Security Building at the Line of Control for Image Stego

Rengarajan Amirtharajan Assistant Professor / ECE School of Electrical & Electronics Engineering SASTRA University

Benita Bose Department of ECE School of Electrical & Electronics Engineering SASTRA University Thanjavur

ABSTRACT

Security has virtually become an indispensable non-functional requirement for any technology that deals with data. Traditional methods of imparting security using encryption have given away themselves long ago to cryptanalytic ventures. A different method of secure data transfer without revealing the mere existence of secret, called Steganography is a promising technique to ensure security. This technique camouflages secret data into a casual cover image, without affecting its visually perceived quality. This paper proposes a novel technique, which is a hybrid of cryptography, edge detection and steganography. By differentially embedding secret data into edges and smooth pixels of cover image, so that edge pixels and smooth pixels have data with different encryptions, the cryptic effect can be boosted to a greater limit, making the unauthorized extraction of secret data impossible.

General Terms

Information Security

Keywords

Edge Detection, Information hiding, Least Significant Bit (LSB) Embedding, Optimal Pixel Adjustment Process (OPAP)

1. INTRODUCTION

Technology has evolved significantly from just an invention of smoke signals to eroding physical barriers of advanced communication and has allowed people to exchange information globally. But over a period of time as technology increased, morals and ethics slowly weakened and Information exchange became insecure. Confidential information in governments regarding state or country, business information, research information, information and dealings in financial institutions, defense information are conglomerated stored and are exchanged between nations for various needs and purposes. When there is a breach during the transfer of such critical information, it could lead to bankruptcy of a country, tyranny, mayhem, or attacks on a country by terrorists. Thus confidential information should be protected for social and ethical needs. The only tool that equips science to protect stored information and secure information transfer is Information Security. Information security plays a vital role in safeguarding information, ensuring the authenticity of the transmitted information, and maintaining the integrity of it. Experts have various definitions for information security and the most prominent one among them is "Information security is

Sasidhar Imadabathuni Department of ECE School of Electrical & Electronics Engineering SASTRA University John Bosco Balaguru Rayappan Associate Dean Research School of Electrical & Electronics Engineering SASTRA University

concerned with the confidentiality, integrity and availability of data regardless of the form the data may take: electronic, print, or other forms". There are several robust methods, which are the brain child of modern technology to implement information security and some of these are still under research to improve its potency in every feasible way. Information security is therefore an integral part of information exchange, without which impregnable data transfer is hard to imagine.

Furthermore in the present electronic epoch, secure communication is the most sought after asset and mankind is on a constant search for modes of communication to ensure the confidentiality of crucial information. This towering need for maintaining secrecy of critical information has given rise to several subclasses of information hiding techniques namely steganography, cryptography and watermarking techniques. Steganography is the art of camouflaging the vital information in a cover object in such a way that its very existence is concealed where the cover object may be Audio, Video or An Image [7,8, 11]. In cryptography [10], although the presence of information is conspicuous the code is indecipherable as it is sent in an inscrutable format.

In the recent past, several steganographic methods [1-9, 11-21] have been proposed in image steganography and they are classified into two major types namely spatial domain [2-6, 12-13, 19, 21] and frequency [18, 20] domain techniques. In the spatial domain the encrypted secret data is hidden in the pixels of cover image by employing Least Significant Bit (LSB) [2-6,12,13,19,21,], pixel value differencing [4,5,14] and Pixel Indicator [2-5] based schemes. These schemes have been adapted by many authors to achieve good imperceptibility with higher pay load [12,19,21]. In the frequency domain methods, the secret data is hidden in the transformed coefficients of the cover image where Discrete Cosine Transform (DCT) [1,16,18] and Discrete Wavelet Transform (DWT) [1,16,20] act as domain changers.

