
International Journal of Computer Applications (0975 – 8887)

Volume 12– No.6, December 2010

34

High Performance Physical Environmental Security using
Distributed Cooperative Sensor Nodes

Hamid Reza Naji

International Center for Science, High Technology & Environmental Sciences, Iran

Kerman Graduate University of Technology, Kerman, Iran

ABSTRACT
 Fusion of cooperative intelligent sensor nodes in a distributed
environment can provide a high performance event monitoring

system mainly for security issues. Partitioning the hardware design

space into entities called agents, which are autonomous units of

execution that have the capability of interacting with the

environment and each other has been made much more attractive by

the recent advances in the capabilities of reconfigurable hardware.
In a reconfigurable embedded processing environment one possible

benefit is use of multi-agent approach in a common design

methodology for both the hardware and software components of the

system to do parallel processing with high speed and flexibility. In

this paper we will explore the arguments for applying multi-agent

techniques to highlight how such techniques can be applied using
current-generation hardware description languages in

reconfigurable hardware to be suitable for physical environmental

security.

Keywords: Security, Reconfigurable Systems, Multi-Agent,

Sensor Fusion

1. INTRODUCTION
A system recognizes its external environment by using sensory

information. By integrating large amounts of this information, more

reliable and multilateral recognition can be achieved. The purpose
of sensor fusion is to realize a new sensing architecture by

integrating multi-sensor information in a hierarchical and

decentralized configuration. This allows the system to provide a

higher-level recognition mechanism than traditional systems. In

sensor fusion systems, the probabilistic data from multiple sensors

is fused together using calibrated error models of the sensors

involved, in order to reduce the ambiguity in the sensed data and
improve the overall reliability of the system [1],[2],[3].

 It should be noted that current technology usually mandates that
hardware agents be less complex in structure and more

deterministic in operation than those typically implemented in

software. In order to facilitate their implementation, as hardware

agents within reprogrammable logic, the sets of beliefs, desires, and

intentions may be reduced to the minimum set necessary to provide
adequate though sometimes sub-optimal understanding and control

of the system. In general, the simpler, more regularly structured

agents that have highly repetitive operations are good candidates for
implementation in reconfigurable hardware [4],[5].

 Agents implemented in reconfigurable hardware will most likely

be less complex and finer grained than their software agent

counterparts and will communicate much more effectively with

their neighboring agents because communication is likely to be

performed on-chip. Agents may communicate with one another in a
tightly synchronized manner using a common global clock, or

communication can occur in a less synchronized manner using

distributed clocks and a standard handshaking protocol [6],[7].

2. SENSOR FUSION SYSTEMS
Many automated systems have sensors to collect information and

conditions of the world around them. They use this information as

feedback to control modules. The ability of the system to perform a

given task is dependent on the quality of the sensory information

which is in turn related to the range and resolution of the sensors.

However, sensors themselves are not perfectly reliable. Sensors are

subject to noise, calibration errors and non-linearity, and thus
sometimes give incorrect results.

 Sensor fusion seeks to overcome these drawbacks by integrating

or combining information from two or more independent sensor
readings. It can be seen that combining readings from several

different kinds of sensors can reduce uncertainty and provide

significantly more accurate information than the reading of data
from a single sensor.

 It is presupposed that the intelligent sensor agents can

communicate with each other, thus enabling them to fuse the

information they acquired with a high speed of information
processing and flexible fusion algorithm [8],[9],[10],[11],[12].

3. SECURITY USING COOPERATIVE

AGENTS
This section illustrates how cooperative hardware agents can

provide a reliable high speed physical environmental security.

These hardware agents could be implemented in reconfigurable

hardware. Although a conventional embedded processor approach

could be used in this application the ideas presented here would be

applicable to a system where the greater speed of the hardware
agents might be a significant advantage. This system could either be

implemented in reconfigurable hardware or in an ASIC. Although

an ASIC implementation could result in greater speed it would

freeze the design and allow for no further changes.

