
International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

16

Optimization on Control Overhead in MANET

Swarnali Hazra

University of Calcutta,
India

Sanjit Setua

University of Calcutta
India

ABSTRACT

MANETs are comprised of mobile hosts communicating via their

wireless interfaces and their topology is continuously changing.

During communication process between mobile hosts or nodes,

control message-transfers among the nodes occur. Control

messages consume bandwidth, processing resources to both

transmit and receive a message. Since bandwidth is at a

premium, routing protocols should not send more than the

optimal number of control messages they need for operation, and

should be designed so that this number is relatively small. In this

paper, Optimized AODV and Optimized DSR are proposed to

minimize mainly the control overhead

Keywords

Control overhead, optimal path, RREQ, RREP, AODV, DSR

1. INTRODUCTION
MANET stands for Mobile Ad Hoc Network. The term mobile

denotes the capability of changing from one state to another. Ad

Hoc Network is a collection of wireless network platforms

consisting of mobile nodes, where nodes may organize and

maintain a routing infrastructure among them in a relatively

arbitrary fashion. Characteristics of ad hoc networks include

resource-poor devices, limited bandwidth and a continuous

changing topology. Among the available resources, battery power

is typically the most constraining. Hence, there are some typical

design goals for ad hoc network routing protocols. These are

minimal control overhead, minimal processing overhead, multi

hop routing capability, dynamic topology maintenance, loop

prevention. Here in this work, the main optimization is on

control overhead and processing overhead. Other design goals are

also maintained in the proposed protocols.

The existing routing protocol AODV and DSR supports three

phases, Route Request (RREQ), Route Reply (RREP) and Packet

Delivery. Destination node can receives more than one Route

Request (RREQ) from different one hop neighbor nodes and for

this reason, source node can receives more than one Route Reply

(RREP) through different paths. So, many message-transfers

occur and that could be the cause of control overhead. At the

source node, there is an extra processing for selection of optimal

path with smallest hop count and current sequence number, for

packet delivery. That could be the cause of processing overhead.

In our proposed protocols, destination node receives only one

RREQ from a neighbor node which forwards the RREQ to

destination node first. To stop unnecessary flooding, after

receiving first RREQ, destination node sends an

acknowledgment (Nack) to those nodes which have not

transmitted RREQ yet, to ensure that destination node has

received the RREQ and to inform other non-transmitted nodes

not to transmit identical RREQ and discard it. So, destination

node does not receive more than one RREQ and that is why

source node receives RREP only through the optimal path. Nack

consists of RREQ ID to identify the identical RREQ. On the

other hand, as the existing protocol AODV supports “expanding

ring search” method, source node and intermediate nodes can

broadcast RREQ multiple number of times. In the proposed

protocol Optimized AODV, if destination node is in the

transmission range of source node, then source node needs to

broadcast only once and no other broadcast of RREQ is needed

for the source node and other nodes in the network. If destination

node is not in the transmission range of source node, then source

node needs to broadcast only twice and other intermediate nodes

need to broadcast RREQ, only for once. Here we also have

concentrated on minimal control overhead and cycle prevention.

It is also implemented in the proposed protocol Optimized DSR.

In the existing protocol DSR, while forwarding RREQ, every

intermediate nodes need to append their IPs into RREQ. In the

RREQ process, almost entire network can be flooded. A node,

which is far away from source node, can have a RREQ, with

many appended IPs of previously traversed nodes. It causes the

requisite overhead. To minimize this overhead, in the Optimized

DSR, we have modified the RREQ process. No intermediate

node need to append their IP addresses to RREQ, they only need

to maintain parent node information, which is the next hop to the

source node from current node.

In the section2, we have presented the status of the considered

domain and we have discussed our proposed work in the

section3. A ground of future work is raised in the section 4, with

the conclusion.

2. REVIEW WORK
An ad hoc network is a collection of wireless mobile hosts

forming a temporary network without the aid of any established

infrastructure or centralized administration. Several routing

protocols have been proposed for such environment. The

protocols are mainly classified into three types, Proactive,

Reactive and Hybrid. In Proactive protocol, each node in the

network maintains the route to every other node in the network

all the time and route creation and maintenance are based on

periodic updates [6]. In Reactive protocol, routes are only

discovered between nodes when they are actually needed [6].