The technique which is extensively used in image based steganography is least significant bit (LSB) substitution technique due to its potentiality of embedding secret information in an image with high capacity and imperceptibility. In LSB embedding process, authors have adapted raster scan [1-5,7,8,10-15, 19-21] as well as random scan [6,9,16,18] to hide the secret data in the visited pixel. Between these two scans, random is preferred over raster to increase the level of complexity against eavesdroppers. But the real challenge lies in maintaining good imperceptibility of the stego-image and sharing the secret key for retrieving the original message. To do so, an edge pixel finding algorithm is employed and this is known as *Edge Detection*. The edge detection is a technique where the edges in an image are found out by using a suitable algorithm. The edge which typically has

varying gray levels, is mainly used to define the boundary regions of the image fragments and they are used to analyze the important aspects of the image. The classical edge detection algorithms include Sobel, Prewitt, Zerocrossing, Laplacian and Canny operators.

2. RELATED WORK

One of the straight solutions of hiding data is to directly replace LSB of each pixel in the cover image with the bits of secret data. It results in less distortion than directly manipulating the MSB's of each pixel in the cover image. It is because the MSB is more sensitive to our vision and changing the parts of MSB will gravely degrade the quality of stego image. Hence, LSB substitution method is very simple and the scheme could maintain a good quality image. The general procedures for data hiding by simple LSB substitution are described as follows.

Let C be the original 8-bit gray scale cover-image of $M_{c} \times N_{c}$ pixels represented as

$$C = \{C_{ij} \mid 0 \le i \le M_c, 0 \le j \le N_c, C_{ij} \in \{0, 1 \dots 255\}\}$$
(1)

SM be the secret message of length n bit as

$$SM = \{sm_i | 0 \le i \le n, m_i \in \{0, 1\}\}$$
(2)

Suppose that secret message (SM) will be embedded into the k-LSBs of the cover-image C. Initially, the secret message M is rearranged to form conceptually k-bit virtual image SM' represented as

$$SM' = \{sm'_i | 0 \le i \le n', m'_i \in \{0, 1, \dots, 2^k - 1\}\}$$
(3)

Where $n' < M_c \times N_c$. The mapping between secret message $SM = \{sm_i\}$ and the embedded message $SM' = \{m_{i'}\}$ can be defined as follows:

$$\mathrm{sm}_i{}' = \sum_{j=0}^{k-1} \quad \mathrm{sm}_{\mathrm{i} \times \mathrm{k} + \mathrm{j}} \times 2^{\mathrm{k} \cdot \mathrm{l} \cdot \mathrm{j}}$$

Furthermore, a subset of n' pixels {x₁₁, x_{12...} xln·} is chosen from the cover-image C in a pseudo random sequence. The embedding process is carried out by replacing the k LSBs of $C_{i,j}$ by sm_i. Mathematically, the pixel value $C_{i,j}$ of the selected pixel for storing the k-bit message m_{i'} is modified to form the stego-pixel S_{i,i} as follows:

$$S_{i,j} = C_{i,j} - C_{i,j} \mod 2^k + sm'_i$$
 (4)

In the extraction process, given the stego-image S, the embedded messages can be readily extracted by blind extraction without using the cover-image. Using the same pseudo random sequence as in the embedding process, the set of selected pixels {x_{II'}, x_{I2'}... x_{in'}} from the Stego cover which have the secret message bits within it. The k LSBs of those pseudo randomly selected pixels are extracted to reconstruct the secret message bits. Mathematically, the embedded message bits m_i can be recovered by

$$\mathrm{sm}'_{\mathrm{i}} = \mathrm{S}_{\mathrm{i},\mathrm{j}} \mod 2^{\mathrm{k}} \tag{5}$$

if all the pixels in the cover-image are pseudo randomly used for the embedding of secret message by the simple LSB substitution method.

2.1 Classic Edge Detection Techniques:

2.1.1 Sobel's algorithm:

An edge is reported in an image when there is a considerable change in the image's intensity. There are several techniques employed to detect an edge. Sobel is one of the primitive edge detection techniques which are successful in identifying an edge by utilizing the gradient of the image intensity. In this algorithm, the gradient of the image intensity is taken at each point on the image which gives the magnitude and direction of increase in the intensity. Thus by comparing the resultant 2D vector with the threshold values, the presence of an edge is effectively perceived. Using the "EDGE" function in matlab along with the Sobel algorithm results in a binary image with 1's corresponding to the edges in the input image and 0's elsewhere.