 This sensor fusion application will use homogeneous hardware

agents resident in re-configurable hardware. No agents implemented

in software will be used. Also, each agent will exhibit the autonomy

and sociability that are main characteristics of agents. Consider a

grid of cells each of which must be protected from some hazardous

event. Consider also a sensor system that is capable of detecting the

event either in the cell it is placed in or any of the eight adjacent

cells. For this application a n x n grid of cells will be considered (n

cells in each row or column of grid). The cells with the sensor units

will contain two independent sensor units for fault tolerance and the
necessary hardware to implement the agent. Let us also assume that

each cell with an agent has the capability to provide a necessary

protection for example extinguish a fire in its cell or neighboring

cells. Figure1 and 2 show two models of sensor fusion by multi-

agent system. The cells with and without agents can be arranged as

shown in Figure1 or Figure2, where the black circles indicate cells
with agents and the white circles represent cells with no agents.

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.6, December 2010

35

Figure 1 NxN grid with
2

2N agents

Figure 2 NxN grid with [] 1
2
+N agents

The double-sided arrows indicate communication paths from agent

to agent. Note that any individual agent using only the sensors local

in its cell will not have enough information to locate the event. Each

agent must communicate with its neighbors to receive more sensor

information in order to locate the cell an event has occurred in.
Also, an individual agent will have no way to determine if the

sensor it is using has developed a fault. Again, by considering

sensor data from its neighbors the agent can form a hypothesis as to

whether or not its sensor has failed. It can also switch to the

redundant sensor and compare the sensor data prior to and after the
switch to attempt to confirm or deny this hypothesis. Thus, no agent

by itself has sufficient data to implement its mission. Rather the

agents must communicate with one another to accumulate sufficient

data to make intelligent decisions on the appropriate actions to take.

However, each agent retains full autonomy to act on the data

received from its own sensor and the data communicated to it by its
neighbors to switch its sensor or activate one of its two event

reactor such as fire suppression systems. The system does not

function as a master slave environment but as a community of peers

sharing information so that each agent can build an independent
view of the environment.

The communication links among agents are not described in detail

for the example. However, it is assumed that each channel is

capable of bi-directional communication and that all of the packets

transmitted from agent to agent are a fixed size and format. The

data transmitted from agent to agent is simply the latest sensor data

from the sensor in the transmitting agents cell. All of the sensors are

binary sensors. Also, it is assumed that some sort of time-out is

implemented so a failed communication can be detected. The data

communication path will contain a Boolean flag that will indicate
whether or not the last data transmission over that channel was

successful. Also, a signal will be generated when new data is

available from neighboring agents. An agent will assume that a

failed communication indicates that there is no agent in the

corresponding position. Even if such an agent exists if the

communication link has failed no data will be available from that
agent and the end effect will be the same as having no neighbor

agent there.

 3.1 system’s Architecture
The hardware agents for the sample application are implemented as

a Beliefs, Desires and Intentions architecture. The beliefs, desires

and intentions of each agent are stored as a bit vector of fixed
length. A sample beliefs set of the agents for a fire extinguishing

system is summarized below as a vector. Each belief is encoded as a

single bit that will be one if the agent currently holds the associated

belief and zero if the agent does not hold the belief. Remember,

these represent beliefs of individual agents and may or may not
correspond to objective reality.