Hybrid protocol is the combination of proactive and reactive

protocol [6].

AODV [6, 1, 2] and DSR [6, 3, 4] are the reactive routing

protocols. AODV is based on distance vector routing and DSR is

based on source routing. AODV improvement protocol [5] with

the Hello message mechanism is presented based on wireless

link availability prediction. Here the control overhead is reduced

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

17

by dynamically updating the environment parameter of Hello

interval. As an optimization for the current DSR, a new adaptive

routes selection scheme based on the stability of nodes was

proposed, considered joint hop-count and node stability. The

enhanced-DSR [7] has higher throughput and less end-to-end

packet delay.

3. PROPOSED WORK
Our proposed protocols are reactive in nature. Whenever

communication is needed between two nodes, the route will be

discovered. Otherwise no node maintains route related

information.

In this section we have discussed our two proposed algorithm,

with the following set of symbols:

i. S = Source node, D = Destination node

 CN= Current node, RP = Reverse Parent IP,

 FP = Forward Parent IP

ii. IR =Intermediate Routers or nodes between S and D.

iii. RREQ = Route Request message, RREP = Route Reply.

iv. RREQ ID.s.id, RREQ ID.dis.id = Route Request id with

 corresponding extension.

 (.s.id)S broadcasts first time for 1hop destination.

 (.dis.id)S broadcasts second time for multi hop

 destination to discover route.

 RREP ID.s.id, RREP ID.dis.id = Route Reply id with

 corresponding extension.

 (.s.id)It is for one-hop destination node.

 (.dis.id) It is for multi-hop destination node.

v. RT = Routing Table.

vi. RREQ_RP = RREQ parameter: <S, D, hop count, sequence

 number, RP, RREQ ID>.

vii. TR = Transmission Range of a node.

viii.TRREQ.s = [Difference between first broadcast time of RREQ

 from source node (for which time range is considered) and

 the time at which a 1hop destination node of source node will

 receive that broadcasted RREQ of corresponding RREQ ID]

 + [waiting time before processing at 1hop destination node].

ix. TRREP.s = [Difference between broadcast time of RREQ from

 1hop destination node of source node and the time at which

 source node will receive that broad-casted RREP of

 corresponding RREP ID] + [waiting time before processing

 at source node].

x. TRREQ.dis = [Difference between broadcast time of a node

 (for which time range is considered) and the time at which a

 1hop node of that node will receive that broad-casted route

 request (RREQ) of corresponding RREQ ID]+ [waiting time

 before processing at receiver node].

xi. m = Smallest hop from source to reach a node, for which the

 time range is considered.

xii. n = Largest hop from source to reach a node, for which the

time range is considered.

xiii.Nack = Acknowledgment to ensure that destination has

 received the RREQ and to inform other non-transmitted

 nodes not to transmit further identical RREQ and discard it.

3.1 Optimized ad-hoc on-demand distance

vector (OAODV) routing
In OAODV if source node have a route to destination node, it

does not need to discover any route, otherwise route discovery is

needed. If destination node is 1hop node of source node, then

there is no need to maintain the parent information. Otherwise

route discovery process will maintain the parent information.

OAODV route discovery follows RREQ process, RREP process

and packet delivery. In the RREQ process, source node first

broadcasts RREQ of unique ID (RREQ.s.id). If source node

receives RREP of unique ID (RREP.s.id) within

(TRREQ.s+TRREP.s), it implies that destination node is in the

transmission range of source node. Otherwise source node

broadcasts RREQ of unique ID (RREQ.dis.id) for the second

time. When intermediate nodes decide to process the received

RREQ of unique ID (RREQ.dis.id), they store Reverse Parent IP,

RREQ ID and discard further identical RREQ till 2TRREQ.dis.

