
International Journal of Computer Applications (0975 – 8887)

Volume 12– No.5, December 2010

26

Software Specifications Mining using Transaction

Mapping Algorithm

 R. Jeevarathinam
 Assistant Professor

Department of Computer Science SNR Sons College,
Coimbatore, India

 Dr. Antony Selvadoss Thanamani
Professor ad Head

 Department of Computer Science
NGM College, Pollachi, India

ABSTRACT

Specification mining is a dynamic analysis process aimed at

automatically inferring suggested specifications of a program from

its execution traces. In software development it would be

preferable if all programs and software projects are developed

with clear, precise and documented specifications. But due to hard

deadlines and `short-time-to-market' requirement, software

products often come with project oriented, incomplete and even

without any documented specifications. This situation is further

motivated by a phenomenon termed as software evolution. As

software evolves the documented specification is often not

updated. This might render the original documented specification

of little use after several cycles of program evolution. The above

factors have contributed to high software maintenance costs. In

this paper a novel technique to efficiently mine software

specifications, called TM_TraceMiner is proposed which mines

software specifications from program execution traces. To address

the limitations of Apriori-like methods and FP-growth methods, a

mining paradigm has been proposed, which uses Transaction

Mapping algorithm.

Keywords

Algorithms, Apriori, FP-growth, mining specifications, program

execution traces, transaction mapping.

1. INTRODUCTION
Specifications mining first proposed by Ammons et al [1] has

received intensive research due to its wide range of applicability

in many real life domains. They mine specifications from program

execution traces. Let a program execution trace be a sequence of

method calls to an application interface API [2,3]. Given a set of

program execution traces, a small portion might be erroneous. The

specification miner infers sequencing of constraints among the

method calls. A trace might only be different to another due to

different numbers of loop iterations during program execution.

Given a database containing specifications, specification mining is

a task of identifying specifications that satisfy a minimum support

[4].

Mining specifications can be done by using Association rule

mining. Association rules mining is a very popular data mining

techniques and it finds relationships among the different entities

of records (for example specifications records). Since the

introduction in 1993 by Agrawal et al.[5], it has received a great

deal of attention in the field of knowledge discovery and data

mining. The problem of association rules mining was introduced

in [5] and was improved to obtain the Apriori algorithm in [6].

The Apriori algorithm employs the downward closure property- if

an itemset is not frequent, any superset of it cannot be frequent

either. The Apriori algorithm performs a breadth-first search in

the search space. TraceMiner is an Apriori based method which

mines software specifications from program execution traces by

employing a search lattice and search tree to store the execution

trace data sets [7].

FP-growth is a well known algorithm that uses FP-tree data

structure to achieve a condensed representation of the data base

transactions and employs a divide-and-conquer approach to

decompose the mining problem into a set of smaller problems [8].

FP-TraceMiner [9] is a FP-growth based method which mines all

the frequent execution traces by recursively finding all frequent

traces from the trace database. In FP-growth based algorithms,

recursive construction of the FP-tree affects the algorithm’s

performance. In this paper, a novel approach that maps and

compresses the transaction id list of each item (trace) into an

interval list using a transaction tree and counts the support of each

item (trace) by intersecting these interval lists. The frequent traces

are found in a depth-first order along a lexicographic tree. The

basic idea is to save the intersection time by mapping trace ids

into continuous trace intervals. The rest of the paper is arranged as

follows: Section 2 introduces the basic concept of association

rules mining, two types of data representation, and the

lexicographic tree used in the proposed algorithm. Section 3

addresses the TM-TraceMiner algorithm. Section 4 compares the

TM-TraceMiner with two other algorithms-TraceMiner and FP-

TraceMiner. Section 5 concludes the paper.