A(0..3) - Upper left/ Upper right/ Lower left/ Lower right neighbor
does not exist;

A(4) - Sensor 0 is currently used sensor; A(5) - Sensor

questionable; A(6) - Sensor 0 has failed; A(7) -Sensor 1 has failed;

A(8) -Sensor just switched; A(9) - Previous sensor value was high;

B(10) - Left neighbor cell is on fire; B(11) - Right neighbor cell is
on fire

 The belief bit vector is designed such that a value of all zeroes

is the default power-up/reset set of beliefs for an agent. The first
four beliefs relate to which neighbors the agent believes to be

present. Failure to communicate with a particular neighbor may lead

the agent to the belief that the neighbor does not exist. The next

seven beliefs encode the agent's beliefs about its redundant sensor

system. If a sensor is deemed questionable it may be switched for

the redundant sensor. If the sensor data immediately changes it will

be considered failed. The initial values indicate that both sensors are

operational and sensor 0 is currently being used. The final three

beliefs maintain the agents beliefs about where fires exist. The

agent is responsible only for extinguishing fires in two cells but is

unsure whether the right or left neighbor is its responsibility. Hence,
a belief is maintained for each of the three cells concerning the fire

status of those cells. The inputs to the agent come from its local

sensor and from the communication with the neighboring agents.
The inputs to each agent are shown below:

In(0) - Local sensor data (1 indicates fire in cell or adjacent cell);

In(1,3,5,7) - Upper left/ Upper right/ Lower left/ Lower right
neighbor sensor data;

In(2,4,6,8) - Upper left/ Upper right/ Lower left/ Lower right
neighbor communication error;

 The local sensor is a binary sensor that produces a single bit

output. The output is one if a fire is detected in the agent's cell or

any of the eight adjacent cells. The output is zero if no fire is

detected. The input from the other agents each contains two bits of

information. The first bit is the latest sensor data bit from that

neighbor's sensor. The second bit is a communication error bit. The

communication error bit is one if the communication system

detected a time-out attempting to communicate with the neighbor. If
the error bit is set the sensor data bit is not reliable. In the agent

architecture a function exists which maps the current set of beliefs

and the inputs to the agent to a new set of beliefs. Since both the

inputs and the beliefs for this example are encoded as bit vectors

this function can be implemented in combinatorial logic. The set of

desires for the agent are also encoded as a bit vector. A sample set
of desires for the agent is outlined below.

D(0) - Extinguish fire in current cell ; D(1) - Extinguish fire in left

hand neighbor cell;

D(2) - Extinguish fire in right hand neighbor cell ; D(3) - Switch to

backup sensor;

 The architecture includes a function to map the current state of

beliefs to desires. This function is very simple for this example

since the desires map directly from the beliefs that a cell is on fire

or a belief that a sensor has failed. Finally, the intentions of the

architecture must be laid out. A sample set of intentions are listed
below:

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.6, December 2010

36

I(0) -Activate fire suppressant system in agent's cell; I(1) -Activate

fire suppressant system in left neighbor cell; I(2) -Activate fire

suppressant system in right neighbor cell; I(3) -Switch active
sensor;

 Note that although each agent may uses plans to activate a fire

suppressant system in either the left neighbor cell or the right
neighbor cell it will in fact only be connected to one of the two

cells. Hence, it is possible for an agent to develop a goal and in fact

a plan that it is not capable of bringing about by itself. It may

require the cooperation of another agent in the system that is

capable of implementing the plan or a portion of it. The function

that maps goals to plans is also simple. The goal to extinguish fires

or switch sensors maps directly to a plan to do so. The function that

implements the plans may have an effect on the beliefs. For

example, the function that implements the plan to switch the sensor

also updates the belief vector so the agent believes that the sensor

has just been switched.

 3.2. System’s Features
The system is comprised entirely of agents resident in re-

configurable hardware and contains no software agents. It should be

noted, though that these hardware agents show many of the features

associated with traditional software agents. Each hardware agent is

autonomous and forms its own decisions on actions to take based

upon its beliefs about the environment, its sensor data, and data

received from other agents in the system. Furthermore, each of

these hardware agents is social and communicates with other agents

in the system to achieve a common goal of protecting all of the cells

from fire. This is necessary because each agent has incomplete

information on the environment and cannot locate a fire without

information from other agents. Also, each agent has limited

capabilities and is only able to extinguish fires in three cells. This

incomplete data and restricted capabilities is another common

characteristic of agent-based systems. The decentralized data and
control and asynchronous operation of the agents are also typical of
agent-based systems.