2.1.2 Prewitt Algorithm:

Prewitt algorithm is similar to the Sobel algorithm wherein the source image point is convolved with two 3x3 kernels to obtain the horizontal and vertical derivatives. Using the "EDGE" function in matlab along with the Prewitt algorithm results in a binary image with 1's corresponding to the edges in the input image and 0's elsewhere.

2.1.3 Roberts Edge Detection Algorithm:

Roberts's algorithm aims at detecting an edge in an image by computing the intensity gradient just like the Sobel and Prewitt technique. Nevertheless, this algorithm alleviates the complexity as it employs a simple 2×2 kernel for gradient computation. In addition for every pixel its gradient intensity is compared only with that of those pixels diagonally adjacent. However, its main disadvantage is that since it uses such a small kernel, it is very sensitive to noise.

2.1.4 Laplacian of Gaussian Algorithm (log) and Zero Crossing Edge detection Algorithm:

This algorithm is different from the above mentioned algorithms as it does not use the first derivative and does not involve the computation of gradients unlike the other edge detection techniques, instead it makes use of the zero crossing technique. Initially, to minimize the effect of noise and to augment its smoothness the Gaussian function is employed. The laplacian of the resultant is then calculated. When there is a change in sign in the laplacian of the Gaussian, or in other words when the laplacian value crosses zero, an edge is detected and the resultant binary image has a high vavue-'1' in the corresponding point to indicate the edge.

Zero crossing also reports an edge at any place where the image intensity gradient starts increasing or starts decreasing, and this may happen at places that are not obviously edges. Hence the log method employs other alternatives for edge detection. The simplest method being utilizing threshold of the log image value so that a value higher than that would report an edge. The problem associated with this method is that there is a possibility of having multiple edges detected. Another method involves comparing the log value of a pixel with that of its adjacent pixels and choosing those points that have a log magnitude lesser than that of its four neighbouring points. However there is a risk of missing few edges in this technique.

2.1.5 Canny Edge Detection Algorithm:

The canny algorithm is one of the most sophisticated edge detection techniques since it is less prone to the detrimental effects of noise, consequently resulting in a more credible binary image. In order to eliminate the effects of noise this algorithm employs convolution of the original image with a Gaussian filter. The resultant image is then utilized to reckon the intensity gradient and the direction of the gradient is appraised based on the gradient angle. A point on the raw image is declared an edge if the intensity strength at that point is higher than that of its adjacent points along the gradient direction. Ultimately this algorithm establishes its superiority by employing two threshold values-the higher value to include the obvious genuine edges and the lower value to trace the minute details of the image. Hence the canny edge detection algorithm gives a more elaborate and detailed binary image when used in unison with the "EDGE" function in matlab.

2.1.6 Proposed Hybrid Edge detection method

The hybrid method has been employed by simply using OR of all the six available methods, which intern gives more edges and hence increases the embedding capacity.

3. METHODOLOGY

The LSB method is preferred over the other steganographic techniques as it yields comparatively higher payload efficiency. Edge detection on the other hand is one of the most fundamental image analysis operations. Edges are often vital clues towards the analysis and interpretation of image information, both in biological vision and computer image analysis. Edges occur mainly due to the discontinuities in depth, surface orientation, scene illumination and material properties.

The results from literature have shown that putting the edge pixels effectively into usage in the LSB substitution method facilitates an increase in the payload as well as renders the stego image virtually imperceptible and impregnable. Further in this paper we employ a combination of several edge detection algorithms namely Sobels algorithm, Prewitts algorithm, zero crossing algorithm, Roberts algorithm, log algorithm and canny algorithm. This combinational algorithm has its edge over the individual algorithms as it increases the number of edge pixels obtained in a given image. Figure 1 elucidates the Block Diagram representation of the Proposed Method.

3.1 Flowchart for Embedding:

Figure 2 Flowchart for Embedding

Figure 1 Block Diagram representation of the Proposed Method

3.2 Flowchart for Extraction:

Figure 3 Flowchart for Extraction.