After receiving a RREQ of unique ID (RREQ.dis.id), destination

node broadcasts Nack to stop unnecessary further broadcasting of

identical RREQ. After receiving Nack, other nodes which have not

broad-casted identical RREQ yet, discard it from time instant

mTRREQ.dis to nTRREQ.dis . RREQ (of ID: RREQ.dis.id) parameters:

< Source IP, Destination IP, Reverse Parent IP, Hop Count,

Sequence no., RREQ ID > . If destination node is in the

transmission range of source node, then it sends RREP of unique

ID (RREP.s.id) to source node, within the time (TRREQ.s+TRREP.s).

Otherwise it sends RREP of unique ID (RREP.dis.id). RREP of

unique ID (RREP.dis.id) traverses only the optimal path from

destination node to source node, using Reverse Parent

information. In the RREP process, all traversed nodes store the

Forward Parent IP. RREP (of ID: RREQ.dis.id) parameters : <

Source IP, Destination IP, Forward Parent IP, Hop Count,

Sequence no., RREP ID > . The source node delivers the packet

through this optimal path, using Forward Parent information.

3.1.1 Algorithm
S first checks its route table to determine whether it already has

a route to D. If such a route exists, it can use that route for packet

delivery, otherwise route discovery is needed. Route discovery

process consists of following processes.

 RREQ Process:

1. S broadcasts the RREQ of (RREQ ID.s.id) first.

1.a. If D is in the TR of S, then S sends the RREQ directly to the

D. D returns RREP of unique ID (RREP.s.id) to the S, within

(TRREQ.s+TRREP.s). Other 1hop nodes are not D and they check the

extension part of the RREQ ID, if it is (.s.id) then they discard it.

1.b. Else If S does not receive RREP of unique ID (RREP.s.id)

from D within (TRREQ.s+TRREP.s), then it broadcasts the RREQ of

unique ID (RREQ.dis.id) second time to find the D. IR receive

this and check the extension part of the RREQ ID , if it is

(.dis.id) then they pass it until the D is found. When IR decide to

process the received RREQ, they store the RP, which is next hop

to the S from CN (While forwarding RREQ, S does not need to

store the RP) and also stores the RREQ ID. All nodes maintain

the RREQ_RP.

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

18

All nodes which have already broad-casted RREQ once, discard

identical RREQ (by checking the RREQ ID in received RREQ

packet and stored RREQ ID in its routing table) till 2TRREQ.dis

after broadcasting RREQ.

2. When D receives a RREQ of unique ID (RREQ.dis.id), it does

not receive any further identical RREQ.

After receiving first RREQ, D broadcasts Nack to stop

unnecessary further broadcasting of identical RREQ. After

receiving Nack other nodes, which have not broad-casted identical

RREQ, discard it (by checking the RREQ ID in further received

RREQ and stored RREQ ID in its RT) from time instant

mTRREQ.dis to nTRREQ.dis.

All IR which have already broad-casted RREQ once, discard Nack

of same ID (by checking the RREQ ID in received Nack and

stored RREQ ID in its RT).

RREP Process:

3. After receiving first RREQ, D initiates RREP.

3. a. If S is in the TR of D, then D sends the RREP of unique ID

(RREP.s.id) directly to the S, within the time (TRREQ.s+TRREP.s).

3. b. Else D sends the RREP of unique ID (RREP.dis.id) to its

RP, which is next hop to the S. The RP of D is now the CN. This

CN send the RREP of unique ID (RREP.dis.id) to its RP which is

next hop to the S. This procedure continues until the S is

reached. It is done by unicast method. IR and S store the FP

which is next hop to the D from the CN. (D does not need to

store the FP while passing the RREP).

Packet Delivery:

4. It is done by unicast method. S sends the packet to its FP

which is the next hop to the D (maintained in RT of S, while

passing RREP). S deletes the FP from its RT. The FP of S is now

the CN. This CN send the packet to its FP which is next hop to

the D. CN deletes the FP from its RT. This procedure continues

until the D is reached.

3.1.2 Example

 Figure-1: Example Network

In the Figure1, nodes are represented by their node id, such as 0,

1, 2 and so on. Arrows are denoting which node is in the

transmission range of which node. Locations of all nodes are

mentioned by their IP addresses. Node 0„s IP address is

192.0.0.0, node 1„s IP address is 192.0.0.1 and so on.