4. AGENT MODEL
The architecture used for the hardware agents is derived from the

well-known Beliefs, Desires, and Intentions architecture that is

described extensively in the literature[]. In the Beliefs, Desires, and

Intentions architecture each agent maintains a set of Beliefs, a set of

Desires, and a set of Intentions. The set of beliefs indicates what the

agent currently believes to be true concerning its environment. Note

that what an agent believes to be true may or may not be in fact
true. The set of desires is a set of outcomes that the agent would like

to cause in its environment. Note that the agent may or may not be

able to bring its desires about. Bringing its desires about may

require action from other agents or may not be achievable at all.

Finally, the set of intentions is a set of actions that the agent intends
to take to attempt to bring about its desires.

 The agent includes a function to map its inputs and current set of

beliefs to updated sets of beliefs. Also, the agent has a function to

map its current set of beliefs to a set of desires. Finally, the agent
has a function that maps its set of desires to the set of intentions that

are to be invoked to bring about these desires. It should be noted

that current technology usually mandates that hardware agents be

less complex in structure and more deterministic in operation than

those typically implemented in software. In this case, the sets of

beliefs, desires, and intentions may be reduced to the minimum set
necessary to provide adequate but sub-optimal understanding and

control of the system. In general, the simpler, more regularly

structured agents that have highly repetitive operations are good

candidates for implementation in reconfigurable hardware [13],
[14], [15], [16].

 In this paper, it is assumed that a typical reconfigurable hardware

architecture will be employed. In such an architecture, the

functionality of the reconfigurable hardware will be controlled by

placing design information directly into each bank of the

configuration memory. In this way, the external environment has

the capability to change the hardware’s functionality dynamically or
during the creation of an application by introducing agents into the

appropriate area of configuration memory. In this architecture, the

reconfigurable logic is assumed to support partial reconfiguration in

that it is assumed that parts of its logic can be changed without

affecting other parts. Interaction with the external environment is

supported by I/O connections made directly to the reconfigurable
logic [17], [18].

 Each hardware agent has control ports that include input/output

signals for handshaking among different agents and also with the

main system, input/output ports for communication with the

environment's sensors and actuators and input/output ports for

communicating with other agents that may be either hardware
agents or software agents.

5. IMPLEMENTATION
Figure 3 shows a part of the HDL code illustrating the specification

of the data elements to store the Beliefs, Desires, and Intentions.

Figure 3. Beliefs, Desires, and Intentions

The beliefs of the agents are binary values that encode whether or
not the agent believes that its’ neighbor’s exist, that its’ sensor is

functioning, and it or its’ neighbor cells have a fire. The inputs to

the agent come from its local sensor and from the communication

with the neighboring agents (indicated by LOCAL_SENSOR and

DATA_AVAILABLE in the sensitivity list of the process in Figure

4). The inputs to each agent include sensor data from each of four
neighbor agents. In the agent architecture a VHDL process exists

that maps the current set of beliefs and the inputs to the agent to a

new set of beliefs. Figure 4 shows a portion of this process

illustrating the updating of some of the Beliefs.

 The set of desires for the agent include desires to have fires in its

own cell or an adjacent cell extinguished. The architecture includes
a VHDL process to map the current state of beliefs to desires.

Figure 4. A process to map sensor data and communication data to

new beliefs

architecture behavioral of HW_AGENT

is

 -- define signals for Beliefs,
 -- Desires, and Intentions

signal BELIEFS:BIT_VECTOR(0to11);

signal DESIRES:BIT_VECTOR(0to3);

signal INTENTIONS:BIT_VECTOR(0to3);