3.3 Embedding & Extraction Algorithm:

This methodology aims in selecting the edge pixels in the color image. In these edge pixels 5 or 6 bit LSB Substitution is performed. In order to increase the embedding capacity 1 to 2 bit LSB Substitution is performed in the smooth portions of the image (non-edge pixels). By using this methodology all the pixels in the image are utilized for embedding secret message. Since 1 to 2 bit embedding is done in the smooth region there will be minor difference between the actual image and the stego-image. The edge pixels offer high embedding capacity and hence 5 or 6 bit embedding will not distort the image quality. The resultant stegoimage will be having high robustness and randomness. Due to these qualities the image will be imperceptible to the human visual system.

Embedding Algorithm

- Step 1: Read the cover image C
- Step 2: Apply Edge Detection on C to get Edge Matrix E as per the user selection.
- Step 3: Read Secret Data D
- Step 4: Read the Key Set K.
- Step 5: For each pixel in C, do the following
- Step 5.1 If (current pixel \in E)
 - Encrypt next 5 bits of D using K[1].

Embed 5 bits of D into current pixel of C.

- Else
 - Encrypt next 2 bits of D using K[2].
- Embed 2 bits of D into current pixel of C.
- Step 5.2 If all data in D has been embedded Go to Step - 6.
- Step 6: Store the resulting image as Stego Image S.
- Step 7: Apply OPAP on S to reduce MSE.
- Step 8: Transmit S as stego image.

Extraction Algorithm

- Step 1: Read the Stego Image S and Reference Cover C.
- Step 2: Apply Edge Detection on C to get Edge Matrix E as per
- the user selection. Step 3: Read the Key Set K.
- Step 4: For each pixel in C, do the following
- Step 4.1. If (current pixel in $C \in E$)
 - Recover next 5 bits of secret data from current pixel of S.
 - Decrypt the 5 bits of data using K[1].
 - Else Recover next 2 bits of secret data from current pixel of S.
 - Decrypt 2 bits of data using K[2].
- Step 4.2. If all data gas been recovered Go to Step 5.
- Step 5: Store the resulting data as Secret D.

4. RESULT & DISCUSSION

A novel steganography scheme is further discussed and thoroughly analyzed. In generality, on concealment of data in a cover image, the last bits (LSBs) of the pixels of the image are affected and embedded into. In this method, the capacity or the overall embedding payload of the system is modestly low. Thus the capacity requirement of the magic triangle is compromised upon, contrary to the expectation that a steganographic system must have high embedding payload as when compared to the robustness. To overcome this shortcoming and to improve the imperceptibility, we improve the embedding efficiency i.e. embed more data per modification to the cover data and also avoid embedding in conspicuous parts in the cover image. This is done by conflating the LSB technique with edge detection mechanism.

Edge extraction is basically done so as to discern the edge and non-edge pixels, here edges are characterised by significant dissimilarity indicating boundary, and thus are comparatively obscure to human visual perception ,facilitating more amount of data to be concealed in them. In fact, whereas only 1 or 2 bits of non edge pixels can be substituted without distortion, around 5 to 6 bits of edge pixels can be replaced without perceviability in the cover image. Furthermore, this technique which was formerly proposed majorly for gray scale images is now further exserted for color images. Thus the same logic of least significant bit insertion (LSB) is used in combination with a the proposed hybrid edge detection principle, considering the cover media to be a color image. A plethora of options for edge detectors are available (Sobel, Prewitt, Laplacian, Zero crossings, Robert, Canny etc.) and they are prominently preferred for their exemplary characteristics especially since clear and sharp edges are obtained with less computational efforts. The proposed methodology uses combinational cutting edge technology of all the fore а mentioned edge detectors known as hybrid edge detection algorithm and it incorporates the advantages of all the six edge