 Source: node0 and Destination: node1 (Figure-1)

• Node1 and node3 are in the transmission

range of node0. Since the destination node1

is in the transmission range of node0, no

need to maintain reverse parent in RREQ

process and forward parent in RREP process.

• The source node0 broadcasts RREQ of

unique ID (RREP.s.a) with node0‟s IP

address (192.0.0.0) and the IP address of

destination node1 (192.0.0.1). Node1 and

node3 receive it.

• Node1 will check the extension of RREQ ID

and it is (RREQ.s.a). Node1 will find itself

as destination node by matching the

destination IP in the RREQ packet and its

own IP. Then node1 will send back RREP of

unique ID (RREP.s.a) directly to the node0,

within the time (TRREQ.s+TRREP.s).

• Node3 will check the extension of RREQ and

it is (RREQ.s.a). Since node3 is not the

destination node and the extension of RREQ

ID is (RREQ.s.a), node3 will discard that

RREQ. No further broadcast is required.

• After receiving the RREP, node0 will check

the extension of RREP ID which is

(RREP.s.a) and will check whether RREP of

unique ID is received within the time

(TRREQ.s+TRREP.s). If all condition is satisfied

then node0 will send the packet directly to

the node1.

 Source: node0 and Destination: node6 (Figure-1)

RREQ Process:

• Node6 is not in the transmission range of

node0. Node1 and node3 are in the

transmission range of node0.

• The source node0 broadcasts RREQ of

unique ID (RREQ.s.a), with node0‟s IP

address (192.0.0.0) and the IP address of

destination node6 (192.0.0.6). Node1 and

node3 receive it.

• Node1 and node3 will check the extension of

RREQ ID and it is is (RREQ.s.a). Then

node1 and node3 will not find themselves as

destination node by matching the destination

IP in the RREQ packet and their won IPs.

Node1 and node3 will discard the RREQ of

unique ID (RREQ.s.a). That means node0

will not receive RREP of unique ID

(RREP.s.id) within the time (TRREQ.s+TRREP.s)

• After that, node0 will broadcast RREQ for

the 2nd time but with different extension of

RREQ ID (RREQ.dis.a). Node1 and node3

(non destination nodes) will receive it and

check the extension of RREQ ID which is

(RREQ.dis.a).

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

19

• Then node1 and node3 create Reverse Parent

IP (for both, reverse parent IP is node0‟s IP,

i.e. 192.0.0.0). Then node1 and node3

broadcast the RREQ of unique ID

(RREQ.dis.a). Node0, node2 and node4 will

receive it.

• Node0 will receive two RREQ of ID

(RREQ.dis.a) from node1 and node3.We

have discussed that a node which already has

broadcasted a RREQ of unique ID

(RREQ.dis.a) will discard the further

identical RREQ till 2TRREQ.dis , after

broadcasting it. So, node0 will discard it. On

the other hand node2 and node 4 will receive

RREQ of ID (RREQ.dis.a) from node1 and

node3 respectively and create reverse parent

IP (node2‟s reverse parent IP is. 192.0.0.1

and node4‟s reverse parent IP is 192.0.0.3).

• Then node2 and node4 will broadcast it.

When node2 broadcast identical RREQ then

node1 and node6 will receive it. Node1

discard it and node6 create the reverse parent

IP i.e. 192.0.0.2. On the other hand, when

node4 broadcast identical RREQ then node3

and node5 will receive it. Node3 discard it

and node5 create the reverse parent IP i.e.

192.0.0.4.

• Then node6 will find itself as destination

node by matching destination IP (192.0.0.6)

in RREQ and its own IP (192.0.0.6). Then

node6 immediately will broadcast Nack to stop

further broadcasting of identical RREQ. Nack

contains RREQ ID (RREQ.dis.a). Node2 and

node5 receive Nack .

• Node2 will check the RREQ ID in Nack and

the stored RREQ ID in the routing table.

Both RREQ ID will match. That means

node2 already has broadcasted RREQ of ID

(RREQ.dis.a). Then node2 will discard Nack .

• On the other hand, after receiving Nack node5

will not find the identical RREQ ID in its

routing table. That means node5 has not

broadcasted RREQ of ID (RREQ.dis.a) yet.

