerate directory was recorded by database server.

 A text file was written to c:\inetpub\wwwroot folder

and this event was recorded by operating system.

An intrusion object corresponding to each activity done by

drone3 except for web crawling would be created by the

proposed system on the basis of log information sent to it via

different sensors and added to a target container object.

Moreover a target container object matching the target of this

new object would be searched in the intrusion object

repository. As in this case if a target is found it is analyzed

with this new object to identify any relationship between them.

In this case there is no relationship but since various attempts

to compromise portal were done on two consecutive days so

both objects would be used to generate an alert. Finally this

alert is stored in global intrusion database.

This shows the capability of the system to detect slow and

coordinated attacks where multiple sources are hitting the

target over a span of two days.

5. CONCLUSION
The proposed system can detect simple and complex intrusions

by monitoring various system tools installed on a network or a

host. As demonstrated in examples the system is capable of not

only detecting simple distributed attacks but also the attacks

which are slow, distributed and multi event based attacks

normally not detected by many existing NIDS. Each agent used

in the system performs a separate task and is independent. The

system itself is robust and secure as each of its components is

monitored by a different component, which makes it resist

subversion. The system is both scalable and configurable as

per the network requirements.

6. REFERENCES
[1] Przemyslaw Kazeinko, and Piotr Dorosz (April 2003).

Intrusion Detection Systems Part I- (network intrusions; attack

symptoms; ids tasks; and ids

architecture.http://www.windowsecurity.com/articles/Intrusion

_detection_Systems_IDS_PartI_network_intusions_attack_sym

ptoms_IDS_tasks_and_IDS_architecture.html.

[2] Michael Karwaski. 2009. Efficiently Deducing IDS False

Positives Using System Profiling. SANS Institute InfoSec

Reading Room.

[3] Rafael Paez, and Miguel Torres. 2009. Laocoonte:

An Agent Based Intrusion Detection System.

International Symposium On Collaborative Technologies

And Systems, pp. 217-224.
[4] Shreeraj Shah. 2008.Hacking Web Services. Second Indian

Reprint. Delmar Cengage Learning, pp. 95-105.

[5] Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar. 2008. A

Novel Mobile Agent Based Distributed Intrusion Detection

System. World Acdemy of Scienec. Engineering and

Technology 45 2008.

[6] Mohamad Eid, Hassan Artail, Ayman Kayssi, Ali Chehab.

March 2008.LAMAIDS-A Lightweight Adaptive Mobile Agent

Based Intrusion Detection System. International Journal of

Network Security. Vol. 6, No.2, pp. 145-157.

[7] Abdoul Karim Ganame, Julien Bourgeois, Renaud Bidou,

Francois Spies. 2008. A Global Security Architecture For

Intrusion Detection On Computer Networks, Computers And

Security. Vol. 27, pp.30-47.

[8] H.Q. Wang, Z.Q.Wang, Q. Zhao, G.F. Wang, R.J. Zheng,

D.X. Liu. 2006. Mobile Agents For Network Intrusion

Resistance; Springer. LNCS. vol. 3842/2006, pp. 965-970.

[9] Xiaodong Zhu, Zhiqiu Huang, Hang Zhou. August 2006.

Design of a Multi-Agent Based intelligent Intrusion Detection

System. First International Symposium on Pervasive Computing

and Applications, pp. 290-295.

[10] Nicholas Ianelli, Aaron Hackworth. December 1, 2005.

Botnets as a vehicle for online crime. CERT Coordination

Center.

[11] Mohamad Eid, Hassan Artail, Ayman Kayssi, Ali Chehab.

November 2005. Trends in Mobile Agent Application, Journal of

Research And Practice In Information Technology. Vol.37, no.4.

[12] Ahmed Shaaban Abdel Shah, Imane Aly Saroit Ismail,

S.H.Ahmed. December 2005. IDSUDA-An Intrusion Detection

System Using Distributed Agents. CNIR Journal. Vol. 5, no. 1,

pp.1-11.

[13] Richard A. Wasniwoski. September 23-24, 2005.

MSABIDS-Multi-Sensor Based Agent-Based Intrusion Detection

System. Information Security Curriculum Development

Conference, pp. 100-103.

[14] Cheung-Leung Lui, Tak-Chung Fu, Ting-Lee Cheung. July

2005. Agent-Based Network Intrusion Detection System, in

Proc. of the Third International Conference on Information

Technology and Applications. Vol.1, pp.131-136, Sydney.