detection techniques. As a result, numerous edge pixels are obtained and thus more data can be embedded, increasing the payload. A given color image can be furcated into three components, RED GREEN and BLUE, every component is then in behavioral characteristics similar to a grey scale image. Then every pixel of the individual components is further worked upon. The component is then filtered using the hybrid edge detector(combination of all six classic edge detection methods)upon which we obtain many more edge pixels of the component than if either were used individually. The pixels are then further ramified into edge and non-edge pixels, if there are n pixels- P1, P2.....Pn, then the status of the pixels P2 to Pn are calculated and stacked away in the P1 value's last bits. The maximum value should be (n-1) bits that should be accommodated in P1. To preserve the quality of pixel P1 as well as to increase the embedding payload the general values of n are taken as 3, 4 or 5. On classification, each non-edge pixel of cover image can be embedded using LSB and the data to be embedded maybe restricted to 1 or 2 to preserve the imperceptibility, however in the edge pixels, around 3,4 or 5 bits can be replaced without any perceptible distortion. And thus all the pixels of the cover image are utilized, and since only 1 to 2 bits of smooth pixels are embedded, the difference between the actual and stego-image is inconspicuous, with the edge pixels offering high payload, since embedding in 5 to 6 bits also doesn't have a major aberration. Thus the stego image obtained has high imperceptibility to the human visual system attributed to high payload commingled with eminent robustness and randomness. The image show considerable resistance to steganalysis and the randomness can be further fortified by combining LSB substitution with Raster scan technique.

In this present implementation Lena, baboon, Gandhi and Temple of 256×256 color digital images has been taken as cover images as shown in Figure 4 a, b, c & d and tested for full embedding capacity and the results are given. The effectiveness of the stego process proposed has been studied by calculating MSE and PSNR for all the four digital images in RGB planes using the proposed method.

The MSE is calculated by using the equation,

$$MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (X_{i,j} - Y_{i,j})^2$$
(6)

where $X_{i,j}$ is Stego value and $Y_{i,j}$ is the cover object. The PSNR is calculated using the equation

$$PSNR = 10 \log_{10} \left(\frac{I_{\max}^2}{MSE} \right) dB \tag{7}$$

where I_{max} is the intensity value of each pixel which is equal to 255 for 8 bit gray scale images. Higher the value of PSNR better the image quality. The corresponding results of MSE, PSNR. No of Edge Pixels, Total number of Edge pixels in RGB and the total payload for each case is given in Table 1 to Table 8. **Results prove that the proposed edge detection based steganography supersedes all the methods**

4d	4	ła 4b	Figure 4
4d	4	ła 4b	Figure 4

29704 49816 25520 40769

International Journal of Computer Applications (0975 – 8887) Volume 12– No.5, December 2010

		Table T. Lei	la Luge I lav	lis ki S, anu Ku	manning Smoot	II I IACIS KZ I		
Edge D	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
Е	Red	2.4245	2.4004	2.0689	3.9045	3.9045	4.6863	8.3952
AIS N	Green	2.2881	2.295	2.0275	3.518	3.518	4.6526	7.8346
K.	Blue	2.3863	2.3679	2.1256	4.2273	4.2273	5.4306	8.8173
ΖĽ	Red	44.2845	44.3279	44.9734	42.2151	42.2151	41.4225	38.8905
[Sd	Green	44.536	44.523	45.0612	42.6679	42.6679	41.4539	39.1906
	Blue	44.3535	44.3871	44.856	41.8702	41.8702	40.7823	38.6775
of Ge Is	Red	2671	2625	2337	4383	4383	5388	9803
lo o Edg ixej	Green	2554	2502	2318	4070	4070	5230	9225
	Blue	2752	2721	2261	4744	4744	6223	10676
	Total in RGB	7977	7848	6916	13197	13197	16841	29704
	Bits embedded	228516	228000	224272	249396	249396	263972	315424