Then node5 will check whether it has

received any RREQ of identical RREQ ID.

In this case node5 has received a RREQ of

identical RREQ ID. Node5 will discard that

RREQ and broadcast the Nack .

• After receiving Nack from node5, the Node4

will check the RREQ ID of Nack and the

stored RREQ ID in the routing table. Both

RREQ ID will match. That means node4

already has broadcasted RREQ of ID

(RREQ.dis.a). Then node4 will discard Nack .

• Intermediate nodes which have broadcasted

RREQ of unique ID (RREQ.dis.a): node0,

node1, node2, node3, node4. Node6 is the

destination node.

• Intermediate nodes which have broadcasted

Nack with unique ID (RREQ.dis.a): node6 and

node5.

• Intermediate nodes which have discarded Nack

: node2 and node4.

• Intermediate node which has not broadcasted

RREQ of unique ID (RREQ.dis.a) : node5.

• RREQ parameters at node4 at a time

instance: < Source IP: 192.0.0.0, Destination

IP: 192.0.0.6, RP: 192.0.0.3, Hop Count: 2,

Sequence no., RREQ ID: RRE.dis.a >.

RREP Process:

• Node6 has received only one RREQ from

node2. So, node6 will find node2 as reverse

parent, in its routing table. Then node6 will

send RREP of unique ID (RREP.dis.a) to its

reverse parent node2.

• After receiving this RREP, node2 will create

forward parent (node6‟s IP: 192.0.0.6).

Node2 will find node1 as reverse parent, in

its routing table. Then node2 will send RREP

of unique ID (RREP.dis.a) to its reverse

parent node1.

• After receiving this RREP, node1 will create

forward parent (node2‟s IP: 192.0.0.2).

Node1 will find node0 as reverse parent, in

its routing table. Then node1 will send RREP

of unique ID (RREP.dis.a) to its reverse

parent node0 (source node).

• Traversed nodes: node6, node2, node1,

node0.

• RREP parameters at node1 at a time instance:

< Source IP: 192.0.0.0, Destination IP:

192.0.0.6, FP: 192.0.0.2, Hop Count: 2,

Sequence no., RREP ID: RREP.dis.a >.

 Packet Delivery:

• Node0 will receive only one RREP from

node1, through the optimal path. Node0 will

find node1 as forward parent, in its routing

table and send packet to its forward parent

node1.

• Node1 will find node2 as forward parent, in

its routing table and send packet to its

forward parent node2.

• Then Node2 will find node6 as forward

parent, in its routing table and send packet to

its forward parent node6 (destination node).

• Packet Delivery path: node0 node1

node2 node6.

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

20

3.2 Optimized dynamic source (ODSR)

routing
In ODSR if source node have a route to destination node, it does

not need to discover any route, otherwise route discovery is

needed. If destination node is 1hop node of source node, it does

not need to maintain the parent information in RREQ process

and no need to maintain source routing in RREO. Otherwise

route discovery will follow the parent information and source

routing. ODSR route discovery follows RREQ process, RREP

process and packet delivery. In the RREQ process, source node

first broadcasts RREQ of unique ID (RREQ.s.id). If source node

receives RREP of unique ID (RREP.s.id) within

(TRREQ.s+TRREP.s), it implies destination node is in the

transmission range of source node. Otherwise source node

broadcasts RREQ of unique ID (RREQ.dis.id). When

intermediate nodes and destination node receive a RREQ of

unique ID (RREQ.dis.id), they store Reverse Parent IP, RREQ

ID and discard identical RREQ till 2TRREQ.dis. After receiving a

RREQ of unique ID (RREQ.dis.id), destination node broadcasts

Nack to stop further broadcasting of identical RREQ. After

receiving Nack , other nodes which have not broad-casted

identical RREQ yet, discard it from time instant mTRREQ.dis to

nTRREQ.dis . RREQ (of ID: RREQ.dis.id) parameters: < Source IP,

Destination IP, Reverse Parent IP, Hop Count, Sequence no.,

RREQ ID > . If destination node is in the transmission range of

source node, then it sends RREP of unique ID (RREP.s.id) to

source node, within the time (TRREQ.s+TRREP.s). Otherwise it

sends RREP of unique ID (RREP.dis.id). RREP of unique ID

(RREP.dis.id) traverses the optimal path from destination node

to source node, using parent information. Destination node places

the Source‟s IP address, as well as its own IP address, into RREP

of unique ID (RREP.dis.id) and then sends it to source node via

optimal path, using parent information. When the intermediate

nodes receive RREP of unique ID (RREP.dis.id), they append

their own IP addresses to it. RREP (of ID: RREP.dis.id)