-- This process fires when new local
-- sensor data or new data from neighbor

-- agents is available
F : process (LOCAL_SENSOR, DATA_AVAILABLE)
 begin
 --update beliefs of neighboring nodes
 BELIEFS(0) <= NEIGHBOR_DATA(1);
 BELIEFS(1) <= NEIGHBOR_DATA(3);
 BELIEFS(2) <= NEIGHBOR_DATA(5);
 BELIEFS(3) <= NEIGHBOR_DATA(7);

 M
 -- update belief about fire in cells
 -- Update belief about fire in cell
 BELIEFS(11) <= LOCAL_SENSOR and
 (NEIGHBOR_DATA(0) or BELIEFS(0)) and
 (NEIGHBOR_DATA(2) or BELIEFS(1)) and
 (NEIGHBOR_DATA(4) or BELIEFS(2)) and
 (NEIGHBOR_DATA(6) or BELIEFS(3));

 M
 end

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.6, December 2010

37

This process is very simple for this example since the goals map

directly from the beliefs that a cell is on fire or a belief that a sensor

has failed. A part of the VHDL process is shown in figure 5.

Figure 5. A process to map beliefs to desires

The intentions of the agent include activating a fire suppressant

system in a cell and switching to its redundant sensor. A part of the

VHDL process to map desires to intentions is shown in figure 6.

 Figure 6. A process to map desires to intentions

5. RESULTS
Tables 1 and 2 show the result of timing and device utilization for

agents without filter, and with filter in 8 and 16 bit modes for a

similar application. We use filter to remove unwanted signals and

noises.

Table 1. Timing results

 Table 2. Device utilization

 (Device: Xilinx Virtex II-2v1000fg)

Agent Type Without Filter With Filter

 8-bit 16-bit 8-bit 16-bit

% of used

Slices

 24% 64% 33% 95%

% of used
Flip Flops

2% 4% 3% 4%

% of used

LUTs

11% 62% 24% 83%

% of used

IOBs

19% 39% 19% 39%

% of used

MULT

90% 90% 90% 90%

% of used

GCLKs

6% 6% 6% 6%

As the results show the complexity of agents increases with filter. In

8 and 16 bit modes agents are implemented on Xilinx Virtex II-

2v1000fg.

6. CONCLUSIONS
In this paper a sample application was provided which used

multiple hardware agents that were designed to be implemented in

reconfigurable hardware for a sample sensor fusion type
application. The hardware agents developed for this application

display many of the features associated with more traditional agents

implemented in software. Each hardware agent was created to be

autonomous and forms its own decisions on actions to take based

upon its beliefs about the environment, its sensor data, and data

received from other agents in the system. It is believed that the use
of hardware agent's may prove useful to a number of application

domains, where speed, flexibility, and evolutionary design goals are

important issues. Future research should focus upon how to best

apply the hardware agent paradigm to more complex forms of

hardware agents and on applying such techniques in a unified way

to hybrid hardware/software environments.

7. ACKNOWLEDGMENTS
This research is sponsored by International Center for Science, High

Technology & Environmental Sciences, Iran.

8. REFERENCES
[1] Roger, A. Dash, R. K. Jennings, “Computational mechanism

design for information fusion within sensor networks,” 9th Int.
Conf. on Info. Fusion, pp. 1- 7, 2006

[2] Ruben Stranders, N. J., Alex Rogers, “A Decentralized, On-

line Coordination Mechanism for Monitoring Spatial

Phenomena with Mobile Sensors,” In AAMAS Workshop on
Agent Technology for Sensor Networks, pp. 9-15, 2008

[3] Ruben Stranders, N. J., Alex Rogers, “A Decentralized, On-line

Coordination Mechanism for Monitoring Spatial Phenomena

with Mobile Sensors,” In AAMAS Workshop on Agent
Technology for Sensor Networks, pp. 9-15, 2008

[4] Guccione, S.A., “Reconfigurable computing at Xilinx,

“Proceedings of Euro micro Symposium on Digital Systems
Design, pp. 102-107, 2001