Table 1 : Lena Edge Pixels k1=5, and Remaining Smooth Pixels k2=1

Table 2 Lena Edge Pixels k1=6, and Remaining Smooth Pixels k2=2

Edge D	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
E	Red	9.8552	9.2795	8.514	14.6597	14.6597	17.9991	32.7513
VIS	Green	9.0347	8.9982	8.4107	13.5984	13.5984	16.6744	29.6416
R.	Blue	9.9491	9.4514	7.9554	15.8787	15.8787	20.0474	35.1875
к	Red	38.1941	38.4555	38.8295	36.4696	36.4696	35.5783	32.9785
NS	Green	38.5717	38.5892	38.8825	36.7959	36.7959	35.9103	33.4118
P	Blue	38.153	38.3758	39.1242	36.1226	36.1226	35.1102	32.6669
of ge els	Red	2671	2625	2337	4383	4383	5388	9803
No Ed Pix	Green	2554	2502	2318	4070	4070	5230	9225
	Blue	2752	2721	2261	4744	4744	6223	10676
	Total in RGB	7977	7848	6916	13197	13197	16841	29704
Bits embed	lded	425124	424608	420880	446004	446004	460580	512032

Table 3 Baboon Edge Pixels k1=5, and Remaining Smooth Pixels k2=1

Edge D	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
E	Red	2.4794	2.5089	1.1253	6.3828	6.3828	8.8192	14.0238
SW	Green	2.6405 2.3004	2.4577 2.2128	1.1227 1.1751	6.6318 6.0303	6.6318 6.0303	9.1104 8 8084	14.4759 14.0771
R	Red	44.1874	44.1359	47.6181	40.0807	40.0807	38.6765	36.6621
NSA	Green	43.9139	44.2255	47.6281	39.9145	39.9145	38.5354	36.5244
No of Edge Pixels PSNR MSE	Blue	44.5128	44.6814	47.43	40.3274	40.3274	38.6818	36.8348
of els	Red	2807	2697	1170	7598	7598	10318	16726
No Ixe	Green	2907	2784	1149	7696	7696	10782	17048
	Blue	2563	2452	1112	7035	7035	10597	16042
	Total in RGB	8277	7933	3431	22329	22329	31697	49816
Bits embed	lded	229716	228340	210332	285924	285924	323396	395872

 Table 4 Baboon Edge Pixels k1=6, and Remaining Smooth Pixels k2=2

Edge D	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
E	Red	10.1389	9.561	4.8367	25.027	25.027	34.5293	55.2313
WS	Green	10.0723	9.9132	4.7437	26.0759	26.0759	35.5039	54.3232
~ ~	Blue	10.1023	9.6288	4.8821	25.828	25.9182	35.0912	55.0198
ΖM	Red	38.0709	38.3258	41.2854	34.1467	34.1467	32.7489	30.709
ISd	Green	38.0995	38.1687	41.3696	33.9684	33.9684	32.628	31.683
	Blue	38.0818	38.2234	41.2987	33.512	33.9123	32.9876	30.9976
of Se	Red	2807	2697	1170	7598	7598	10318	16726
lo d 2dg ixel	Green	2907	2784	1149	7696	7696	10782	17048
Z H Z	Blue	2563	2452	1112	7035	7035	10597	16042
	Total in RGB	8277	7933	3431	22329	22329	31697	49816
Bits embed	lded	426324	424948	406940	482532	482532	520004	592480

International Journal of Computer Applications (0975 – 8887) Volume 12– No.5, December 2010

Edge D	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
E	Red	1.8173	1.8583	1.8744	3.2047	3.2047	4.0294	7.14
SM	Green	1.8552	1.8877	1.9231	3.2542	3.2542	4.3722	7.5015
	Blue	1.9516	1.8524	1.8302	3.3302	3.3302	4.5145	7.4124
7.2	Red	45.5365	45.4396	45.4022	43.073	43.073	42.0784	39.5938
Sd	Green	45.4468	45.3715	45.2908	43.0064	43.0064	41.7238	39.3793
	Blue	45.2269	45.4535	45.5059	42.9061	42.9061	41.5847	39.4312
of Se Is	Red	2025	2031	2070	3701	3701	4608	8233
lo d Sdg ixel	Green	2020	2031	2057	3721	3721	5007	8594
Z H Z	Blue	2039	2031	2043	3792	3792	5121	8693
	Total in RGB	6084	6093	6170	11214	11214	14736	25520
Bits embed	lded	220944	220980	221288	242264	242264	255552	298688