parameters: <Destination IP, Source route entry, Hop Count,

Sequence no., RREQ ID>. If destination node is in the

transmission range of source node, then source node sends the

packet directly to the destination node. Source node sends the

packet only through the optimal path from source node to

destination node, using source node route information.

3.2.1 Algorithm
S first checks its route table to determine whether it already has

a route to D. If such a route exists, it can use that route for packet

delivery, otherwise route discovery is needed. Route discovery

process consists of following processes.

RREQ Process:

1. S broadcasts the RREQ of (RREQ ID.s.id) first.

1.a. If D is in the TR of S, then S sends the RREQ directly to the

D.D returns RREP of unique ID (RREP.s.id) to the S, within

(TRREQ.s+TRREP.s). Other 1hop nodes are not D and they check the

extension part of the RREQ ID, if it is (.s.id) then they discard it.

1.b. Else If S does not receive RREP of unique ID (RREP.s.id)

from D within (TRREQ.s+TRREP.s), then it broadcasts the RREQ of

unique ID (RREQ.dis.id) to find the D. IR receive this and check

the extension part of the RREQ ID , if it is (.dis.id) then they

pass it until the D is found. IR and D store the RP, which is next

hop to the S from CN (While forwarding RREQ, S does not need

to store the RP) and also stores the RREQ ID. All nodes maintain

the RREQ_RP.

All nodes which have already broad-casted RREQ once, discard

identical RREQ (by checking the RREQ ID in received RREQ

packet and stored RREQ ID in its routing table) till 2TRREQ.dis

after broadcasting RREQ.

2. When D receives a RREQ of unique ID (RREQ.dis.id), it

discards identical RREQ till 2TRREQ.dis.

 After receiving first RREQ, D broadcasts Nack to stop

unnecessary further broadcasting of identical RREQ. After

receiving Nack other nodes, which have not broad-casted identical

RREQ, discard it (by checking the RREQ ID in further received

RREQ and stored RREQ ID in its routing table) from time

instant MtRREQ.dis to NtRREQ.dis.

All IR which have already broad-casted RREQ once, discard Nack

of same ID (by checking the RREQ ID in received Nack and

stored RREQ ID in its routing table).

RREP Process:

3. When D receives first RREQ, it initiates RREP.

3. a. If S is in the TR of D, then D sends the RREP of unique ID

(RREP.s.id) directly to the S, within the time (TRREQ.s+TRREP.s).

3. b. Else D places the IP address of S, as well as its own IP

address into the RREP of unique ID (RREP.dis.id) and then D

sends it to its RP which is next hop to the S. The RP of D is now

the CN. This CN places its own IP into the RREP of unique ID

(RREP.dis.id) and then it will send the RREP to its RP. This

procedure continues until the S is reached. In RREP process, no

need to maintain any parent information.

Packet Delivery:

4. It is done by unicast method. S sends the packet to its next hop

node to the D (mentioned in the RREP packet header). S deletes

the RP from its RT. The next hop node to the D of S is now the

CN. This CN send the packet to its next hop node to the D,

which is next hop to the D. CN deletes the parent information

from its RT. This procedure continues until the D is reached.

3.2.2 Example
Here we are using the figure-1 to explain the example.

 Source: node0 and Destination: node1 (Figure-1)

• RREQ, RREP and Packet Delivery processes are

same as OAODV, which is already described in

the section3.1.2.

 Source: node0 and Destination: node6 (Figure-1)

RREQ Process:

• Unlike DSR, the ODSR will not follow the

source routing in the RREQ process.

The RREQ process is same as the OAODV,

which is already described in the

section3.1.2.