[5] Becker, J.; Pionteck, T.; Glesner, M. ,“Adaptive systems-on-

chip: architectures, technologies and applications,” 14th

Symposium on Integrated Circuits and Systems, 2001

[6] Birigit Burmeister, Afsaneh Haddadi,” Generic, Configurable,

Cooperation Protocols for multi Agent systems,” LNAI 957,

5th european Workshop on modeling Autonomous agents in
multi agent Sorld, MAAMAW, 1993

[7] M.A.Hale,and J.I Craig ,“Preliminary Development of Agent

Technologies for a Design Integration Framework ,”

Proceedings of 5 th symposium on multi disciplinary Analysis
and Optimization, Panama City, FL,USA, 1994

[8] Rogers, A., Corkill, D., and Jennings, N. R., "Agent

technologies for sensor networks,” IEEE Intelligent Systems,
Vol. 24, pp. 13-17, 2009

[9] Tham, C.-K. and Renaud, J. ,”Multi-agent systems on sensor

networks: A distributed reinforcement learning approach,”
ISSNIP, pp. 423-429, 2005

[10] Rogers, A., Osborne, M., Ramchurn, S. D., Roberts, S., and

Jennings, N. R. , “Information agents for pervasive sensor
networks,” Per Com, IEEE Computer Society, pp. 294-299,
2008

[11] Rogers, A., Osborne, M., Ramchurn, S. D., Roberts, S., and
Jennings, N. R. ,”Information agents for pervasive sensor

networks,” Per Com, IEEE Computer Society, pp. 294-299,
2008

Agent Type 8 bit 16 bit

Agents without Filter 100 ns 165 ns

Agents with Filter 140 ns 270 ns

G : process (BELIEFS)

 begin

 if (BELIEFS(11) = '1')
then

 DESIRES(0) <= '1';

 end if;

 M
 end

-- process to map DESIRES to

INTENTIONS

 H : process (DESIRES)

 begin

 INTENTIONS(0) <= DESIRES(0);

 INTENTIONS(1) <= DESIRES(1);

 M
 end

International Journal of Computer Applications (0975 – 8887)

Volume 12– No.6, December 2010

38

[12] Ferranti, E. and Trigoni, N. ,”Practical issues in deploying

mobile agents to explore a sensor instrumented environment,”

Technical Report RR-09- 02. Oxford University Computing
Laboratory, 2009

[13] Weiss, Gerhard editor, “Multiagent Systems – A Modern

Approach to Distributed Artificial Intelligence,” MIT Press,
Cambridge Massachusetts, 1999

[14] Vidal, Jose M., Bohlor Paul A., Huhns, Michael N, “Inside an
Agent,” IEEE Internet Computing, 2001

[15] Kautz H., Selman B., Shah M., “Combining Social networks

and collaborative filtering,” Communications of the ACM,
Vol. 40, pp. 63-65, 1997

[16] Hayzelden, Alex L. G., Bigham, John editors, “Software

Agents for Future Communications Systems, Springer-Verlag,
1999

[17] Hamid Reza Naji , John Weir , B. Earl Wells, “Applying

the multi-agent paradigm to reconfigurable hardware: a sensor

fusion example,” Second international workshop on Intelligent
systems design and application, Atlanta, pp.207-212, 2002

[18] Mohamed Khalgui, Olfa Mosbahi, Zhiwu Li, Hans- Michael

Hanisch, "Reconfigurable Multi-Agent Embedded Control

Systems: From Modelling to Implementation," IEEE
Transactions on Computers, 2010.

AUTHORS PROFILE

HamidReza Naji is an assistant professor in the International

Center for Science and High Technology & Environmental Sciences

and Dean of the College of Electrical and Computer Engineering in

Graduate University of Technology, Kerman, Iran. His research

interests include embedded, reconfigurable, and multi-agent

systems, networks, and security. Naji has a PhD in computer

engineering from the University of Alabama in Huntsville, USA.
He is a professional member of the IEEE. Contact him at

hamidnaji@ieee.org