[15] K. Deeter, K. Singh, S. Wilson, L. Filipozzi, S. Wong.

2004.APHIDS- A Mobile Agent Based Programmable Hybrid

Intrusion Detection. springer LNCS. vol. 3284/2004, pp.244-253.

[16] Mohamad Eid, Hassan Artail, Ayman Kayssi, Ali Chehab.

October 2004. An Adaptive Intrusion Detection And Defense

System Based On Mobile Agents, in Proceedings of the

innovations in information technology. Dubai, UAE.

[17] Guy Helmer, Johnny S. K. Wong, Vasant Hanover, Les

Miller, Yanxin Wang. 2003. Lightweight Agents For

Intrusion Detection, The Journal Of Systems And Software.

Vol. 67,pp. 109-122.

[18] A. F. Barika, N. El-Kadhi. November 2003. Intelligent

and Mobile Agent For Intrusion Detection System.

Proceedings of international conference of information and

communication technology.

[19] P. Ning, S. Jajodia, X.S. Wang. September 2002. Design

and implementation of a decentralized prototype system for

detecting distributed attacks. Compu Communication. vol 25,

issue 15, pp. 1374-1391.

[20] C. Kruegel, T. Toth. 2001. Applying Mobile Agent

Technology to Intrusion Detection. Procedings of the ICSE for

workshop on software engineering and mobility. pp. 1841-

2002.

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

27

[21] G. Vigna, R. A. Kemmerer. 1999. NetSTAT: a network

based intrusion detection system. Journal of Computer

Security. Vol. 7, no. 1, pp. 37-71.

[22] S.R. Snapp, J. Bretano, G. V. Diaz, T. L. Goan, T. L.

Heberlein, C. Ho, K. N. Levitt, B. Mukherjee, S.E. Smaha, T.

Grance, D. M. Teal, D. Mansur. October 1999. DIDS

(Distributed Intrusion Detection System)-motivation

architecture and an early prototype. Proceedings of the 14th

national computer security conference. pp. 167-176,

Washington, DC.

[23] S. Staniford-Chen, S. B. Tung, D. Schnackenberg. Oct

1998. The Common Intrusion Detection Framework (CIDF).

Proceedings of the Information Survivability Workshop.

Orlando FL.

[24] Jai Sundar Balasubramaniyan, Jose Omar Garcia-

Fernandez, David Isacoff, Eugene Spafford and Diego

Zamboni. DC December 1998. An Architecture For Intrusion

Detection Using Autonomous Agents, 14th IEEE Computer

Security Applications Conference ACSAC. pp. 13-24,

Washington.

[25] P. A. Porras and V. G. Neumann. 1997. EMERALD:

event monitoring enabling response to anomalous live

disturbances. Proceedings of the 20th National Information

Security Conference, NIST. pp. 353-365.

[26] R. A. Kemmerer. 1997. NSTAT: a model based real-time

intrusion detection system. Technical report TRCS97-18,

Reliable Software Group, Department Of Computer Science,

University of California at Santa Barbara, CA, USA.

[27] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.

Frank, J. Hoagland, K. Levitt, C. Wee, R. Yipi, D. Z. Erkle.

1996. GriDS: a large scale intrusion detection system for large

networks. Proceedings of the 19th national information security

conference. pp. 361-370.

[28] M. Crosbie and G. Spafford. Feb 1995. Active Defense

Of A Computer System Using Autonomous Agents. Technical

Report 95-008, COAST GROUP, Department Of Computer

Sciences, Perdue University, West Lafayette, IN 47907-1398.

[29] A. Moijini , B. L. Charlier, D. Zampunieris, N. Habra.

1995. Distributed Audit Trail Analysis. Proceedings of the

ISOC 95 Symposium on Network and Distributed System

Security. pp. 102-112.

[30] B. Mukherjee, T .L. Heberlein, and K. N. Levitt.

May/June 1994. Network Intrusion Detection. IEEE Network

Magazine. Vol. 8, no. 3, pp.26-41.

[31] D. E. Denning. Feb. 1987. A Intrusion-Detection Model.

IEEE Transactions on software Engineering. Vol. 13, no. 2, pp.

222-232.

[32] J. P. Anderson. April 1980. Computer Security Threat

Monitoring and Surveillance. Technical Report, James P.

Anderson Co., Fort Washington, PA.