2. BASIC PRINCIPLES

2.1 Association Rules Mining
Let I={e1,e2,…,em} be a set of events and TD be a database

having a set of traces where each trace T is a sub set of I. An

association rule is an association relationship of the form: X=>Y,

where X is a subset of I, Y is a subset of I and X ∩ Y = Ø. The

support of rule X => Y is defined as the percentage of traces

containing both X and Y in TD. The confidence of X => Y is

defined as the percentage of traces containing X that also contain

Y in TD. The task of association rules mining is to find all strong

association rules that satisfy a minimum support threshold (min-

sup) and a minimum confidence threshold (min-conf). Mining

association rules consists of two phases. In the first phase, all

frequent traces that satisfy the min-sup are found. In the second

phase, strong association rules are generated from the frequent

traces found in the first phase. Most research considers only the

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.5, December 2010

27

first phase because once frequent traces are found, mining

association rules is trivial.

2.2 Data Representation
Two types of database layouts are employed in association rule

mining: horizontal and vertical. In the horizontal database layout,

each trace consists of a set of events and the database contains a

set of traces. Most Apriori-like algorithms use this type of layout.

For vertical database layout, each event maintains a set of trace

ids (denoted by tr-id-set) where this event is contained. This

layout could be maintained as a bit vector. It has been shown that

vertical layout performs generally better than the horizontal

format [10,11]. Table 1, Table 2 and Table 3 show examples for

different types of layouts.

Table 1. Horizontal Representation

Tr-id Traces

1 <2,1,5,3>

2 <2,3>

3 <1,4>

4 <3,1,5>

5 <2,1,3>

6 <2,4>

Table 2 Vertical Tr-id-set Representation

Trace Tr-id-set

1 <1,3,4,5>

2 <1,2,5,6>

3 <1,2,4,5>

4 <3>

5 <1,4>

Table 3 Vertical Bitvector Representation

Trace Bitvector

1 <1,0,1,1,1,0>

2 <1,1,0,0,1,1>

3 <1,1,0,1,1,0>

4 <0,0,1,0,0,0>

5 <1,0,0,1,0,0>

2.3 Lexicographic Prefix Tree
 In this paper, a lexicographic prefix tree data structure is

employed to generate candidate trace sets and count their

frequency, which is similar to the lexicographic tree used in the

TreeProjection algorithm [12]. An example of this tree is shown

in Fig. 1. Each node in the tree stores a collection of frequent

trace sets together with the support of these trace sets. The root

contains all frequent 1-trace sets. Each edge in the tree is labeled

with a trace event. Trace sets in any node are stored as singleton

sets with the understanding that the actual trace set also contains

all the events found on the edges from this node to the root node.

For example consider the leftmost node in level 2 of the tree in

Fig. 1. There are four 2-trace sets in this node, namely

{1,2},{1,3},{1,4} and {1,5}. The singleton sets in each node of

the tree are stored in the lexicographic order. If the root contains

{1},{2},…,{n}, then, the nodes in level 2 will contain

{2},{3},…{n};{3},{4},…,{n};…;{n}, and so on. For each

candidate trace set a list of transaction ids are stored. This tree

will not be generated in full. The tree is generated in depth-first

order and minimum information needed to continue the search

only stored. This means that at any instance, at most a path of the

tree will be stored. As the search progresses, if the expansion of a

node cannot possibly lead to the discovery of trace sets that have

minimum support, then the node will not be expanded and the

search will backtrack. As a frequent trace set that meets the

minimum support requirement is found, it is output. Candidate

traces sets generated by depth-first search are the same as those

generated by the joining step (without pruning) of the Apriori

algorithm.

2 3 4 5 3 4 4 5

5

 5

3 4 4 5

5

5

 5

4 5 5

 5

4 5 5

 5

5

 5

5

 5
5

1

` 2

`

3

`

4

`

2

` 3

`

4

` 3

`

4

`

4

`

3 4

`

4

`
4

`

4

`

Fig. 1. Illustration of lexicographic tree

1 2 3 4 5

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.5, December 2010

28

Table 4. A Sample Trace Database

3. TRANSACTION MAPPING

ALGORITHM
The contribution is that transaction ids are compressed for each

trace set to continuous intervals by mapping trace ids into

different space appealing to a transaction tree. Frequent trace sets

are found by intersecting these interval lists instead of intersecting

the trace id lists. The construction of transaction tree [15] is as

follows.