Table 5 Mahatmagandhi Edge Pixels k1=5, and Remaining Smooth Pixels k2=1

Table 6 Mahatmagandhi Edge Pixels k1=6, and Remaining Smooth Pixels k2=2

Edge De	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
ΈE	Red	7.4439	7.4016	7.7012	12.6105	12.6105	14.8093	26.4473
SM SM	Green	7.5753	7.5701	7.6406	12.5555	12.5555	16.8832	28.0563
	Blue	7.4976	7.4789	7.6945	12.2753	12.2678	15.986	27.8276
R	Red	39.4128	39.4375	39.2652	37.1235	37.1235	36.4254	33.907
SN	Green	39.3368	39.3398	39.2995	37.1425	37.1425	35.8562	33.6505
4	Blue	39.2873	39.1098	39.2874	37.1987	37.1387	35.986	33.7654
of se Is	Red	2025	2031	2070	3701	3701	4608	8233
No - Edg	Green	2020	2031	2057	3721	3721	5007	8594
	Blue	2039	2031	2043	3792	3792	5121	8693
	Total in RGB	6084	6093	6170	11214	11214	14736	25520
Bits embed	ded	417552	417588	417896	438872	438872	452160	495296

Table 7 Temple Edge Pixels k1=5, and Remaining Smooth Pixels k2=1

Edge De	tection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
SE	Red	3.9047	3.7881	2.4824	5.5578	5.5578	6.4141	11.5035
W	Green	3.8742	3.8867	2.5566	5.699	5.699	6.3831	11.4871
	Blue	3.874	3.7238	2.3832	5.6497	5.6497	6.3546	11.6128
7 2	Red	42.2149	42.3466	44.182	40.6818	40.6818	40.0595	37.5225
ISA	Green	42.249	42.2349	44.0541	40.5728	40.5728	40.0805	37.5287
	Blue	42.2492	42.4209	44.3592	40.6106	40.6106	40.0999	37.4814
of ge ds	Red	4406	4277	2792	6417	6417	7479	13431
Edg ixe	Green	4476	4356	2831	6519	6519	7452	13689
	Blue	4447	4367	2721	6513	6513	7319	13649
	Total in RGB	13329	13000	8344	19449	19449	22250	40769
Bits embedo	led	249924	248608	229984	274404	274404	285608	359684

 Table 8 Temple Edge Pixels k1=6, and Remaining Smooth Pixels k2=2

Edge De	etection Method	Sobel	Prewitt	Roberts	Log	Zerocross	Canny	Hybrid
E	Red	14.7265	14.658	10.2526	22.0611	22.0611	25.601	45.3655
MS	Green	15.3024	14.6307	9.539	20.254	20.254	23.8691	43.3758
	Blue	14.5465	14.6723	10.201	21.234	21.768	24.752	44.342
~	Red	36.4498	36.47	38.0225	34.6945	34.6945	34.0482	31.5635
NS	Green	36.2832	36.4781	38.3358	35.0657	35.0657	34.3524	31.7583
Ь	Blue	36.786	36.245	38.421	35.0112	34.987	34.236	31.635
of Is	Red	4406	4277	2792	6417	6417	7479	13431
lo o Idg ixej	Green	4476	4356	2831	6519	6519	7452	13689
	Blue	4447	4367	2721	6513	6513	7319	13649
	Total in RGB	13329	13000	8344	19449	19449	22250	40769
Bits embed	led	446532	445216	426592	471012	471012	482216	556292

5. CONCLUSION

The complexity of data retrieval is greatly improved by differential embedding. The choice of two different encryption methods for edges and smooth pixels makes it impossible to compromise this system. These advantages are backed up by choice of different number of bits embedded in each pixel type. Thus, this trio of differential embedding, alternating encryption and varying depth of embedding makes a self-sufficient, reliable and robust security system. Results prove that the proposed edge detection based steganography supersedes all the methods.

6. ACKNOWLEDGMENTS

Our thanks to G.Vivek, Venkata Abhiram Murarisetty, Motamarri Abhilash Swarup, Mohammed shakeel shaik, Sandeep Kumar Behera and G.Aishwarya ECE Stego group Students /SEEE/ SASTRA University for their technical support.