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.3, November 2010

21

RREP Process:

• Node6 has received only one RREQ from

node2. So, node6 will find node2 as reverse

parent, in its routing table. Then node6 will

place the IP address of node0 (192.0.0.0),

and append its own IP address (192.0.0.6)

into the RREP of unique ID (RREP.dis.a) and

then node6 will send it to its reverse parent

node2, which is next hop to the node0.

• Then node2 will find node1 as reverse

parent, in its routing table. Node2 will

append its own IP (192.0.0.2) into the RREP

of unique ID (RREP.dis.a) and then it will

send the RREP to its reverse parent node1.

• Then node1 will find node0 as reverse

parent, in its routing table. Node1 will

append its own IP (192.0.0.1) into the RREP

of unique ID (RREP.dis.a) and then it will

send the RREP to its reverse parent node0

(source node).

• RREP parameters at node1 at a time instance:

< Source IP: 192.0.0.0, Source Routing:

192.0.0.1 <->192.0.0.2 <->192.0.0.6, Hop

Count: 2, Sequence no. , RREP ID:

RREP.dis.a >

• Traverse Nodes: node 6, node 2, node1,

node0.

 Packet Delivery:

• Node0 will receive only one RREP from

node1, through the optimal path. Now node0

can learn the entire path (optimal path) to

destination. Node0 will find node1 as next

node in the RREP packet header and send

packet to node1.

• Node1 will find node2 as as next node, in the

RREP packet header and send packet to

node2.

• Node2 will find node6 as next node, in the

RREP packet header and send packet to

node6 (destination node).

4. CONCLUSION
Optimized AODV and Optimized DSR protocols for mobile ad

hoc network have been presented. Considering the integrity of

the protocol we have tried to present the every detailed step of

the proposed algorithms with an example network. The

transmission overhead is reduced by stopping the unnecessary

broadcasting of Route Request packets and unnecessary

traversing of Route Reply packets. In the next step of our work,

we will implement our protocol and conduct a performance

analysis on optimized control message over the other measures of

control messages and also on the number of broadcastings. More

research into novel mechanisms for optimized routing in such

networks is necessary.

5. REFERENCES
[1] C. Perkins. AODV Routing Implementation for Scalable

Wireless Ad-Hoc Network Simulation (SWANS).

http://jist.ece.cornell.edu/docs/040421-swans-aodv.pdf

[2] C. Perkins, E. Belding-Royer, S. Das. Ad hoc On-Demand

Distance Vector (AODV) Routing. 2003.

http://www.ietf.org/rfc/rfc3561.txt

[3] D. Johnson, Y. Hu, D. Maltz. The Dynamic Source Routing

Protocol (DSR) for Mobile Ad Hoc Networks for IPv4.

2007. http://www.ietf.org/rfc/rfc4728.txt

[4] David B. Johnson and David A. Maltz. Dynamic Source

Routing in Ad Hoc Wireless Networks. COMPUTER

SCIENCE. Mobile Computing. The International Series in

Engineering and Computer Science, 1996, Volume 353,

153-181

[5] Liu Chao and Hu Aiqun. Reducing the Message Overhead

of AODV by Using Link Availability Prediction. Lecture

Notes in Computer Science, 2007, Volume 4864/2007, 113-

122,

[6] Stefano Basagni, Marko Conti, Silvia Giordano and Ivan

Stojmenovic. Mobile Ad Hoc Networking (chapter: 9). A

JOHN WILEY & SONS, INC., PUBLICATION.

[7] Xia ofeng Zhong,Youzheng Wang, Shunliang Mei, and Jing

Wang . A Stable Adaptive Optimization for DSR Protocol.

Lecture Notes in Computer Science, 2003, Volume 2524

/2003, 179-199

http://jist.ece.cornell.edu/docs/040421-swans-aodv.pdf
http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc4728.txt
http://www.springerlink.com/computer-science/
http://www.springerlink.com/computer-science/
http://www.springerlink.com/computer-science/
http://www.springerlink.com/content/978-0-7923-9697-0/
http://www.springerlink.com/content/0893-3405/
http://www.springerlink.com/content/0893-3405/
http://www.springerlink.com/content/0893-3405/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