3.1 Transaction Tree
The transaction tree is similar to FP-tree except that there is no

header table or node link. The transaction tree can be thought of

as a compact representation of all the transactions in the database.

Each node in the tree has an id corresponding to an event and a

counter that keeps the number of transactions that contain this

event in this path. The construction of the transaction tree is as

follows:

1. Scan through the trace database once and identify all the

frequent 1- trace sets and sort them in descending order

of frequency. At the beginning, the transaction tree

consists of just a single node (which is a dummy root).

2. Scan through the trace database for a second time. For

each trace, select items that are in frequent 1-trace sets,

sort them according to the order of frequent 1-trace sets,

and insert them into the transaction tree. When inserting

an event, start from the root. At the beginning, the root

is the current node. In general, if the current node has a

child node whose id is equal to this event, then just

increment the count of this child by 1; otherwise, create

a new child node and set its counter as 1.

Table 4 and Fig. 2 illustrate the construction of a transaction tree.

Table 4 shows an example of a trace database and Fig. 2 displays

the constructed transaction tree assuming the minimum support

count is 2.

3.2 Transaction Mapping and the

Construction of Interval lists
After the transaction tree is constructed, all the transactions that

contain an item are represented with an interval list. Each interval

corresponds to a contiguous sequence of relabeled ids. Each node

in the transaction tree will be associated with an interval. The

construction of interval lists for each event is done recursively

starting from the root in a depth-first order. In addition to the

events, each element of a node in the lexicographic tree also stores

a trace interval list. By constructing the lexicographic tree in a

depth-first order, the support count of the candidate trace set is

computed by intersecting the interval lists of the two events.

3.3 Transaction Mapping-TraceMiner

Algorithm (TM-TraceMiner)
There are four steps involved in this algorithm:

1. Scan through the trace database and identify all

frequent-1 trace sets.

2. Construct the transaction tree with counts for each node.

3. Construct the transaction interval lists. Merge intervals

if they are mergeable.

4. Construct the lexicographic tree in a depth-first order

keeping only the minimum amount of information

necessary to complete the search. This means that no

more than a path in the lexicographic tree will ever be

stored. While, at any node, if further expansion of that

will not be fruitful, then the search backtracks. When

processing a node in the tree for every element in the

node, the corresponding interval lists are computed by

interval intersections. As the search progresses, trace set

with enough support is output.

4. EXPERIMENTS AND PERFORMANCE

EVALUATION

4.1 Comparison with TraceMiner and FP-

TraceMiner
Experiments had been performed on both synthetic and real

datasets to evaluate the scalability of our mining algorithm and the

effectiveness of our pruning strategy. Three datasets are used in

these experiments: a synthetic and two real datasets. Synthetic

data generator provided by IBM was used with modification to

ensure generation of sequences of events. The generators accept a

set of parameters. The parameters D, C, N and S correspond

Tr-id Traces Ordered frequent traces

1 <2,1,5,3,19,20> <1,2,3>

2 <2,6,3> <2,3>

3 <1,7,8> <1>

4 <3,1,9,10> <1,3>

5 <2,1,11,3,17,18

>

<1,2,3>

6 <2,4,12> <2,4>

7 <1,13,14> <1>

8 <2,15,4,16> <2,4>

root

1:5

[1,5]

2:3

[6,8]

2:2

[1,2]

3:1

[3,3]

3:1

[6,6]

4:2

[7,8]

3:2

[1,2]

Fig. 2. A transaction tree for the database shown in

Table 4

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.5, December 2010

29

respectively to the number of sequences (in 1000s), the average

number of events per sequence, the number of different events (in

1000s) and the average number of events in the maximal

sequences. The experiment is tested with the dataset

D5C20N10S20. It is also experimented on Gazelle dataset from

KDD Cup 2000 which was also used to evaluate TraceMiner and

FP-TraceMiner. It contains 29369 sequences with an average

length of 3 and a maximum length of 651.