7. REFERENCES

- Abbas Cheddad, Joan Condell, Kevin Curran, Paul Mc Kevitt, Digital image steganography: Survey and analysis of current methods Signal Processing 90 (2010) 727–752.
- [2] Adnan Gutub, "Pixel Indicator Technique for RGB Image Steganography", *Journal of Emerging Technologies in Web Intelligence (JETWI)* (2010)2(1) 56-64
- [3] R.Amirtharajan, Aishwarya G, Madhumita Rameshbabu and John Bosco Balaguru Rayappan, "Optimum Pixel & Bit location for Colour Image Stego- A Distortion Resistant Approach. *International Journal of Computer Applications(2010)* 10(7):17–24.
- [4] R.Amirtharajan, Adharsh.D, Vignesh.V and R.John Bosco Balaguru, "PVD Blend with Pixel Indicator - OPAP Composite for High Fidelity Steganography" *International Journal of Computer Applications (2010)* 7(9):31–37.
- [5] R.Amirtharajan, Sandeep Kumar Behera, Motamarri Abhilash Swarup, Mohamed Ashfaaq K and John Bosco Balaguru Rayappan, "Colour Guided Colour Image Steganography" Universal Journal of Computer Science and Engineering Technology 1 (1) (2010), 16-23.
- [6] R.Amirtharajan and Dr. R. John Bosco Balaguru, "Tri-Layer Stego for Enhanced Security – A Keyless Random Approach"
 - IEEE Xplore, DOI, 10.1109/IMSAA.2009.5439438.
- [7] R.Amirtharajan, R. Akila, P.Deepikachowdavarapu, "A Comparative Analysis of Image Steganography". International Journal of Computer Applications 2(3)(2010):41–47.

- [8] R.Amirtharajan, Krishnendra Nathella and J Harish, "Info Hide – A Cluster Cover Approach" International Journal of Computer Applications 3(5)(2010) 11–18.
- [9] R.Amirtharajan and R.John Bosco Balaguru. "Constructive Role of SFC & RGB Fusion versus Destructive Intrusion". International Journal of Computer Applications 1(20):30–36
- [10] Bruice Schneier, Applied Cryptography Protocols, Algorithm and Source Code in C. Second edition. Wiley India edition 2007
- [11] W. Bender, D. Gruhl, N. Morimoto, A. Lu, "Techniques for data hiding" IBM Syst. J. 35 (3&4) (1996) 313–336.
- [12] C.K. Chan, L.M. Chen, Hiding data in images by simple LSB substitution, Pattern Recognition 37 (3) (2004) 469–474.
- [13] Chang, C.C., Hsiao, J.Y., Chan, C.S., 2003. Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recognition 36 (July), 1583– 1595.
- [14] Chang, C.C., Tseng, H.W., 2004. A steganographic method for digital images using side match. Pattern Recognition Letter 25 (September), 1431–1437.
- [15] F.A.P. Petitcolas, R.J. Anderson, M.G. Kuhn, Information hiding—a survey, Proc. IEEE 87 (7) (1999) 1062–1078.
- [16] S. Katzenbeisser, F.A.P. Petitcolas, Information Hiding Techniques for Steganography and Digital Watermarking, Artech House, Norwood, MA, 2000.
- [17] Peter Wayner, "Disappearing cryptography: information hiding : steganography & watermarking" 2nd. ed. San Francisco: Morgan Kaufmann; 2002.
- [18] N. Provos and P. Honeyman, "Hide and seek: An introduction to steganography," *IEEE Security Privacy Mag.*,1 (3) (2003) 32–44
- [19] C.C. Thien, J.C. Lin, A simple and high-hiding capacity method for hiding digit-by-digit data in images based on modulus function, Pattern Recognition 36 (11) (2003) 2875– 2881
- [20] Po-Yueh Chen Hung-Ju Lin, "A DWT Based Approach for Image Steganography", International Journal of Applied Science and Engineering 4(3)(2006): 275-290
- [21] R.Z. Wang, C.F. Lin, J.C. Lin, Image hiding by optimal LSB substitution and genetic algorithm, Pattern Recognition 34 (3) (2000) 671–683