To evaluate this algorithm performance on mining from program

traces, we generate traces from a simple Traffic alert and Collision

Avoidance System (TCAS) from the Siemens Test Suite [13],

which has been used as one of the benchmarks for research in

error localization [14]. The test suite comes with 1578 correct test

cases. We run these test cases to obtain 1578 traces. To test for

scalability, instead of tracing method invocations, we trace

executions of basic blocks of TCAS's control flow graph. A basic

block is a maximal sequence of statements such that the execution

of one statement will always results in the execution of the

subsequent statements in the sequence. Each trace of basic block

ids is treated as a sequence. The sequences are of average length

of 36 and maximum length of 70. It contains 75 different events -

the events are the basic block ids of the control flow graph of

TCAS as shown in Table 5. This dataset is called as TCAS

dataset.

Environment and Pattern Miners: All experiments were

performed on a Pentium 4 3.0GHz PC with 2GB main memory

running Windows XP Professional. Algorithms were written

using Java running with Net Beans Frame work.

Table 5. Performance details of TM-TraceMiner

Experiment Results and Analysis: The results of experiments

performed on the D5C20N10S20, Gazelle and Siemens dataset

using closed and full-set iterative pattern miners are shown in

Figures 3, 4 & 5 respectively. The Y-axis (in log scale)

corresponds to the runtime taken or the number of generated

patterns. The X-axis corresponds to the minimum support

thresholds. The thresholds are reported relative to the number of

sequences in the database. Note that, different from sequential

patterns, due to repeated patterns within a sequence this number

can exceed 1

Fig 3: Performance results of varying min_ sup for

D5C20N10S20 dataset

Details TM-TraceMiner

No. of Testcases 1578

No of Traces 1578

Average length 36

Maximum length 70

No. of Events 75

10

100

1000

10000

0.023 0.026 0.029 0.032

2
min-sup(%)

TraceMiner

FP-TraceMiner

TM-TraceMiner

100

1000

10000

100000

1000000

10000000

0.1 … 0.25 0.28 0.31 0.34

min-sup(%)

TraceMiner

FP-TraceMiner

TM-TraceMiner

1

1

10

1000

10000

0. … 0.25 0.28 0.31 0.34

min-sup(%)

TraceMiner

FP-TraceMiner

TM-TraceMiner

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.5, December 2010

30

Fig. 4: Performance results of varying min_ sup for Gazelle

dataset

Fig 5: Performance results of varying min sup for TCAS

dataset

From the plotted results it is noted that the pruning strategy

significantly reduces the runtime and the number of patterns

mined especially on low support threshold and when the reported

patterns are long. Admittedly, when the numbers of closed and

full-set of patterns differ by only a small factor, the overhead of

mining using TraceMiner may result in longer runtime as

compared to mining a FP-TraceMiner. However, when the length

of the patterns is long, the number of TraceMiner is likely to be

much less than that of a FP-TraceMiner.

For all datasets, even at very low support, TraceMiner is able to

complete within less than 17 minutes. TCAS dataset especially

highlights performance benefit of our pruning strategy. TM-

TraceMiner is able to run even at the lowest possible support

threshold (at 1 instance) within less than 17 minutes. On the other

hand, Fp-TraceMiner runs with excessive runtime (> 6 hours)

even at a relatively high support threshold of 867 instances. But

TM-TraceMiner runs within 25 minutes.

5. CONCLUSION
In this paper, a new algorithm TM-TraceMiner is presented using

the vertical database representation. Trace ids of each trace set are

transformed and compressed to continuous transaction interval

lists in a different space using transaction tree and frequent trace

sets are found by transaction intervals intersection along a

lexicographic tree in depth-first order. Through experiments the

TM-TraceMiner algorithm has been shown gain to significant

performance improvement over TraceMiner and FP-TraceMiner.

This paper also gives an efficient method to mine the

specifications from program execution traces. Traces deviating

from common trace population rules are removed. The resultant

filtered traces are then separated into multiple clusters. By

clustering common traces together, it is expected that the learner

is able to learn better and over-generalization of a subset of traces

is not propagated to other clusters. These clusters of filtered traces

are then inputted to a specification miner. This algorithm confirms

the usefulness of the proposed method in discovering software

specifications in iterative pattern form. Besides mining software

behavioral pattern, it is believed that the proposed mining

technique can potentially be applied to other knowledge discovery

domains

6. REFERENCES
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. In Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming

Languages, pages 4–16, 2002

[2] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M.Das.

Perracotta: Mining temporal API rules from imperfect traces.

In Proc. of Int. Conf. on Software Engineering, 2006.

[3] The Java hotspot performance engine architecture.

http://java.sun.com/products/hotspot/whitepaper.html

[4] J. Han and M. Kamber. Data Mining Concepts and

Techniques. Morgan Kaufmann, 2001.

[5] R.Agrawal, T. Imielinski, and A.N.Swami, “Mining

Association Rules Between Sets of Items in Large

Databases”,Proc.ACM SIGMOD Int’l Conf.Management of

Data,pp.207-216, May 1993.

[6] R.Agrawal, T. Imielinski, and A.N.Swami, “Mining

Association Rules Between Sets of Items in Large

Databases”,Proc.ACM SIGMOD Int’l Conf.Management of

Data,pp.207-216, May 1993.

[7] R.Jeevarathinam and Antony Selvadoss Thanamani, “An

Efficient Algorithm for Mining Software Specifications from

Program Execution Traces” presented at Int’l Conf. Sensors,

Security, Software and Intelligent Systems (ISSSIS 2009)

1

10

100

1000

10000

100000

1000000

10000000

0.1 … 55 70 85 100
min-sup(%)

TraceMiner

FP-TraceMiner

TM-TraceMiner

1

10

100

1000

10000

100000

0.1 … 55 70 85 100
min-sup(%)

TraceMiner

FP-TraceMiner

TM-TraceMiner

10000

100000

1000000

10000000

100000000

0.023 0.026

6

0.029

9

0.032
min-sup(%)

TraceMiner

FP-TraceMiner

TM-TraceMiner

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.5, December 2010

31

[8] Han J., Pei J., Yin Y.: Mining frequent patterns without

candidate generation. Proc. of the 2000 ACM SIGMOD

Conf. on Management of Data (2000)

[9] R.Jeevarathinam and Antony Selvadoss Thanamani, “An

Implementation of FP-growth algorithm for Software

Specification Mining”, CIIT Int’l Journal of Data mining and

Knowledge Engineering, Vol-1, pp.18-23, April 2009.

[10] M.J.Zaki, S. Parthasarathy, M.Ogihara, and W.Li, “New

Algorithms for Fast Discovery of Association Rules,” Proc.

Third Int’l Conf. Knowledge Discovery and Data Mining,

pp. 283-286,1997

[11] P. Shenoy, J. R. Haritsa, S. Sudarshan, G. Bhalotia, M.Bawa,

and D. Shah, “Turbo-Charging Vertical Mining of Large

Databases,” Proc. ACM SIGMOD Int’l Conf. Management

of Data, pp.22-23, May 2000.

[12] R.Agrawal, C.Aggrawal, and V.Prasad, “A Tree Projection

Algorithm for Generation of Frequent Item Sets,” Parallel

and Distributed Computing, pp.350-371, 2000

[13] D. Lo and S-C. Khoo. SMArTIC: Toward building an

accurate, robust and scalable specifications miner. In

SIGSOFT FSE, 2006.

[14] J. Wang and J. Han. BIDE: Efficient mining of frequent

closed sequences. In ICDE, 2004.

[15] M.Song and S. Rajesekaran, “ A Transaction Mapping

Algorithm for Frequent Item sets Mining”, IEEE Trans. On

Knowledge and Data Engineering, Vol. 18, No. 4, pp. 472-

481. April 2006.

